NUREG/CR-2239 SAND81-1549

Technical Guidance for Siting Criteria Development

Prepared by D. C. Aldrich, J. L. Sprung, D. J. Alpert, K. Diegert, R. M. Ostmeyer, L. T. Ritchie, D. R. Strip/ SNL J. D. Johnson/Dikewood Corporation K. Hansen, J. Robinson/Dames and Moore

Sandia National Laboratories

Prepared for U.S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

- 1. The NRC Public Document Room, 1717 H Street, N.W. Washington, DC 20555
- The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission, 2. Washington, DC 20555
- 3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event, Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

GPO Printed copy price: \$11.00

Technical Guidance for Siting Criteria Development

Prepared by D. C. Aldrich, J. L. Sprung, D. J. Alpert, K. Diegert, R. M. Ostmeyer, L. T. Ritchie, D. R. Strip/ SNL J. D. Johnson/Dikewood Corporation K. Hansen, J. Robinson/Dames and Moore

Sandia National Laboratories

Prepared for U.S. Nuclear Regulatory Commission

NUREG/CR-2239 SAND81-1549

TECHNICAL GUIDANCE FOR SITING CRITERIA DEVELOPMENT

D. C. Aldrich J. L. Sprung (Project Coordinators)

> D. J. Alpert K. Diegert R. M. Ostmeyer L. T. Ritchie D. P. Strip

Sandia National Laboratories Albuquerque, New Mexico 87185

> J. D. Johnson ' Dikewood Corporation Albuquerque, New Mexico

K. Hansen, J. Robinson Dames and Moore Los Angeles, California

Manuscript Submitted: July 1982 Date Published: December 1982

Sandia National Laboratories Albuquerque, New Mexico 87185 operated by Sandia Corporation for the U.S. Department of Energy

Prepared for U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN A1123

FOREWORD

On July 29, 1980 an advance notice of rulemaking was published for the siting of nuclear power reactors. One of the principle elements contained in the advance notice was the development of a comprehensive analysis of all technical issues relevant to siting. Sandia National Laboratories was contracted by the Nuclear Regulatory Commission to perform the analysis and document the technical guidance to support the formulation of new regulations. This report completes the effort to provide the technical guidance.

a standard s

13 A.

The work has been primarily focused toward the development of generic siting criteria, uncoupled from specific plant design. To achieve this end, the NRC staff developed a representative set of severe accident release source terms which covers the full spectrum of postulated severe accident releases for typical light NUREG-0773, "The Development of Severe water reactors. Reactor Accident Source Terms: 1975-1981," provides the detailed description of the considerations that went into the development of the spectrum of source terms (SSTs) in general terms; a more specific discussion of the concept of a representative or generic spectrum of source terms is given in pages 6 through 21 of NUREG-0771, "Regulatory Impact of Nuclear Reactor Accident Source Term Assumptions." From the results of Probabilistic Risk Assessments available at the time of the preparation of this report, the NRC staff would assign typical probability values to the source terms for a range of light water reactor designs as follows:

Probability of SST1 release	1 x 10 ⁻⁵ /reactor year
Probability of SST2 release	2 x 10 ⁻⁵ /reactor year
Probability of SST3 release	1×10^{-4} /reactor year

Table 2.3.1-3 presents the comparative impact of these releases in terms of public health effects. These ratios indicate the relative importance of the source terms given equal probability of occurrence. Their absolute and relative probabilities of occurrence affect their significance for the selection of siting criteria.

There are very large uncertainties associated with these numbers. The absolute values and the ratios of these probabilities for a given facility are design specific. To accurately portray the risk, very specific accident sequence probabilities and source terms are needed. Thus, the results presented in this report do not represent nuclear power risk. The siting source terms were used to calculate accident consequences at 91 U. S. reactor sites using site specific meteorology and population data and assuming an 1120 MWe reactor. These calculations treat siting factors such as weather conditions and emergency response probabilistically but postulate the siting source term release. The results are thus conditional consequence values.

Currently there is significant controversy about the realism of accident source terms, that is, the accuracy with which they describe potential releases of radioactivity for a gien sequence of events in a core melt accident. The work done to date on siting uses the source terms developed for the Reactor Safety Study, held unchanged by newer projections as explained in NUREG-0772, "Technical Bases for Estimating Fission Product Behavior During LWR Accidents." The staff expects newer information to be available by mid 1983 to modify these source terms. In the meanwhile, sensitivity analyses are given to explore how the calculated consequence values would change with various source term reductions.

Contained in this report are sensitivity studies for the major parameters important to siting decision making. Only through consideration of material such as this can reasoned decisions be made concerning recommendations for improved siting regulations.

::

This report represents some of the work being done to support the expanding use of probabilistic risk assessment in the regulatory process. The NRC must be careful with the results of such analyses, considering the very large uncertainties in the results. The studies shown in this report must be used in a manner that is consistent with the stated objectives. The results are to provide technical perspective on siting-related issues. Results presented in this report are not significantly different than results of consequence studies that have been available in the open literature for decades. Given the source term assumptions, large consequences are calculated. However, the risks (probabilities times consequences) posed by such accidents are very small. Therefore, the absolute numbers should only be quoted with the associated probabilities and with the stated assumptions recognizing the uncertainties in the analyses.

Robert M. Bernero, Director Division of Risk Analysis U.S. Nuclear Regulatory Commission

Abstract

Technical guidance to support the formulation and comparison of possible siting criteria for nuclear power plants has been developed for the Nuclear Regulatory Commission by Sandia National Laboratories. Information has been developed in four areas: (1) consequences of hypothetical severe nuclear power plant accidents, (2) characteristics of population distributions about current reactor sites, (3) site availability within the continental United States, and (4) socioeconomic impacts of reactor siting.

The impact on consequences of source term magnitude, meteorology, population distribution and emergency response have been analyzed. Population distributions about current sites were analyzed to identify statistical characteristics, time trends, and regional differences. A site availability data bank was constructed for the continental United States. The data bank contains information about population densities, seismicity, topography, water availability, and land use restrictions. Finally, the socioeconomic impacts of rural industrialization projects, energy boomtowns, and nuclear power plants were examined to determine their nature, magnitude, and dependence on site demography and remoteness.

TABLE OF CONTENTS

 $b \in \mathcal{L}$

1

			Page
1.	Intr	oduction and Summary	1-1
	1.1	Introduction	1-1
	1.2	Summary	1-3
		References for Chapter 1	1-7
2.	Cons	equences of Potential Reactor Accidents	
	2.1	Introduction	
	2.2	Background	2-2
		2.2.1 Overview of Consequence Model	2-2
		2.2.2 Input Data for Consequence Model	2-5
		2.2.3 Uncertainties	2-7
		2.2.4 Base Case Calculation	2-10
	2.3	Reactor Accident Source Terms	2-10
		2.3.1 Accident Release Characteristics and Source Terms	2-10
		2.3.2 Uncertainty in Source Term Magnitudes	2-18
	2.4	Site Meteorology and Population	2-23
		2.4.1 Sensitivity to Meteorological Record	2-24
	·	2.4.2 Sensitivity to Site Population Distribution	2-32
	2.5	Sensitivity to Emergency Response	2-38
	2.6	Distance Dependencies of Reactor Accident Consequences	2-53
	2.7	Other Sensitivity Calculations	2-66
		2.7.1 Reactor Size	2-66

			Page
		2.7.2 Energy Release Rate	2-72
		2.7.3 Dry Deposition Velocity	2-76
		2.7.4 Population Distribution	2-80
		2.7.5 Interdiction Dose Criterion	2-96
	2.8	Summary	2-102
		References for Chapter 2	2-106
3.	Popu Site	lation Statistics for Current Reactor	3-1
	3.1	Introduction	3-1
	3.2	Exclusion Zones and Site Population Factors	3-3
	3.3	Site Population Statistics	3-6
	3.4	Time Dependent Trends	3-17
		References for Chapter 3	3-24
4.	Site	Availability Impacts	4-1
	4.1	Introduction	4-1
	4.2	Methodology	4-1
		4.2.1 Issues of Concern	4-1
		4.2.2 Data Structure Diagram	4-3
		4.2.3 Display of Results	4-3
		4.2.4 Geographic Information Management System	4-5
		4.2.5 Mapping Approach	4-5
÷.	4.3	Data Base	4-6
		4.3.1 Demographic Data	4-6

viii

				Page
		4.3.2	State Boundaries	
		4.3.3	Restricted Lands	4-8
		4.3.4	Seismic Hardening	4-10
	;	4.3.5	Site Preparation	4-15
		4.3.6	Water Availability	4-16
	4.4	Enviro	nmental Suitability Analysis	4-20
		4.4.1	Individual Site Availability Issue Assements (Utility Functions)	
		4.4.2	Site Availability Issue Overlay	4-22
•		4.4.3	Environmental Statistics	
2.3	4.5	Demogra	aphic Analysis	4-24
		4.5.1	Stand-Off Zones	4-24
		4.5.2	Population Density	4-25
		4.5.3	Composite Population Densities	4-30
		4.5.4	Sector Population Density	4-32
	4.6	Impact	Analysis	4-36
		4.6.1	Environmental Statistics	4-37
		4.6.2	Impact Comparisons	4-37
	4.7	Summary	7 • • • • • • • • • • • • • • • • • • •	4-39
		Referer	nces for Chapter 4	4-41
5.	Socio	peconomi	c Impacts	5-1
	5.1	Introdu	action	5-1
	5.2	Site Re	emoteness	5-1
	5.3	Growth	Rates	5-4

÷.

5.4	Transmission Line Costs	5-9
5.5	Discussion	5-10
5.6	Conclusions	5 - 18
• •	References for Chapter 5	5-19

Page

۲

3

Appendices

A . 🤇	Site	Datassilisilisilisi	A-1
	A.1	General Site and Reactor Data	A-1
	A.2	Population Data	A-8
	A.3	Weather Data	A-9
	A.4	Site Wind Rose Data	A-18
	A.5	Economic Data	A-27
		References for Appendix A	A-31
в.	React	cor Core Radionuclide Inventories	B-1
	в.1	Core Radionuclide Inventory	B-1
	в.2	Radionuclide Inventory Impacts on Reactor Accident Consequences	B-3
		References for Appendix B	B-8
c.	Site	Specific Consequence Estimates	C-1
D.		cional Population Statistics for ent Reactor Sites	D-1
· .	D.1	Site Population Statistics	D-1
	D.2	Exclusion Distances	D-51
	D.3	Site Population Factors	D-54

Page

E.	CRAC	2: A Brief Description	E-1
	E.1	Atmospheric Dispersion Parameters	E-1
	E.2	Plume Rise	E-2
	E.3	Precipitation Scavenging (Wet Deposition)	E-2
	E.4	Mixing Heights	E-2
	E.5	Improved Weather Sequence Sampling Technique	E-3
	E.6	Emergency Response (Evacuation) Model	E-4
	E.7	Updated Cancer Risk Factors	E-9
		References for Appendix E	E-11
F.	Site	Availability Maps and Tables	F-1

LIST OF TABLES

	Table		Page
	2.2.2-1	Emergency Response Scenarios	2-7
		Brief Descriptions Characterizing the Accident Groups Within the NRC "Accident Spectrum"	2-12
	2.3.1-2	NRC Source Terms for Siting Analysis	2-13
	2.3.1-3	Comparison of Conditional Mean Consequences Predicted for Five Source Terms	2-14
		Sensitivity of Mean Consequences to Reductions in SST1 Release Fractions of Iodine, Cesium, and Tellurium	2 - 21
	2.3.2-2	Sensitivity of Mean Consequences to Reductions in SST1 Release Fractions of All Elements Except Noble Gases	2-22
	2.5-1	Effect of Delay Time on Early Fatalities and Early Injuries for Evacuation to 10 Miles	2-43
	2.5-2	Effect of Evacuation Distance on Early Fatalities and Early Injuries for Summary Evacuation	2-43
	2.5-3	Effect of Sheltering Distance on Early Fatalities and Early Injuries for Preferential Sheltering Followed by Relocation	2-45
,	2.5-4	Effect of Early Fatalities and Early Injuries for Sheltering to 10 Miles Followed by Relocation	2- 45
	2.5-5	Effect of Relocation Time on Early Fatalities and Early Injuries for Sheltering to 10 Miles	2-46
	2.5-6	Dependence of Early Fatalities and Early Injuries on Response Distance for Eight Emergency Response Scenarios	2-47

Table		Page
2.5-7	Impact of Emergency Response Beyond	· · ·
2.5-1		
	10 Miles on Early Fatalities and Early	
	Injuries	2-50
	and the second	
2.6-1	Summary of Consequence Distances	2-62
2.6-2	Sensitivity of Fatal, Injury, and	•
2.6-2		
. * 1	Interdiction Distances to Release	
	Magnitude	2-65
		· ·
2 7 1-1	Dependence of Consequences Upon Reactor	
	Size	2 60
	5120	2-09
2.7.1-2	Dependence of Mean Early Fatalities	
	Upon Reactor Size and Evacuation	
	Scenario	2-70
0701	Consideration of The Line to 1. Conservations	. •
2.7.2-1	Sensitivity of Estimated Consequences	· ·
	to Energy Release Rate	2-73
2.7.3-1	Sensitivity of the Distances to which	
	Consequences Occur for Various	
		2 70
	Deposition Velocities	2-19
2.7.4-1	Early Fatalities and Early Injuries for	
,	Population Distributions 1 Through 9	2-88
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
2.7.4-2	Effects of Size and Distance of	
2		2 00
	Population Centers on Early Fatalities	2-90
2.7.4-3	Mean Early Fatalities by Distance	
	Intervals for Four Emergency Response	
	Scenarios, All Evacuations	2-93
		2 20
2744	Demonstration of Mary Demoks Detalities on	
2.7.4-4	Dependence of Mean Early Fatalities on	
,	Emergency Response Effectiveness and	
	Exclusion Zone Size	2-94
2.7.4-5	Probability of Having at Least 1 Early	
	Fatality or Injury by Exclusion Zone	
	Distance	2-95
2.7.5-1	Mean and 90th Percentile Values of	
	Several Consequences by Interdiction	
	Dose Level	2-99

· 如此,如此,如此,如此,如此,如此,如此,如此,如此,如此,如此,也是是一种。""你们,你是是是我们的人,你不能是不是,我们就是不是一个,我们就是不是一个,我们就是不是一个人,也是不是一个人,就是

Table		Page
3-1	SPF and WRSPF Values for the Five NRC Administrative Regions	3-6
3-2	Maximum, 90th Percentile, Median, and Minimum Population Densities for Seven Radial Annuli by Geographic Region and for All Regions Combined	3-14
3-3	Maximum, 90th Percentile, Median, and Minimum Population Densities for Seven Radial Distances by Geographic Region and for All Regions Combined	3-15
3-4	Maximum, 90th Percentile, Median, and Minimum Population Densities for the Most Populated 22.5° Sector within Four Radial Distances by Geographic Region and for All Regions Combined	3-16
3-5	Analysis of Variance	
4-1	Seismic Hardening Utility Function	
4-2	Site Preparation Utility Function	
4-3	Water Availability Utility Function	4-22
4-4	Stand-Off Zones	4-25
4-5	Complex Composite Population Densities	4-32
5-1	Site Remoteness Matrix	5-3
5 -2	Distribution of Remoteness	5-4
5-3	Cross-Classification Remoteness Matrix for 7 Remote and 14 Non-Remote Sites	5-5
5-4	Average Yearly Government Revenue and Expenditures for Remote and Non-Remote Groups	5-6
5-5	Average Growth Rates for Population, Employment, and Payroll at Remote and Non-Remote Sites	5-8

<u>,</u>

Table		Page
5-6	Power Transmission Line Data for 29 Operating Nuclear Sites	5-11
5-7	Socioeconomic Impacts at Selected Remote Sites	5-14
5-8	Variation of Migrant Proportion by Location	5-16
A.1-1	General Site and Reactor Data	A-2
A.1-2	General Site Data	A-5
A.1-3	Sheltering Regions	A-7
A.3-1	NWS Station Locations and Mixing Heights	A-13
A.3-2	Meteorological Data for 29 NWS Stations Summarized Using Weather Bin Categories	A-14
A.3-3	Summary of Rainfall Data for 29 NWS Station TMYs	A-17
A.4-1	Site Wind Rose Data	A-20
A.5-1	National Economics Data	A-29
A.5-2	Agricultural Land Use Characteristics	A-30
B.1-1	Inventory of Radionuclides in the 3412 MWt PWR Core	B-2
B.2-1	Reactor Operating Characteristics	B-4
B.2-2	Inventory of Selected Radionuclides for the Reactors Studied	B-5
B.2-3	Summary of CRAC2 Consequence Predictions	B-6
C-1	Mean Number of Early Fatalities, Early Injuries and Latent Cancer Fatalities for Each of 91 Sites for SST1, SST2, or SST3 Accident Source Terms	-2

Table		Page
D.1-1 to D.1-4	Population Densities for 91 Reactor Sites	D-43
D.2-1	Exclusion Distance for 91 Reactor Sites	D-52
D.3-1	Site Population Factors and Wind Rose Weighted Site Population Factors for 91 Reactor Sites	D-55
E.5-1	One Year of New York City Meteorological Data Summarized Using Weather Bin Categories	E-6
E.7-1	Expected Total Latent Cancer (excluding thyroid) Deaths per 10 ⁶ Man-Rem from Internal Radionuclides Delivered During Specified Periods	E-10
F.1-1 to F.1-5	Fractions of Land, by State, that Fall within each of the Environmental Suitability Categories Shown in Figures F-3 to F-7	F-58
F.2-1 to F.2-24	Fractions of Land Available for Reactor Siting in each State if Sector Population Restrictions are Added to a Composite Population Density Criterion	F-63
F.3-1 to F.3-5	Environmental Suitability of Land Not Restricted by each of 5 Population Siting Criteria	F-87
F.3-6 to F.3-10	Effects of Applying Different Population Criteria on Land Available within each of the Suitability Categories	F-92

•

LIST OF FIGURES

Figure		Page
2.2.1-1	Schematic Outline of Consequence Model CRAC2	2-3
2.3.1-1	Comparison of Predicted Mean Bone Marrow Dose to Exposed Individuals vs Distance for the Five Source Terms	2-16
2.3.1-2	Comparison of Predicted Mean Thyroid Dose to Exposed Individuals vs Distance for the Five Source Terms	2-16
2.3.1-3	Risk to an Individual of a) Early Fatality, b) Early Injury, and c) Latent Cancer Fatality (from early exposure only) vs Distance Conditional on Each of the Five Siting Source Terms	2-17
2.4.1-1	Indian Point Early Fatality Complementary Cumulative Distribution Functions Generated With Meteorological Data From 29 National Weather Service Stations	2-26
2.4.1-2	Diablo Canyon Early Fatality Complementary Cumulative Distribution Functions Generated with Meteorological Data from 29 National Weather Service Stations	2-26
2.4.1-3	Indian Point Early Injury Complementary Cumulative Distribution Functions Generated with Meteorological Data from 29 National Weather Service Stations	2-28
2.4.1-4	Diablo Canyon Early Injury Complementary Cumulative Distribution Functions Generated with Meteorological Data from 29 National Weather Service Stations	2-28
2.4.1-5	Indian Point Latent Cancer Fatality Complementary Cumulative Distribution Functions Generated with Meteorological Data from 29 National Weather Service Stations	2-30

.

Figure		Page
2.4.1-6	Diablo Canyon Latent Cancer Fatality Complementary Cumulative Distribution Functions Generated with Meteorological Data from 29 National Weather Service Stations	2-30
2.4.1-7	Interdicted Land Area Complementary Cumulative Distribution Functions Generated with Meteorological Data from 29 National Weather Service Stations	2-31
2.4.2-1	 (a) Early Fatality, (b) Early Injury, and (c) Latent Cancer Fatality CCDFs Conditional on an SST1 Release at all 91 Current U. S. Reactor Sites 	2-33
2.4.2-2	Histogram of Mean Early Fatalities for 91 Sites	2-35
2.4.2-3	Histogram of the 99th Percentile of the Distribution of Early Fatalities for 91 Sites	2-36
2.5-1	Relationships between Evacuation Model Parameters	2-41
2.5-2	Early Fatality Complementary Cummulative Distribution Functions for 10 mph Evacuations within 10 Miles after Delays of 1, 3, and 5 Hours and Summary Evacuation	2-41
2.5-3	Conditional Risk of Early Fatality	2-49
2.5-4	Conditional Risk of Early Injury	2-49
2.5-5	Impact of Range of Emergency Response Scenarios upon Early Fatalities	2-52
2.6-1	Conditional CCDFs of Early Fatality Distance for 29 Meteorological Records	2-55
2.6-2	Conditional CCDFs of Early Injury Distance for 29 Meteorological Records	2-56

ţ

Figure		Page
2.6-3	Conditional CCDFs of Interdiction Distance for 29 Meteorological Records	2-57
2.6-4	Sensitivity of SST1 Early Fatality Distances to Emergency Response	2-59
2.6-5	Conditional Probability of Exceeding PAGs Versus Distance for SST1, SST2, and SST3 Source Terms	2-61
2.6-6	Cumulative Fraction of Latent Cancer Fatalities as a Function of Distance from the Reactor a) for a Uniform Population Distribution and b) for the Indian Point Population Distribution	2-63
2.7.1-1	Effect of Reactor Size upon a) Early Fatalities, b) Early Injuries, and c) Latent Cancer Fatalities	2-67
2.7.1-2	Effect of Reactor size upon a) Interdiction Distance and b) Interdicted Land Area	2-68
2.7.1-3	Plots of Mean Values of a) Early Fatalities, b) Early Injuries, c) Latent Cancer Fatalities, d) Interdiction Distance, and e) Interdicted Land Area vs Reactor Size	2-71
2.7.2-1	Individual Risk of Early Fatality vs Distance for 4 Energy Release Rates	2-75
2.7.3-1	Early Fatality CCDFs for Five Different Deposition Velocities	2-78
2.7.3-2	Individual Risk of Early Fatality vs Distance for 5 Deposition Velocities	2-78
2.7.4-1	Schematic Representations of the Nine Hypothetical Population Distributions Used to Examine the Impact on Consequences of Radial and Angular Variations in Population Density	2-83

•

Figure		Page
2.7.4-2	Comparison of the Early Fatality CCDFs for Population Distribution 2 (4 high density rings) to that of the Reference Distribution	2-85
2.7.4-3	Comparison of the Early Fatality CCDF for Population Distribution 3 (all population in 1 sector) to that of the Reference Distribution	2-85
2.7.4-4	Comparison of the Early Fatality CCDFs for Distributions 4 thru 8 (distributions that contain cities) to that of the Reference Distribution	° 2-87
2.7.4-5	Comparison of the Early Fatality CCDF of Distribution 9 (scaled real population distribution) to that of the Reference Distribution	2-87
2.7.5-1	Impact of 30-Year Interdiction Dose upon a) Latent Cancer Fatalities, b) Interdiction Distance, and c) Interdicted Land Area	2-98
2.7.5-2	Plots of a) Mean Latent Cancer Fatalities, b) Mean Interdiction Distance, and c) Mean Interdicted Land Area vs Interdiction Dose Level	2-100
3-1	The Five NRC Administrative Regions and the Location of the 91 Reactor Sites	3-2
3-2	Exclusion Distances for 91 Reactor Sites by Geographic Area	3-4
3-3	CCDFs of Population Density at 91 Sites for Six Radial Annuli	3-8
3-4	CCDFs of Population Density at 91 Sites for Six Radial Distances	3-9
3-5	CCDFs of Population Density in the Most Populated 22.5 Degree Sector at 91 Sites for Six Radial Appuli	3-10

Figure		Page
3-6	CCDFs of Population Density in the Most Populated 22.5 Degree Sector at 91 Sites for Six Radial Distances	3-11
3-7	CCDFs of Population Density in the Most Populated 45 Degree Sector at 91	
3-8	Sites for Six Radial Annuli CCDFs of Population Density in the Most Populated 45 Degree Sector at 91 Sites for Six Radial Distances	
3-9	Population Density at 91 Reactor Sites by Geographic Region for 7 Radial Annuli: 0-5, 5-10, 10-20, 20-30, 30-50, 50-100, and 100-200 Miles	3-18
3-10	Population Density at 91 Reactor Sites by Geographic Region for 7 Radial Distances: 0-5, 0-10, 0-20, 0-30, 0-50, 0-100, and 0-200 Miles	3-19
3-11	Population Density in the Most Populated 22.5 Degree Sector at 91 Sites by Geographic Region for 4 Radial Intervals: 0-5, 0-10, 0-20, and 0-30 Miles	3-20
3-12	Scatter Plot by Region of Year of Site Approval	3-22
3-13	Plots of 30-Mile Population Density vs Year of Site Approval	3-23
4-1	Data Structure Diagram for the Dames and Moore Study	4-4
4-2	Cost Increase as a Function of Seismic Load for Nominal 1100 MWe Nuclear Power Plant	4-14
4-3	Example of Standoff Zone Maps	4-26
4-4	Annular Population Density Data Files	4-27
4-5	Example of Annular Population Density Data Maps	4-28

Figure		Page
A.3-1	Isopleths of Mean Annual Afternoon Mixing Heights	A-11
A.3-2 A.4-1	Geographic Location of the 29 NWS Stations and the 91 Reactor Sites Summary Histograms of Peak to Mean	A-12
	Wind Rose Probability Ratios for the 91 Sites	A-19
C-1 to C-18	Early Fatality, Early Injury, and Latent Cancer Fatality CCDFs at 91 Sites Conditional on an SST1 Release	C-7
D.1-1 to D.1-40	CCDFs of Population Density at 91 Reactor Sites for the NRC Five Administrative Regions and for All Regions Combined	D-3
E.5-1	Comparison of Uncertainty Due to Sampling by a) WASH-1400 and b) Weather Bin Techniques	E-5
F.1	Legally Protected and Wetland Areas in the U. S. Where Reactor Siting Would be Restricted	F-6
F.2	Seismic Acceleration Contours	F-7
F.3	Seismic Hardening Costs	F-8
F.4	Topographic Character Site Preparation	F-9
F.5	Surface Water Availability Cost	F-10
F.6	Ground Water Availability Cost	F-11
F.7	Combined Water Availability Cost	F-12
F.8-1 to F.8-13	Land that would be Restricted from Reactor Siting by Standoff Distances to Cities	F-13
F.9-1 to F.9-26	Areas that would be Restricted from Reactor Siting by Population Density Criteria	F-26

Figure		Page
F.10-1 to F.10-4	Areas in the NE U. S. that would be Restricted from Siting by Composite Density Criteria between 2 and 30 Miles of a Prospective Site	F-52
F.11 and F.12	Areas Restricted from Reactor Siting by the Combination of a Population Density Restriction within 2 Miles and a Composite Population Density Restriction between 2 and 30 Miles of the Site	F-56

ACKNOWLEDGEMENTS

Funding for this study was provided principally by the Siting Analysis Branch in NRC's Office of Nuclear Reactor Regulation (NRR). Jan Norris, NRC Project Monitor, Len Soffer, Bill Regan and Dan Muller from that office provided helpful discussions and suggestions during the course of the project. Supplemental funding for the accident consequence analyses was provided by the Division of Risk Analysis, Office of Nuclear Regulatory Research. Roger M. Blond, from that division, provided significant technical assistance and useful criticism for those evaluations. The accident source terms utilized in Chapter 2 were defined by R. M. Blond and M. A. Taylor, NRC. C. Cluett, S. Malhotra and D. Manninen, Battelle Human Affairs Research Centers, performed the assessment of socioeconomic impacts under contract to Sandia. David E. Bennett, Sandia National Laboratories, calculated the core radionuclide inventories used in the assessment of potential accident consequencés. Nancy C. Finley, Sandia National Laboratories, performed the examination of offsite hazards (documented in a separate report) and provided assistance in the evaluation of socioeconomic impacts.

1. Introduction and Summary

1.1 Introduction

At the request of the Nuclear Regulatory Commission, Sandia National Laboratories has performed a study to develop technical guidance to support the formulation of new regulations for siting nuclear power reactors [1]. Guidance was requested regarding (1) criteria for population density and distribution surrounding future sites, and (2) standoff distances of plants from offsite hazards. Studies were performed in each of these two areas of concern.

The study of offsite hazards had two areas of con-(1) determination of which classes of offsite cern: hazards are amenable to regulation by fixed standoff distances, and (2) review of available methods for the determination of appropriate standoff distances. The hazards considered included aircraft, hazardous chemicals, dams, faults, adjacent nuclear power plants, tsunamis, meteorite impact, etc. The study concluded that none of the hazards are suitable to treatment by fixed standoff distances and that sufficient methods exist for evaluating the risk for most types of hazards. Because they have been published elsewhere [2], the results of the study of offsite hazards are not included in this report.

The studies of site characteristics, which are presented in this report, involved analyses in four areas, each of which could play a role in evaluating the impact of a siting policy. The four areas were: (1) consequences of possible plant accidents, (2) population distribution characteristics for existing sites, (3) availability of sites, and (4) socioeconomic impacts.

Accident consequence analyses were performed to help define the risks associated with existing sites and with alternative siting criteria. Consequence analyses also help to evaluate the dependence of risk on factors such as meteorology, population distribution, and emergency response which can be mandated or constrained by regulations. Population distributions at existing sites were examined to provide perspective on demographic characteristics as well as to determine whether there have been trends with time or regional differences in site selection. The site availability analysis examined the impact of various population distribution criteria on the amount of land restricted from siting. Impacts of environmental and legal constraints were also examined. In addition, studies were performed to evaluate the extent of socioeconomic impacts and the degree to which they are dependent on site demographic characteristics. These four areas of analysis provide information that could be used to assess and compare alternative siting criteria.

1、1997年1月1日1日1日(1997年1月)1日(1997年1月)1日(1997年1月)1日(1997年1日)1日(1997年1日)1日(1997年1日)1日(1997年1日)1日(1997年1日)

The information developed by this study is presented in four chapters and six appendices. Chapter 2 presents the results of the consequence analyses that were performed to identify factors that have a significant impact upon risk. The factors examined include source term magnitude (Section 2.3), meteorology (Section 2.4.1), population (Section 2.4.2), emergency response (Section 2.5), consequence distances (Section 2.6), reactor size (Section 2.7.1), plume heat content (Section 2.7.2), dry deposition velocity (Section 2.7.3), characteristics of population distributions (Section 2.7.4), and criteria for the interdiction of contaminated land (Section 2.7.5). CRAC2 [3,4], the computer model used to perform these consequence analyses, is described briefly in Section 2.2.1 and more fully in Appendix E. Model input data are described in Section 2.2.2. Site specific input data are presented in Appendix A and core radionuclide inventory data in Appendix B. Data and model uncertainties are discussed in Section 2.2.4. Finally, a series of site specific calculations were made using a standard set of source terms uncorrected for the characteristics of the reactor at the site. The results of these calculations are presented in Appendix C.

Chapter 3 and Appendix D present an examination of the population distributions surrounding existing sites to provide perspective on demographic characteristics and to determine (1) whether there is evidence of a trend over time to less-dense siting and (2) whether site characteristics differ significantly in different regions of the country. The site availability analyses developed a capability for measuring the impact of population criteria on the availability of reactor sites. Also considered in these analyses were the seismicity, topogaphic character, availability of surface and ground water at potential sites, and the restriction of power plant siting because of the presence of national parks or wilderness areas. This study, which was performed by Dames and Moore [5] under contract to Sandia, is presented in full in Chapter 4 and Appendix F. Finally, a study was performed to examine the socioeconomic impacts of reactor siting and the dependence of the magnitude of these impacts on site demography. The study examined impacts caused by large construction projects, energy boomtowns, and the construction of nuclear power plants. Also examined was the impact of site remoteness on transmission costs. The study, performed by Battelle-HARC under contract to Sandia, is summarized in Chapter 5 and presented in full in a separate report [6].

1.2 Summary

This report contains the results of numerous calculations and analyses performed at Sandia National Laboratories, Dames and Moore, and Batelle-HARC. The principal results or conclusions reached are:

- o Estimates of the number of <u>early fatalities</u> are very sensitive to <u>source term magnitude</u>. Mean early fatalities (average result for many weather sequences) are decreased dramatically (about two orders-of-magnitude) by a one orderof-magnitude decrease in source term SST1 (large core melt, loss of most safety systems). Because the core melt accident source terms SST1-3 used in this study neglect or underestimate several depletion mechanisms, which may operate efficiently within the primary loop or the containment, consequence magnitudes calculated using these source terms may be significantly overestimated.
- o The weather conditions at the time of a large release will have a substantial impact on the health effects caused by that release. In marked contrast to this, mean health effects (average result for many weather sequences) are relatively insensitive to meteorology. Over the range of meteorological conditions found within the continental United States (1 year meteorological records from 29 National Weather Service stations), mean early fatality values for a densely populated site show a range (highest value/lowest value) of only a factor of 2, and mean latent cancer fatalities a factor of 1.2.

- o Peak early fatalities (maximum value calculated for any weather sequence) are generally caused by <u>rainout</u> of the radioactive plume onto a population center. For an SSTI release, the peak result is about 10-times less probable in a dry locale than in a wet one.
- o The distances to which consequences might occur depend principally upon source term magnitude and meteorology. Frequency distributions of these distances, calculated using large numbers of weather sequences, yielded expected (mean), 99 percentile, and maximum calculated distances (expressed in miles) for early fatalities, early injuries, and land interdiction as follows:

Source Term	Consequence	Mean	<u>998</u>	Maximum Calculated
SST1	Early Fatalities	< 5	≲15	< 25
	Early Injuries	~10	~30	≲50
	Land Interdiction	~20	>50	>50
SST2	Early Fatalities	~0.5	<2	< 2
	Early Injuries	< 2	< 5	~5
	Land Interdiction	<2	~7	~10

The maximum calculated distances are associated with improbable events, (e.g., rain-out of the plume onto a population center). For the SST1 release reduced by a factor of 10, early fatalities are confined to ~5 miles, early injuries to ~20 miles, and interdiction of land to ~25 miles.

 Calculated consequences are very sensitive to site population distribution. For each of the 91 population distributions examined, early fatality, early injury, and latent cancer fatality CCDFs were calculated assuming an SST1 release from an 1120 MWe reactor. The resulting sets of CCDFs had the following ranges:

Early Fatalities. ~3 orders-of-magnitude in the peak and mean numbers of early fatalities and in the probability of having at least one early fatality.

1-4

Early Injuries. ~ 3 orders-of-magnitude in the means, ~ 2 in the peaks, and ~ 1 in the probability of having at least one early injury.

Latent Cancer Fatalities. ~1 order-of magnitude in the peaks and the means and in the probability of having at least one latent cancer fatality.

Generally, mean results are determined by the average density of the entire exposed population, while peak results (especially for early fatalities) are determined by the distance to and size of exposed population centers.

- o Early fatalities and early injuries can be significantly reduced by <u>emergency response</u> actions. Both sheltering (followed by relocation) and evacuation can be effective provided the response is expeditious. Access to basements or masonry buildings significantly enhances the effectiveness of sheltering. Expeditious response requires timely notification of the public. If the evacuation is expeditious (timely initiation), evacuation speeds of 10 mph are effective. Evacuation before containment breach within 2 miles, after release within 10 miles, and sheltering from 10 to 25 miles appears to be a particularly effective response strategy.
- o Population densities (people/sq mi) about the 91 sites have the following maximum, 90th percentile and median values within the indicated distance intervals:

Distance (mi)	0-5	0-10	0-20
Full Circle Maximum 90th percentile	790 190	660 230	710 380
Median Most Populated	40	70	90
22.5° Sector Maximum	4200	3800	4500
90th percentile Median	950 330	1000 270	1800 480

1-5

- o At the 91 sites examined, the distance to the nearest exclusion zone boundary ranges from
 0.1 to 1.3 miles and averages about 0.5 miles.
- o There appears to be a slight trend with time towards selection of reactor sites in less densely populated locations.
- o A site availability data base has been constructed on a 5 x 5 km grid cell for the continental United States. For each grid cell the data base contains information on population density, seismicity, topographic character, surface and ground water availability, and land use restrictions (wetlands, national parks, etc.)
- o Analysis of boomtown literature, studies of large non-nuclear energy projects, and economic data from existing nuclear power plant sites suggests that only siting in very remote regions has the potential for significant socioeconomic impacts, that these impacts may be both beneficial or detrimental and that the detrimental impacts can be mitigated by advance planning.
- o Outside of the Rocky Mountains, few potential reactor sites are located at a large distance from the national power grid. Consequently, site remoteness and transmission line costs are not strongly correlated.

This study examined a number of factors which could impact the development of siting criteria. The analyses, which are reported in the following chapters, can be used to determine many of the impacts of alternative criteria, and provide guidance in evaluating tradeoffs among criteria. In addition, the data and analyses contained in the study should be useful to the wider community of users interested in evaluating the consequences of reactor accidents.

References for Chapter 1

- 1. Advance notice of this rulemaking appeared in the Federal Register, July 29, 1980, FR DOC 80-22643.
- N. C. Finley, Nuclear Power Plant Siting: <u>Consideration of Offsite Hazards</u>, NUREG/CR-2380, Sandia National Laboratories (to be published).
- 3. L. T. Ritchie, J. D. Johnson, and R. M. Blond, <u>Calcu-lations of Reactor Accident Consequences</u>, <u>Version 2</u>: <u>User's Guide</u>, <u>NUREG/CR-2326</u>, <u>SAND81-1994</u>, <u>Sandia</u> National Laboratories, Albuquerque, NM, (to be published).
- 4. L. T. Ritchie, et al., CRAC2, <u>Calculation of Reactor</u> <u>Accident Consequences</u>, <u>Version 2</u>, <u>Model Description</u>, <u>SAND82-0342</u>, <u>NUREG/CR-2552</u>, <u>Sandia National Labora-</u> tories, <u>Albuquerque</u>, <u>NM</u> (to be published).
- 5. J. H. Robinson and K. L. Hansen, <u>Impact of Demo-</u> <u>graphic Siting Criteria and Environmental Suitability</u> <u>on Land Availability</u>, Dames and Moore, Los Angeles, <u>California</u>, 1981.
- 6. C. Cluett, S. Malhotra, and D. Manninen, <u>Socio-economic Impacts of Remote Nuclear Power Plant</u> <u>Siting, NUREG/CR-2537, SAND81-7230, Battelle Human</u> Affairs Research Centers, Seattle, Washington, (to be published).

na se le 1 des marcolos de la companya de la compan 11 de companya de la m

الم المحمد ال المحمد المحمد

2. Consequences of Potential Reactor Accidents 2.1

Introduction

第二人がないため、「「「「「「」」」では「「」」」では、「「」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」では、「」」」では、「」」」」では、「」」」」では、「」」

During this study, a large number of calculations were performed to provide a basis for understanding the dependence of reactor accident consequences on site characteristics. Some characteristics were examined because of the possibility of their inclusion in reactor siting criteria (e.g., population distribution, reactor power level). A number of additional parameters were investigated to determine the sensitivity of predicted consequences to variation or uncertainty in data used as input. no z Datovi

 $\{ | d_i \}$

3. 7

All consequence calculations for this study were performed using CRAC2, an improved version of CRAC,^a the Reactor Safety Study [1] consequence model. Section 2.2.1 provides a brief overview of the CRAC2 model, while Section 2.2.2 describes the data used as input to the consequence calculations. Section 2.2.3 is a qualitative discussion of the sources and impacts of uncertainties associated with the consequence model. Section 2.2.4 defines the "base case" calculation which was used as a reference case for examination of the impact of variations in parameters and assumptions.

Section 2.3 briefly describes the five accident source terms used in the calculations. These source terms, denoted SST1-5, were developed by NRC and range from a full core-melt with uncontrolled release to a gap release with minimal leakage. Section 2.3.1 presents results of consequence calculations for each of the five source terms, and Section 2.3.2 examines the potential impact on consequences of reductions in the magnitude of the most severe accident (SST1).

Section 2.4 examines the impact of meteorology and population on consequence estimates. Meteorological data from 29 National Weather Service stations and wind rose and population data from each of the 91 currently approved reactor sites in the United States are examined. Section 2.5 presents the impact on consequences of various emergency response assumptions; both evacuation and sheltering scenarios are evaluated. Section 2.6 discusses the distances to which various consequences occur and the sensitivity of these distances to input

a. CRAC stands for Calculation of Reactor Accident Consequences.

data and assumptions. Section 2.7 examines the sensitivity of consequences to variations in reactor size, energy-release rate, dry deposition velocity, population distribution, and land-interdiction criteria. Finally, Section 2.8 presents a summary of the insights gained from these calculations.

2.2 Background

2.2.1 Overview of Consequence Model

The accident consequence calculations described in this chapter were performed using CRAC2 [2,3], an improved version of the Reactor Safety Study (WASH-1400) consequence model, CRAC [1,4]. Modifications made in the upgrade from CRAC to CRAC2 are briefly described in Appendix E.^a The model describes the progression of the cloud of radioactive material released from the containment structure during and following a reactor accident, and predicts its interaction with and influence on the environment and man. A schematic outline of the computational steps taken in the model is presented in Figure 2.2.1-1.

Analyses of potential plant system failures and accident phenomenology provide an estimate of accident probabilities and release characteristics (magnitudes, timing, etc.) that are used as input to the consequence Given these estimates, a standard Gaussian dismodel. persion model is used to calculate ground-level concentrations of airborne radioactive material downwind of the reactor site. Weather data for a 1-year period are input to the dispersion model in the form of hourly recordings of wind speed, thermal stability, and accumulated precipitation. The wind direction is assumed to be invariant during and following the release. Radionuclide concentrations within the cloud are depleted by deposition (both wet and dry) and radioactive decay, and integrated air and ground contamination are calculated for downwind distances.

- a. Results calculated using the two models are similar, as shown in the recent International Comparison Study of Reactor Accident Consequence Models [5,6].
- b. Specific release characteristics assumed in this study are described in Section 2.3.

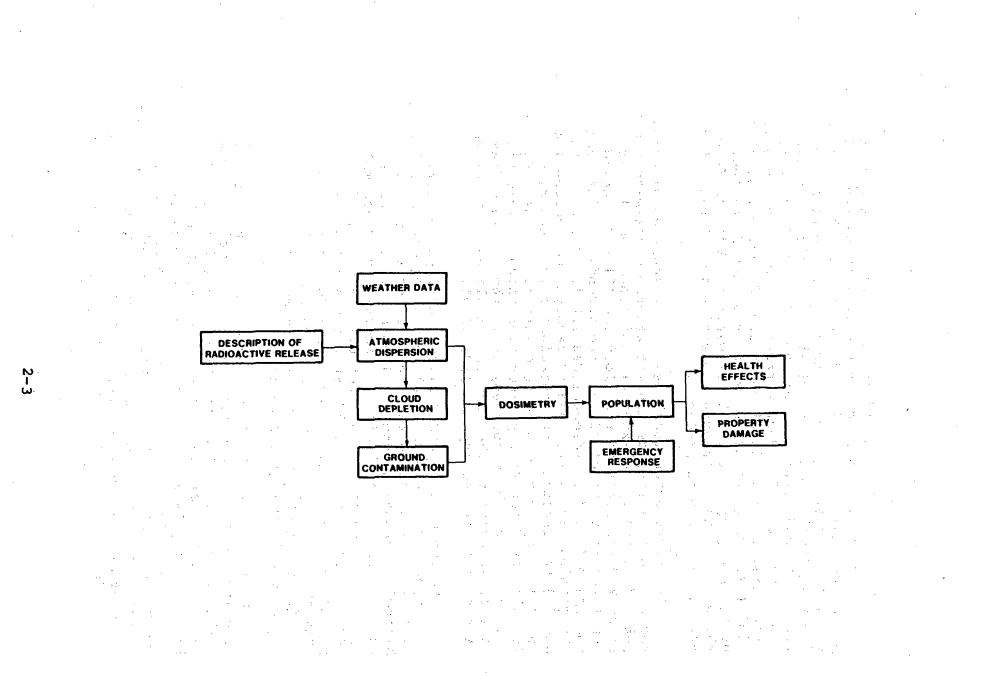


Figure 2.2.1-1. Schematic Outline of Consequence Model, CRAC2.

Hourly weather recordings are used to account for weather variations during the progression of the accident. Beginning at a selected hour within the year's data, the dispersion model uses the subsequent meteorological conditions to predict the dispersion, downwind transport, and deposition of the released cloud of radioactive material. Hourly recordings are sequentially incorporated until all of the released radioactive material (excluding the noble gases) has been deposited. By using an appropriate sample of weather sequences from the year's data, a frequency distribution of estimated consequences can be produced.

The consequence model uses the calculated airborne and ground radionuclide concentrations to estimate the public's exposure to external radiation from (1) airborne radionuclides in the cloud and (2) radionuclides deposited from the cloud onto the ground, and internal radiation from (1) radionuclides inhaled directly from the passing cloud, (2) inhaled resuspended radionuclides, and (3) the ingestion of contaminated food and milk. Radiation exposure from sources external to the body is calculated for time periods over which individuals are exposed to those sources, while the exposure from sources internal to the body is calculated over the remaining life of the exposed individual.

The consequence model allows the input of either site-specific or hypothetical population data as a function of distance and direction from the reactor site. A simple evacuation model is incorporated, which is based on a statistical analysis of evacuation data assembled by the U.S. Environmental Protection Agency [7-9] (see Appendix E). The model incorporates a delay time before public movement, followed by evacuation radially away from the reactor. A range of evacuation delay times, speeds, and distances have been assumed in this study, as is described in later sections.

Based on the calculated radiation exposure to downwind individuals, the consequence model estimates the number of public health effects that would result from the accidental release. Early injuries and fatalities, latent cancer fatalities, and thyroid and genetic effects may be computed. Early fatalities are defined to be those fatalities that occur within 1 year of the exposure period. They are estimated on the basis of exposure to the bone marrow, lung and gastrointestinal tract. Bone marrow damage is the dominant contributor to early fatalities. In both the Reactor Safety Study and this study, early fatalities are calculated assuming an $LD_{50/60}$ of 510 rads to the bone marrow. Supportive medical treatment of the exposed individual is also assumed. Early injuries are defined as non-fatal, non-carcinogenic illnesses, that appear within 1 year of the exposure and require medical attention or hospital treatment. The late somatic effects considered include latent cancer fatalities plus benign and malignant thyroid nodules.

The consequence model also includes an economic model to estimate the potential extent of property damage associated with the release of radioactive material. The total offsite dollar cost of the accident is estimated as the sum of (1) the evacuation cost, (2) the value of condemned crops and milk, (3) the cost of decontaminating land and structures, (4) the cost of interdicting land and structures, and (5) relocation costs (moving costs and temporary loss of income).

2.2.2 Input Data for Consequence Model

如此是你有你们的,我们就是你们的,我们就是我们的。""你们们,我们们不能是你们的。""你们们们,你就是你们们的,你们们们,我们们们不是你们,你们们们们们,你们就能 我们们们们们,我们们就是我们的,我们不是 "你不是你的,我们们们们们就是你们们们,我们就是你们的,我们们们不是不是你的。""你们们,你们们们们们们们们们们们们们也

CRAC2 requires a large set of input data, including accident release characteristics and source terms, various site-related data (e.g., meteorology, population), reactor core radionuclide inventories, and emergency response scenarios. The accident release characteristics and source terms assumed in this study are described in Section 2.3.

The site-related data, gathered for use in this study, are presented in Appendix A. The data gathered includes:

 General site and reactor data (e.g., reactor size, vendor, start-up date, site location) for each of the 91 U.S. sites at which a reactor is operating or a construction permit has been obtained.

- Regional shielding factors for sheltered populations.
- 3. Site population data derived from the 1970 census.
- a. The dose that would be lethal to 50 percent of the population within 60 days.

4. Meteorological data consisting of hourly recordings of weather conditions from 29 National Weather Service stations plus mixing heights from Holzworth [10].

5. Annual site wind roses obtained from either Environmental Impact Reports or Safety Analysis Reports.

6. Site economic data, updated from those used in WASH-1400 to reflect inflation and changing economic conditions.

A core radionuclide inventory for a 3412 MWt (1120 MWe) reactor was calculated for this study using the SANDIA-ORIGEN [11] computer code. This calculation assumed an end-of-cycle fuel burnup of 33,000 MWd/MTU (about 25 percent greater than was assumed in WASH-1400) which is representative of the current generation of larger reactors. Differences in reactor size were accommodated by linearly scaling the inventory with rated thermal power level. A description of the inventory calculations and a discussion of the impact of inventories on predicted consequences are presented in Appendix B. The sensitivity of consequences to reactor size is examined in Section 2.7.1.

The emergency response submodel incorporated in CRAC2 is described in Section 2.5 and Appendix E. The model allows specification of up to six emergency response scenarios plus a weighted sum of these scenarios termed "Summary Evacuation." Unless otherwise specified, calculations were performed using the scenarios presented in Table 2.2.2-1. The scenarios range from a prompt evacuation to sheltering to no emergency response. The response distance of 10 miles was selected to coincide with the Emergency Planning Zone (EPZ) recommended by the NRC [12]. The delay times and speeds assumed were based on a statistical analysis of evacuation data gathered by the EPA (see Appendix E). The "Summary Evacuation" was defined as a 30 percent, 40 percent, 30 percent weighting^a of scenarios 1, 2, and 3, and

a. Thirty percent of the time, all people within 10 miles evacuate with a 1 hour delay and 10 mph speed; 40 percent of the time, all people within 10 miles evacuate with a 3-hour delay and 10 mph speed; and 30 percent of the time all people within 10 miles evacuate with a 5-hour delay and 10 mph speed.

2 - 6

represents a "best estimate" for consequence predictions. Most of the results presented in the following sections assumed this "Summary Evacuation." The sensitivity of predicted consequences to emergency response assumptions is examined in Section 2.5. Differences in emergency response due to site-specific characteristics were not addressed.

Table 2.2.2-1. Emergency Response Scenarios

가지 않는 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 같아. 같이 같아. 한 것은 것 같은 것 같아. 것 같아. 것 같아. 아이 가지 않는 것 않는

Scenario Number	Type of Response	Response Distance	Delay Time Before Response	Response Speed
		jan in suuren sin jan in suuren		e Balancia di Alberta. 19
1.	Evacuation	10 miles	l-hour	10 mph
2	Evacuation	10 miles	3-hours	10 mph
3	Evacuation	10 miles	5-hours	10 mph
4	Evacuation	10 miles	5-hours	l mph
5	Sheltering, Relocation	10 miles	none, 6-hours	
6	No Emergency Response	ar a la constant a t <mark>a t</mark> a da constant a ta ta ta ta		

2.2.3 Uncertainties

Uncertainties in offsite consequence predictions stem principally from uncertainties in two areas: modeling and input data. Modeling uncertainty arises from (1) an incomplete understanding of the phenomena involved in the transport of released radionuclides to man and the consequent health impacts, and (2) simplifications of phenomena made in the modeling process to reduce costs or model complexity. Input data uncertainty arises from problems associated with the quality and availability of data, selection or determination of appropriate values for model input (including radioactive source terms), and statistical variations in data. To date, a <u>compre-</u> <u>hensive</u> assessment of these uncertainties in consequence predictions has not been performed. However, a number of partial uncertainty estimates have been derived using sensitivity analysis techniques [1,13,14].

Improvements in a number of model areas could substantially reduce current uncertainties. The most important of these include source terms (see Section 2.3), plume depletion processes (see Section 2.7.3), the effect of wind trajectories on population exposures, and the effectiveness of emergency response (see Section 2.5). Each of these areas is briefly described below.

Radioactive source terms for atmospheric releases are subject to a number of important uncertainties, including uncertainties about release magnitude and timing, and about aerosol size distributions. It has been suggested [15,16] that removal processes within the primary coolant system and containment could reduce the amount of material released to the atmosphere to levels significantly below those currently estimated. Possible removal processes include plate-out of hot vapors on cooler surfaces, agglomeration and deposition of aerosols, and dissolution in water. Better specification of the timing of a release is important for two reasons: (1) a longer warning period increases the chance of an effective emergency response and (2) a long, slow release spreads the radioactive material over a larger area, thereby decreasing individual doses and (usually) health effects. The particle-size distribution of the released material, and thus the efficiency of dry deposition processes during downwind transport, is determined principally by aerosol agglomeration rates. Resolution of these source-term uncertainties by ongoing or future research activities may require a reevaluation of some of the conclusions reached by this study. For example, some of the conclusions about emergency planning and response presented in Section 2.5 could be significantly altered.

A plume of radioactive material may be depleted during transport by dry deposition and/or washout processes. The dry-deposition removal rate is strongly dependent on the size distribution of particulate matter in the plume. Therefore, the current lack of information about this size distribution prevents reliable modeling of dry deposition. Since washout of material by rainfall is a very efficient removal mechanism, it is important to account for the frequency, intensity, and spatial variability of rainfall. Moreover, because high-consequence events are usually associated with rainfall over population centers, failure to adequately model rainfall can lead to large inaccuracies in predicted peak consequences.

Wind trajectories determine the specific population exposed by downwind transport of the plume of radioactive material. With the exception of the computer code CRACIT [17,18], current consequence models neglect wind trajectories. Although results obtained with CRACIT indicate that treatment of wind trajectories may affect risk less than intuition suggests [6], a thorough examination of this subject (perhaps using a Gaussian puff model), particularly for sites with complex terrain, seems essential [19].

The sensitivity of predicted consequences to different emergency response scenarios is examined in Section 2.5. If consequence models are to be applied to evaluate the risk at specific sites, consideration should be given to those characteristics of the site and of local organizations that could influence the effectiveness of offsite emergency response. For example, local and utility emergency response plans, available mechanisms for warning the public, and characteristics of the surrounding road network should be examined. Road networks could be particularly important if population densities are sufficient to result in "traffic jams" or "bottleneck" conditions, or if terrain features are likely to cause evacuation routes and the plume trajectory to overlap.

Another area of uncertainty is the estimation of the late somatic effects, of which the incidence of cancer is the most important. The recent BEIR III report [20] discusses these uncertainties, which are largest for low doses (and dose rates) of low-LET radiation. In addition, Loewe and Mendelsohn [21] have recently conducted a reassessment of the dosimetry data for the populations exposed by the detonations at Hiroshima and Nagasaki. These new findings have led to major changes in the estimates of the neutron and gamma-ray doses received by survivors. Efforts are currently underway at the Los Alamos National Laboratory to redefine the source terms from the two detonations and at Oak Ridge National Laboratory to recalculate dose estimates. When completed, these reassessments may result in some changes in estimates for late somatic effects.

2.2.4 Base Case Calculation

The results of a large number of calculations are presented in Sections 2.3 through 2.7 of this report. These calculations examine the impact on predicted consequences of a wide variety of parameters and assumptions. To simplify the examination of the impact of variations in input parameters and assumptions, a "base case" calculation was defined. Assumed in the base case were:

- a standard 1120 MWe PWR
- an SST1 release (defined in Section 2.3)
- New York City meteorology
- the Indian Point wind rose and population
 Summary Evacuation

The values of all other input parameters were those typically used in CRAC2. The sensitivity of predicted consequences to the base case assumptions and to other input parameter values is discussed in later sections.

2.3 Reactor Accident Source Terms

This section describes the reactor accident source terms used to perform the consequence calculations. Consequences that might result from these source terms are compared and the most important source terms are identified. In addition, source term uncertainties are addressed. Results that show the impacts of these uncertainties on reactor accident consequences are presented and discussed.

2.3.1 Accident Release Characteristics and Source Terms

The Nuclear Regulatory Commission recently sponsored an evaluation of the technical bases for reactor accident source term assumptions and the potential impact of possible source term changes on the regulatory process [16,22]. These studies found that the Design Basis Accidents (DBAs), which have been the basis for regulatory policies governing nuclear power plant siting and design, do not constitute a realistic representation of the full spectrum of possible accident source terms for any reactor design. Therefore, they do not provide an adequate estimate of reactor risk at specific sites. Consequently, after review of current source term information, the NRC defined a spectrum of accidents [22], which more adequately spans the range of possible accident source terms and better reflects current understanding of fission product behavior during reactor accidents.

The spectrum of accidents that was defined ranges from accidents within the design basis envelope to core melt accidents which may release large quantities of radioactive material to the environment. Five accident groups were designated as being representative of the spectrum of potential accident conditions. Each group represents a different degree of core degradation and of failure of containment safety features. Brief descriptions of the characteristics of the accident types included in each group are presented in Table 2.3.1-1.

For the purpose of decision-making in such areas as siting and emergency response, NRC defined a set of five Siting Source Terms (denoted SST1-5) to represent the five accident groups. By adjusting the probabilities associated with each of the five source terms, the set can be made to approximately represent any current LWR design.^a Table 2.3.1-2 summarizes the five NRC-defined source terms used in this study.

The consequences that could potentially result from each of the five source terms were determined by performing a series of CRAC2 calculations. Table 2.3.1-3 compares the relative magnitudes (normalized to 100 for source term SST1) of the mean values^b of selected consequences, given the occurrence of each of the five source terms and assuming an 1120 MWe PWR, Indian Point population distribution and wind rose, New York City meteorology, and Summary Evacuation (see Sections 2.2.2 and 2.5 and Appendix E). These results indicate that source terms SST2 through SST5 would not be expected to produce substantial numbers of offsite consequences

- a. Detailed Probabilistic Risk Assessments (PRAs) have not been performed for all reactors. Based on currently available PRAs, NRC has suggested that representative probabilities for the SSTs are: P_1 for SST1 = 1 x 10⁻⁵, P_2 for SST2 = 2 x 10⁻⁵, and P_3 for SST3 = 1 x 10⁻⁴. There are very large variations (factors of 10 to 100) in the accident probabilities associated with a specific design.
- b. Using approximately 100 sampled weather sequences, the CRAC2 code calculates frequency distributions for consequences that might result from a radioactive release. The means of these distributions are the mean values referred to in the text.

compared to the SSTI source term. The mean consequences calculated for the SSTI release exceed those from the SST2 release by 1 to 4 orders of magnitude and exceed those from releases SST3, SST4, and SST5 by 4 to 7 orders of magnitude. Early fatalities, early injuries, and land interdiction do not result from releases SST3, SST4, and SST5 because these accidents do not release enough radioactivity to produce doses that exceed the dose thresholds for these consequences.

And the second second second second second second

Table 2.3.1-1. Brief Descriptions Characterizing the Accident Groups Within the NRC "Accident Spectrum" [22]

and the second second

e est bounde, bound of the

Group 1 Severe core damage. Essentially involves loss of all installed safety features. Severe direct breach of containment.

化偏差 化合物性合物 成熟 网络白垩属 化合物 机输出 化合物 建合物的 法实际 化硫酸

- Group 2 Severe core damage. Containment fails to isolate. Fission product release mitigating systems (e.g., sprays, suppression pool, fan coolers) operate to reduce release.
- Group 3 Severe core damage. Containment fails by basemat melt-through. All other release mitigation systems function as designed.

Group 4 Modest core damage. Containment systems operate in a degraded mode.

Group 5 Limited core damage. No failures of engineered safety features/beyond those postulated by the various design basis accidents. The most severe accident in this group assumes that the containment functions as designed following a substantial core melt.

Table 2.3.1-2. NRC Source Terms for Siting Analysis Source Térm Release Characteristics² SST4 SST5 SST1 SST2 SST3 Core Melt Core Melt Core Melt Gap Release Gap Release Accident Type H₂ Explosion or Loss of Containment Failure Mode Overpressure Isolation 0.1%/day 1%/day 1%/day Containment Leakage Large Large 0.5 0.5 Time of Release (hr) 1.5 3 1 1 Release Duration (hr) 2 2 4 : 1 1 0.5 Warning Time (hr) 0.5 10 10 10 10 Release Height (meters) 10 0 0 0 0 Release Energy 0

Inventory Release Fractions 3 x 10⁻⁷ 6 x 10⁻³ 3 x 10⁻⁶ 0.9 1.0 Xe-Kr Group 1×10^{-8} 3×10^{-3} 1×10^{-7} 2×10^{-4} 0.45 I Group 6 x 10⁻⁷. 6 x 10⁻⁸ 9 x 10⁻³ 1×10^{-5} Cs-Rb Group 0.67 1×10^{-10} 1×10^{-9} 3×10^{-2} 2 x 10⁻⁵ 0.64 Te-Sb Group 1×10^{-12} 1×10^{11} 1×10^{-3} 1 x 10⁻⁶ 0.07 Ba-Sr Group 2×10^{-6} 2×10^{-3} 0 0 0.05 Ru Group 1×10^{-6} 9 x 10⁻³ 3×10^{-4} 0 0 La Group

a. As defined in the Reactor Safety Study [1].

2

Comparison of Conditional Mean Consequences Predicted for Five Source Terms^{a,b} Table 2.3.1-3. Source Mean Early Mean Early Mean Latent Mean Thyroid Mean Interdicted Term Fatalities Injuries Cancer Fatalities Nodules Land Area 100^b SST1 100 100 100 100 1×10^{-2} SST2 0.5 7 3 1 2×10^{-2} SST3 5 x 10⁻⁻ 0 0 0 x 10⁻⁵ SST4 4 x 10 0 0 8 Û 4×10^{-5} SST5 0 8 x 10 n

Assumptions: 1120 MWe PWR, population distribution and wind rose for Indian Point, New York City meteorology, "Summary Evacuation" of persons within 10 miles. a.

b. All consequences are normalized to 100 for source term SST1.

Figures 2.3.1-1 and 2.3.1-2 present mean bone marrow dose and mean thyroid dose to exposed individuals as a function of distance for each of the five source terms.^a The doses were calculated assuming no emergency response, an 1120 MWe PWR, and New York City meteorology. The mean doses at any distance vary by nearly 8 orders of magnitude over the spectrum of five releases. For any pair of releases, relative doses are roughly proportional to the ratios of curies of released radioactivity excluding noble gases (Xe-Kr group). These figures also show that individual bone marrow and thyroid doses would generally not be expected to exceed a few tens of millirem for the SST4 release and a few millirem for the SST5 release.

Figure 2.3.1-3 displays the variation with distance of the mean individual risks (averaged over 360 degrees^{D}) of early fatality and early injury for source terms SST1 and SST2, and of latent cancer fatality (from early exposure only^C) for all five source terms. These curves were calculated assuming an 1120 MWe PWR, New York City meteorology, a uniform wind rose and no emergency response. Because early fatalities and injuries have dose thresholds, their risks of occurance decrease rapidly with distance for large source terms (e.g., SST1 and SST2) and are zero offsite ($\gtrsim 0.25$ mi) for small source terms (e.g., SST3, SST4, and SST5). Since no offsite risk of early fatality or injury was predicted for source terms SST3, SST4, or SST5, in Figures 2.3.1-3a and 2.3.1-3b no curves were plotted for these source terms. In contrast to this, because no dose threshold is assumed for latent cancer fatalities, the risk of latent cancer fatality decreases more slowly with distance and is non-zero for all five source terms. Therefore, in Figure 2.3.1-3c a

- a. The doses are the means of the frequency distributions of estimated individual dose calculated using an appropriate sample of weather sequences from a single year of meteorological data.
- b. Individual risks shown are the product of two probabilities: (1) the probability of exposure to the plume given that the release occurs, and (2) the probability that the individual dies following the exposure.
- c. Early exposure includes exposure to the radioactive plume, all exposures resulting from inhalation of radioactive materials from the plume, and short-term exposure to radioactivity deposited on the ground from the plume.

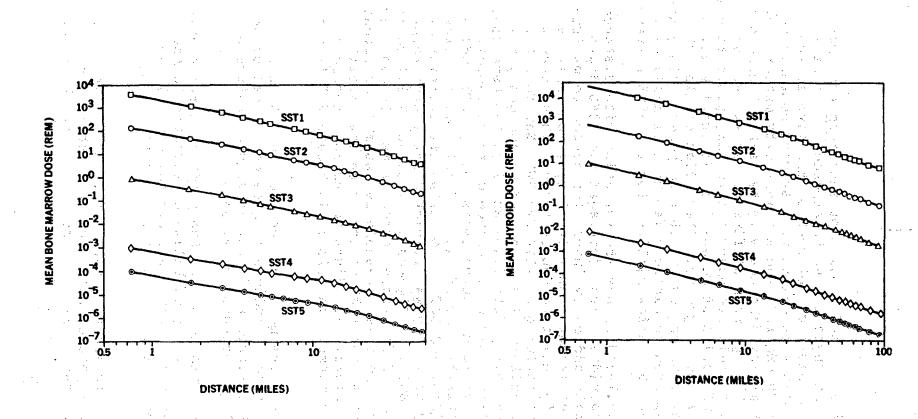
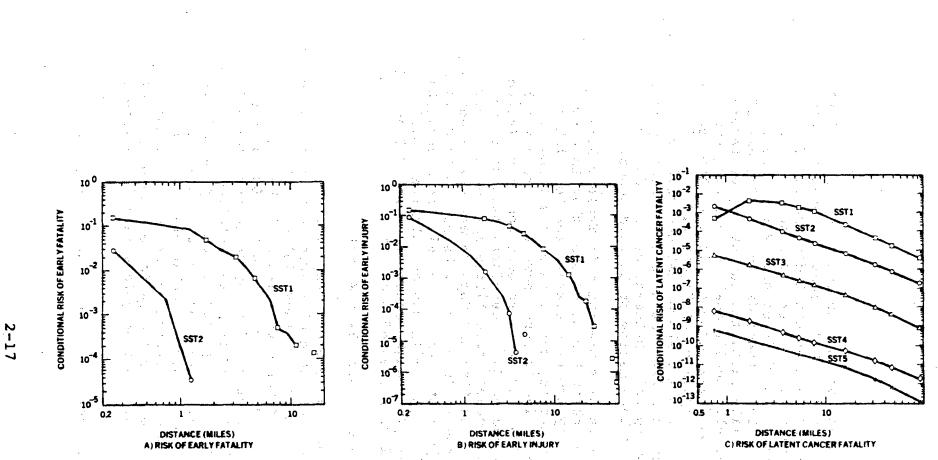
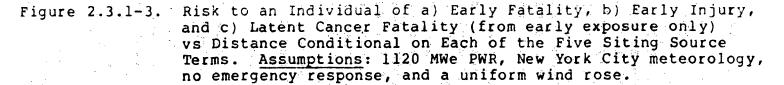




Figure 2.3.1-1. Comparison of Predicted Mean Bone Marrow Dose to Exposed Individuals vs Distance for the Five Source Terms. Figure 2.3.1-2. Comparison of Predicted Mean Thyroid Dose to Exposed Individuals vs Distance for the Five Source Terms.

Assumptions: 1120 MWe reactor, New York City meteorology, no emergency response, one day exposure to radionuclides deposited on the ground.

risk curve is plotted for each source term. The latent cancer risk curve for the SST1 release crosses the risk curve for the SST2 release at short distances. The falloff in the latent cancer fatality risk at short distances (\lesssim 2 mi) for SST1 is caused by the very high risk of early fatality at these distances. Because of the high early fatality risk, the latent cancer fatality risk is essentially conditional on surviving the high early radiation doses produced close to the reactor by SST1. Finally, comparison of Figure 2.3.1-3c with Figures 2.3.1-1 and 2.3.1-2 shows that the relative differences between the five latent cancer fatality risk curves are similar to those between the five dose vs distance curves for bone marrow or thyroid doses.

Together, the results presented in Table 2.3.1-3 and Figures 2.3.1-1 through 2.3.1-3 show that the SST1 accident would likely dominate overall reactor risk to the public.^a Furthermore, consequences resulting from the SST4 and SST5 accidents were shown to be much smaller than those resulting from the core melt accidents (source terms SST1, SST2, and SST3). Therefore, because these non-melt releases probably have little influence on offsite reactor risk, the SST4 and SST5 releases will not be considered further. In addition, because offsite risk is dominated by the most severe core-melt accidents, the remainder of this chapter will concentrate principally on the SST1 release, although results for the SST2 and SST3 releases will be presented when appropriate.

poyned advision

2.3.2 Uncertainty in Source Term Magnitudes

At present there is a great deal of controversy over the magnitude and nature of source terms for severe reactor accidents. A recent study [15] suggested that source terms for atmospheric releases could be substantially smaller than those assumed in WASH-1400 (or also in this report). The study cited evidence that removal processes, which have generally been neglected but which should operate within the primary coolant system and containment, would decrease the amount of material released following an accident to amounts substantially below those usually assumed. Such removal processes include plate-out of hot vapors, agglomeration and deposition of aerosols, and dissolution of soluble materials in water.

a. This conclusion depends on the relative probabilities of releases.

The effectiveness of these removal processes would be strongly dependent on the conditions inside the coolant system and containment and on the chemical and physical form of the fission products. For example, Campbell et al. [23] suggest that under accident conditions in LWRs, fission product iddine would be in the form of a soluble metallic iodide (probably CsI) rather than volatile, molecular iodine, as is currently assumed. Also, Morewitz [24], after review of past reactor accidents and destructive tests, concluded that in all cases where water was present, no fission product tellurium had been released. Morewitz proposed two explanations for this observation: Either tellurium remains in solution in the form of soluble CsTe2, or tellurium particles are efficiently scavenged by rapid droplet growth caused by condensation of water vapor. Morewitz further noted that even in the absence of water droplet formation, the generation of large quantities of aerosol from structural materials (steel, concrete, etc.) would produce rates of aerosol agglomeration rapid enough to ensure that a large fraction of the radioactive particles would guickly settleout inside the containment. 化合金 经总

These suggestions have received substantial support in a recent NRC report [16]. The significance of these proposals is that the solutility of volatile fission products and potential aerosol removal mechafisms could limit the guantity of released radionuclides to levels one to two orders of magnitude below those currently assumed.

To evaluate the impact on predicted consequences of significant reductions in the amount of released material, a series of calculations was performed with arbitrary reductions in the guantities of released fission products. The impact of potential reductions due to the solubility of fission products in water was evaluated by arbitrarily reducing the release fractions of iodine, cesium, and tellurium^a to 50, 10 and 0 percent of the standard SST1 level, singly,

a. The tellurium release fraction includes both tellurium and antimony and the cesium release fraction includes both cesium and rubidium (see Table 2.3.1-2). Cesium and tellurium, however dominate the predicted consequences for each release group. in pairs (Cs and I only), and all simultaneously (50 percent reduction only). To evaluate the impact on predicted consequences of potential reductions in source terms due to efficient aerosol removal processes, calculations were performed with the release fraction of all isotopes except noble gases arbitrarily reduced to 50, 10, 5, and 1 percent of the SST1 release.

The results of the calculations are summarized in Tables 2.3.2-1 and 2.3.2-2. Assumed in these calculations were the Indian Point site, New York City meteorology, an 1120 MW e reactor, and Summary Evacuation. The results in Table 2.3.2-1 indicate that a factor of 10 reduction in the release fraction of either iodine or tellurium results only in about a factor of 2 reduction in early effects. Because of the dose-threshold for early effects, this does not imply that iodine or tellurium "account" for half of the early effects.

Table 2.3.2-1 does, however, present a measure of the relative doses resulting from exposure to individual elements. Iodine isotopes account for about 35 percent of the expected acute bone marrow dose and for about 80 percent of the thyrcid dose. Bone-marrow dose has been shown to be the dominant cause of early fatalities. Tellurium isotopes account for about 35 percent of the acute bone marrow dose and about 20 percent of the thyroid dose. Because of the long half-lives of Cs¹³⁴ (2 years) and Cs¹³⁷ (30 years), cesium is the dominant element for long-term exposure. However, a factor of 10 reduction in the release fraction of cesium reduces the mean number of latent cancer fatalities by only 25 percent.

The small reduction in the number of latent cancer fatalities is a result of the assumption in CRAC2 that land will be interdicted to reduce long-term exposure. Thus, reducing the release fraction of cesium reduces the amount of interdicted land but does not significantly alter the total population exposure. The amount of interdicted land is very sensitive to the release fraction of cesium. A factor of ten reduction in the cesium release fraction results in an 85% reduction in the interdicted land area. The sensitivity of latent cancer fatalities to the criterion used for the interdiction of land is discussed in Section 2.7.5.

Table 2.3.2-2 presents the impact on consequences of reductions in the SST1 release fractions of all

Table 2.3.2-1. Sensitivity of Mean Consequences to Reductions in SST1 Release Fractions of Iodine, Cesium, and Tellurium^{a, b}

<u>,我们们们就是我们的时候,我们们们们就能能了。""你们的,我们们就是我们</u>不能把我们们就能能能能。"

Accident Release	Fa	Early talitie	Early Injuries	Latent Cancer Fatalities	Acute I Bone Marrow		Area of Land Interdiction		
SST1 (Standard)	· · · · ·	100 ^b	100	100	100	100	100	··· ··· ··· ·· ·· ·· ·· ·· ·· ·· ·· ··	
50% I 10% I 0% I	······	75 60 50	75 55 55 55	98 95 95	85 70 65	60 30 20	-100 100 100	<u></u>	· · · · ·
50% CS 10% CS 0% CS	· · ·	95 90 85	95 95 90	90 75 60	95 90 90	100 100 100	55 15 1	······································	
0% Te 0% Te 0% Te		75 50 45	65 45 40	95 90 90	85 70 65	90 80 80	100 100 100		
0% I,Cs 0% I,Cs 0% I,Cs	· ·	70 45 40	70 55 50	90 70 55	80 60 55	60 30	55 15 1	• •	· · ·
50% I,Cs,T		40	45	85	60		55		

b. All consequences normalized to 100 for source term SST1.

c. Relative doses are approximately independent of distance.

Table 2.3.2-2. Sensitivity of Mean Consequences to Reductions in SST1 Release Fractions of All Elements Except Noble Gases^{a,b}

しゃうがった 豊かない とうもうたい

化化剂 医水杨酸化 化化化化化化化化化 医碘甲酰胺 化化物化化化化化物化化化化物 建铁 化化化物 建铁 医外外的 网络拉拉人名

	Early Fatalities						
SST1 (Standard)	100 ^b	100	100		.100	100	100
50% SST1 ^d	30	35	74	ary In North Carlos	53 5 3	50	55
10% SST1d	1	4	32		16	10	10
5% SST1 ^d	0.2	2	19		11	5	5
1% SST1d	0.03	1	5 · · ·		8	1	1

a. Assumptions: 1120 MWe reactor, Indian Point Site, New York City meteorology, Summary Evacuation.

b. All consequences normalized to 100 for source term SST1.

c. Relative doses are approximately independent of distance.

d. Release fractions reduced for all isotopes except noble gases.

elements except the noble gases. The results indicate that an order-of-magnitude decrease in the release fractions causes the mean number of early fatalities to decrease by about 2 orders-of-magnitude and other consequences to decrease by about 1 order-of-magnitude. The 99th percentile^a of the calculated distribution of early fatalities for the standard SST1 release was 8,300. When the SST1 release fractions for elements other than noble gases were reduced to 10 and 1 percent of the standard values, the 99th percentile values for early fatalities fell to 100 and 0, respectively.

Only the impact on consequences of potential reductions in the magnitude of source terms has been examined in this section. Two other areas of large uncertainty, the energy release rate accompanying a radioactive release and the physical characteristics of the released material (as reflected in the dry deposition velocity) are discussed in Sections 2.7.2 and 2.7.3, respectively. Other areas of uncertainty, such as release timing (including variable and long duration releases) and release height, have not been addressed in this study.

In summary, if resolution of present uncertainties concerning Source term magnitudes determines that the amount of material released to the atmosphere is significantly less than that currently assumed, there could be large decreases in the predicted consequences of large core melt accidents (e.g., SST1 and SST2). Therefore, the reader should bear in mind that the consequences presented in this report may be significantly overestimated and, thus, some conclusions drawn may not remain valid.

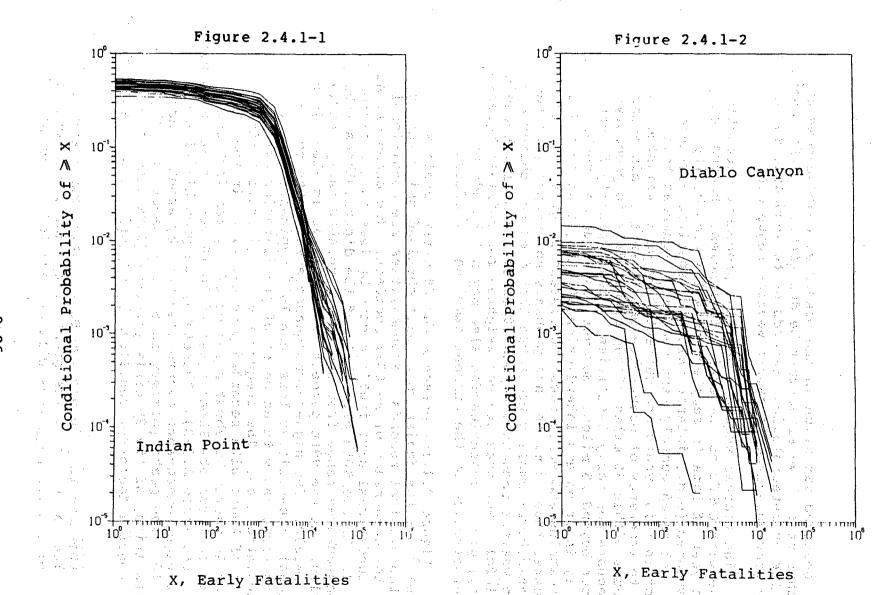
2.4 Site Meteorology and Population

In very general terms, the predicted consequences of an accidental release of radioactive material are dependent on four factors: 1) the assumed source term, 2) the meteorological conditions during and following the release, 3) the number of people exposed to the released material, and 4) the effectiveness of population protective measures. In the previous section, the sensitivity of consecuences to the source term was discussed. In this section, the impact on consequences of the mete-

a. Those consequences that would be equalled or exceeded by 1 out of every 100 releases. investigated. The impact of emergency protective measures on consequences is discussed in Section 2.5.

2.4.1 Sensitivity to Meteorological Record

Predictions of the potential consequences of reactor accidents normally assume that an accident may occur at any time, day or night, under any possible weather conditions. So that all possible weather conditions are adequately represented in the calculations, CRAC2 samples weather sequences from an actual record of meteorological conditions. The meteorological record required by CRAC2 consists of the site wind rose and 8760 hourly observations (1 year) of wind speed, atmospheric stability, and accumulated precipitation. As described in Section 2.2.1 and Appendix E, approximately 100 weather sequences are sampled from the meteorological record and used in the calculations to generate frequency distributions for various consequences. Current regulatory policy requires a licensee to monitor meteorological conditions for at least 1 year as part of the site approval process [25]. Data from reactor sites, however, are often of poor quality. Some site meteorological files do not include observations of precipitation and there are often "gaps" in the recordings. For this study, meteorological records from 29 National Weather Service (NWS) stations were used with the site wind rose. The 29 records represent the broad range of climatic conditions found in the United States, ranging from arid climates, such as Phoenix, AZ, to wet climates, such as Apalachicola, FL. NWS data have several potential advantages over reactor site data in that they are generally of higher quality, are readily available, contain more detailed observations, and are of durations of up to 30 years. A description of the 29 meteorological records may be found in Section A.3 of Appendix A.


A sensitivity analysis was performed to examine the impact that the meteorological record used in the calculations has on predicted consequences. Each of the 29 records was used as input for calculations at the Indian Point and Diablo Canyon sites (i.e., the population distributions and wind rose for each site were used with each of the 29 NWS records). Indian Point was selected because it has one of the highest population densities surrounding the site, while Diablo Canyon has one of the lowest.

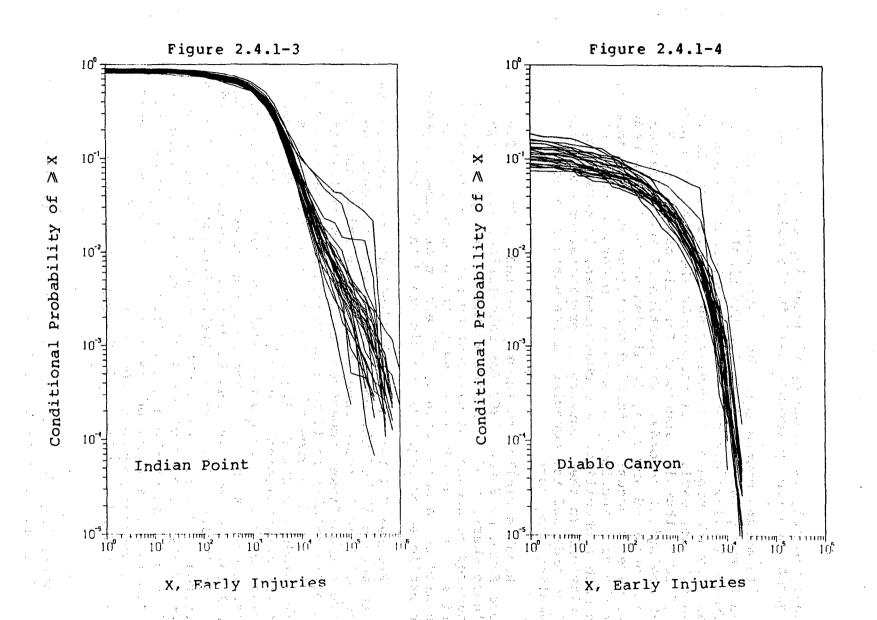
The calculations assumed Summary Evacuation (see Section 2.5), an 1120 MWe plant, and an SSTI release. Any observed variation in the predicted consequences at either of the two sites must be due either to differences in the 29 meteorological records or to inadequacies in the procedure used to sample weather sequences.

The weather sequence sampling procedure currently used with CRAC2 has several deficiencies. Because only one year of data is sampled, very low probability sequences (e.g., intense rain at a specific distance) may not be adequately represented. Sequences that contain rain events are currently properly weighted as to frequency of occurrence only when the rain event occurs within 30 miles of the site. This is probably adequate for early fatalities, which typically do not occur beyond 25 miles. However, consequences such as early injuries and interdiction of land, that have dose thresholds and which occur to distances substantially greater than 30 miles, are probably not properly represented by a sampling procedure that does not characterize weather sequences beyond 30 miles. Finally, because rainfall sequences are not weighted for rainfall intensity, ground contamination also may not be adequately characterized by the current sampling procedure.

Figure 2.4.1-1 presents the 29 early fatality CCDFs^a for the Indian Point site obtained using the 29 meteorological records. Probabilities are conditional on the occurrence of an SST1 accident. The means of the 29 conditional distributions vary by less than a factor of 2. At the 90th percentile of the distributions, the consequences range from about 2000 to 4000 early fatalities. At the 99th percentile, the range is about 7000 to 14,000. The higher-consequence events with condi-tional probabilities less than 10^{-2} typically result from sequences with an onset of precipitation over a populated area. The frequency of precipitation (fraction of hours with recorded precipitation) in the 29 24 records varies by about a factor of 10, ranging from 1 percent for the Phoenix record to 10 percent at Caribou, ME (see Table A.3-3). Therefore, the probabilities of the high-consequence events also vary by about a factor of 10. The peaks (maximum calculated number of early fatalities) of the 29 early fatality CCDFs also vary by about a factor of ten $(10^4 \text{ to } 10^5 \text{ fatalities})$. Th This

a. Complementary Cumulative Distribution Functions are log-log plots of the probability that a consequence of a given magnitude will be equalled or exceeded.

Early Fatality Complementary Cumulative Distribution Functions (CCDFs) Generated With Meteorological Data From 29 National Weather Service Stations. Probabilities are conditional on an SSTI accident occurring. The means of the distributions have the following ranges: Indian Point 710-1300, Diablo Canyon 0.1-18. Assumptions: Summary Evacuation, 1120 MWe reactor.


range probably is caused by inadequacies in the weather sequence sampling procedure used in the calculations.

In marked contrast to the Indian Point result, the 29 early fatality CCDFs for the Diablo Canyon site (Figure 2.4.1-2) are not closely clustered. Because of the very low population density surrounding the Diablo Canyon site, early fatalities occur above the 99th percentile of the distributions^a for only one of the 29 meteorological records. Examination of the sequences which produced any early fatalities showed that almost all were sequences containing precipitation. The spread of the distributions (as much as 2 orders of magnitude in both probabilities and consequences) is caused by variations in the frequency of precipitation among the 29 records and inadequacies in the weather sequence sampling procedure.

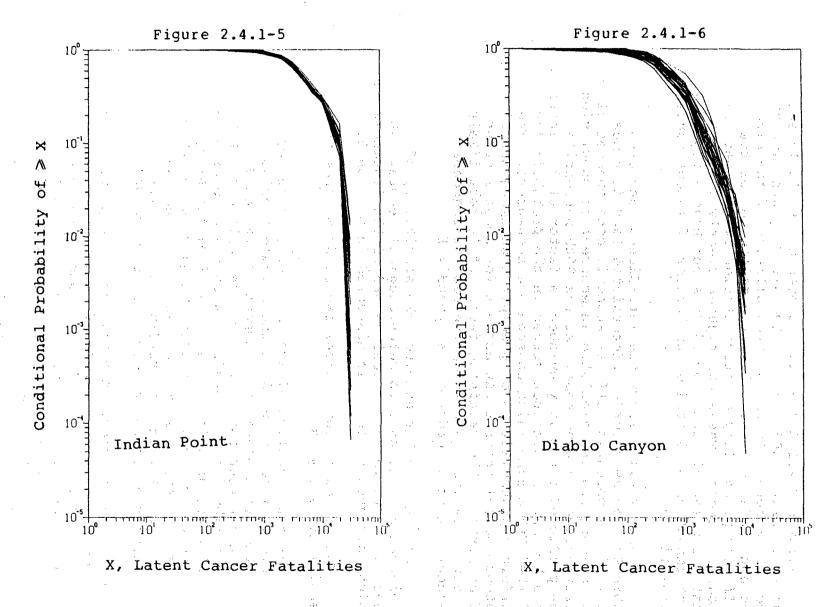
Results similar to those presented in Figure 2.4.1-2 were found by Sprung [26] for calculations with buoyant plumes where, again, the occurrence of precipitation is required to produce significant numbers of early fatalities (Note that all releases in the present study are assumed to be non-buoyant. The effect of plume buoyancy on predicted consequences is discussed in Section 2.7.2.)

Figures 2.4.1-1 and 2.4.1-2 indicate that out to the 99th percentile of the conditional distributions, the meteorological record used in the calculations does not have a significant impact on the predicted distributions of early fatalities (CCDF mean values differ by less than a factor of 2). Figures 2.4.1-3 and 2.4.1-4 show the 29 early-injury CCDFs for the two sites. Except for three of the meteorological records, there is again very little variation among conseguences with conditional probabilities greater than 10^{-2} . The outlying curves are for the Apalachicola, Seattle, and El Paso meteorological records at the Indian Point site and the Apalachicola and Seattle records at Diablo Canyon. Apalachicola and Seattle are two of the "wetter" meteorological records; inexplicably, El Paso is one of the driest. The source of these anomalies is not certain, but is probably due to inadequacies of the weather sequence sampling procedure (i.e., rain events beyond 30 miles are not appropriately weighted).

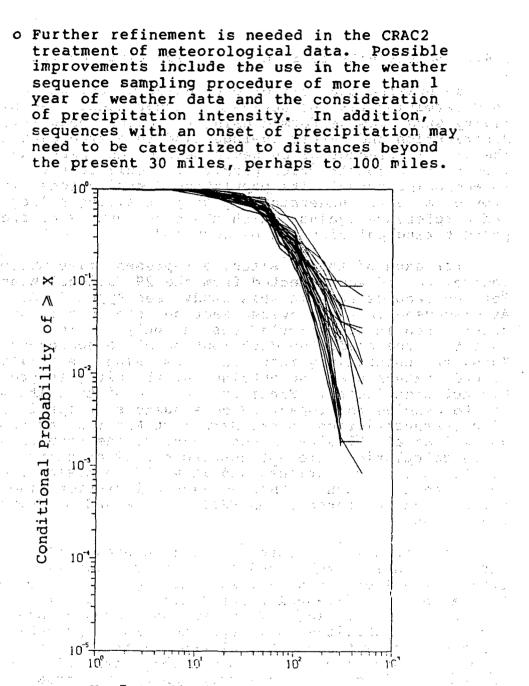
a. Those consequences that would be equalled or exceeded by 1 out of every 100 releases.

Early Injury Complementary Cumulative Distribution Functions (CCDFs) Generated With Meteorological Data From 29 National Weather Service Stations. Probabilities are conditional on an SST1 accident occurring. The means of the distributions have the following ranges: Indian Point 2400-14,000 (2,400 - 5,000 without the 3 high outlying CCDFs), Diablo Canyon 64-240. Assumptions: Summary Evacuation, 1120 MWe reactor.

Figures 2.4.1-5 and 2.4.1-6 present the 29 latent cancer fatality CCDFs for the two sites. Both figures show variations only in the probabilities of the highconsequence events, most likely a reflection of the different probability of precipitation in each meteorological record. These two figures clearly indicate that the meteorological record does not have a significant impact on predicted distributions of latent cancer fatalities.


Figure 2.4.1-7 shows the interdicted-land area CCDFs for the 29 records. Interdicted land is a measure of the potential offsite economic consequences of an accident and is calculated independent of population distribution and wind rose. At the 90th percentile, the predicted areas vary by about a factor of 3. There is a 2-order of magnitude spread in the probabilities of the CCDF maxima (high-consequence sequences). The different probabilities of precipitation among the 29 meteorological records can account for about 1 order The remaining factor of 10 most likely of magnitude. is caused by inadequacies in the weather-sequence categorization procedure (see Appendix E).

This section has examined the sensitivity of consequence magnitudes to meteorological record. The sensitivity to meteorological record of the distances to which consequences occur is discussed in Section 2.6.


The following conclusions can be drawn from this sensitivity analysis:

- o Given a specific release, the one-year meteorological record used in the calculations does not have a significant impact on predicted consequences out to the 99th percentile of the distributions. Therefore, when suitable meteorological data is not available from the site, the use of substitute meteorological data, such as that available from a nearby National Weather Service station, is probably adequate for performing consequence calculations with CRAC2.
- o Major differences in predicted consequences among the 29 meteorological records occur at probabilities less than 10⁻² and probably arise from variations in the frequency of precipitation and inadequacies in the procedure used to sample weather sequences.

٠(

Latent Cancer Fatality Complementary Cumulative Distribution Functions (CCDFs) Generated With Meteorological Data From 29 National Weather Service Stations. Probabilities are conditional on an SST1 accident occurring. The means of the distributions have the following ranges: Indian Point 7600-9300, Diablo Canyon 750-1600. Assumptions: Summary Evacuation, 1120 MWe reactor.

X, Interdicted Land Area (sq mi)

Figure 2.4.1-7. Interdicted Land Area Complementary Cumulative Distribution Functions (CCDFs) Generated with Meteorological Data from 29 National Weather Service Stations. Probabilities are conditional on an SST1 accident occurring. The means of the distributions range from 72 to 140 square miles. Assumption: 1120 MWe reactor. 2.4.2 Sensitivity to Site Population Distribution

승규는 가슴을 가슴을 물었다.

To examine the role of population distribution in determining reactor accident consequences, a sensitivity study was performed using the actual population distribution and 1-year average wind rose from each of the 91 U.S. reactor sites having either an operating license or a construction permit. Calculations performed using actual site population distributions also provide a better understanding of past siting policy and a reference against which the consequences of proposed siting policies can be compared.

For each of the 91 sites, a representative meteorological record was selected from the 29 National Weather Service records used in this study (see Appendix A). As discussed in the previous section, the meteorological record used in the calculations has only a marginal impact on the predicted distribution of consequences. Thus, the uncertainty resulting from using a substitute record (rather than one obtained at the site) is probably not significant. Since the purpose of this study was to examine the impact on consequences of specific site characteristics, a standard 1120 MWe reactor was assumed at all 91 sites. Consequently, the results of these calculations are not assessments of existing reactor-site combinations, and it would be misleading to use them as such. Finally, each calculation also assumed the occurence of an SST1 release and of Summary Evacuation.

Figures 2.4.2-la through 2.4.1-lc show early fatality, early injury, and latent cancer fatality CCDFs for all of the 91 sites. The figures have been truncated at conditional probabilities of 10^{-3} (one in a thousand releases). This was done because consequence probabilities and magnitudes for improbable events (those with conditional probabilities less than 10^{-3}) are very uncertain. A large part of this uncertainty is due to the assumption of an evacuation only within 10 miles. Because of this assumption, all persons beyond 10 miles were assumed to be exposed to deposited radionuclides for 1 day, regardless of dose rate^a. Any emergency actions taken beyond 10 miles

a. Under some meteorological conditions, the 1-day bone marrow dose at 10 miles can exceed 1000 rem.

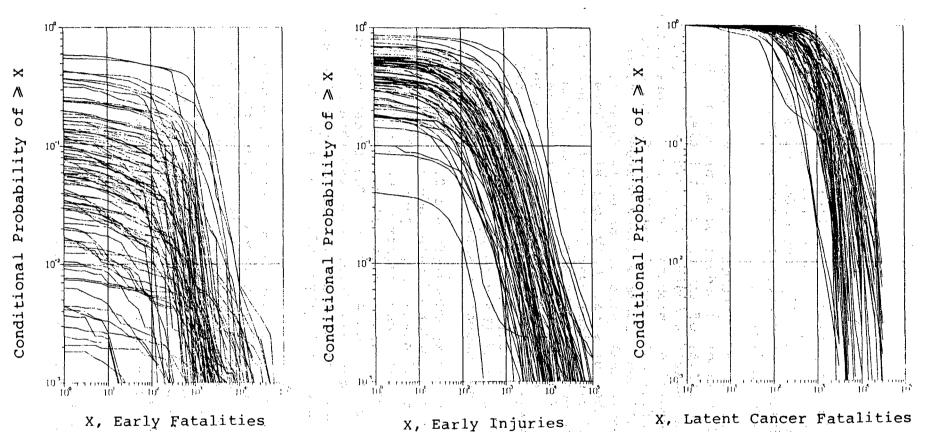
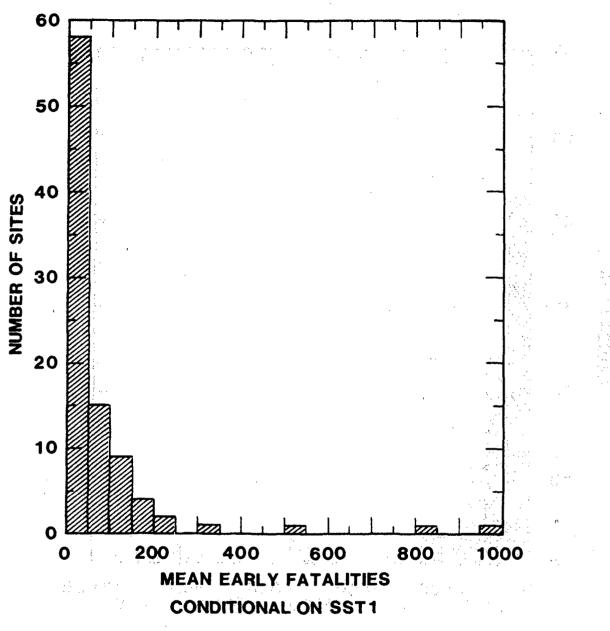


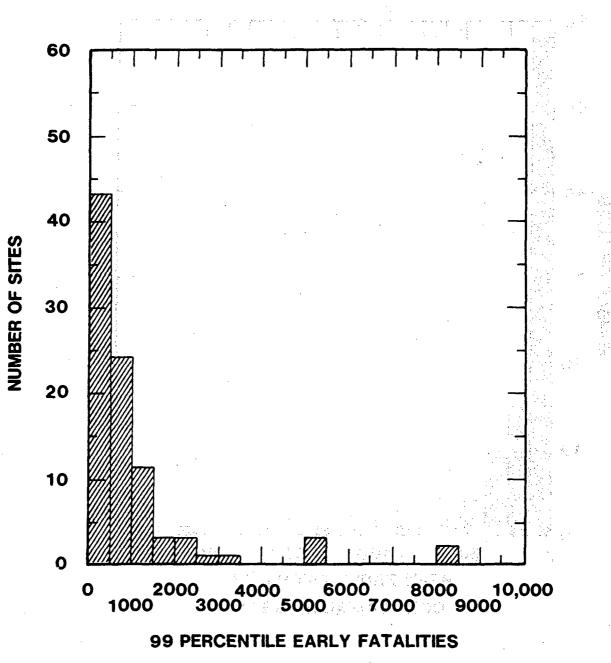
Figure 2.4.2-1. (a) Early Fatality, (b) Early Injury, and (c) Latent Cancer Fatality CCDFs Conditional on an SST1 Release at all 91 Current U.S. Reactor Sites. <u>Assumptions</u>: 1120 MWe reactor, Summary Evacuation, representative meteorology. Range of means: early fatalities 0.4 to 970, early injuries 4 to 3600, and latent cancer fatalities 230 to 8100.


(e.g., sheltering or prompt relocation) would significantly mitigate the consequences of low-probability, high consequence events [27]. The effect on consequences of different emergency response scenarios is discussed in Section 2.5.

The 91 early fatality CCDFs range (on the probability axis) over almost 3 orders of magnitude in the conditional probability of any early fatalities [i.e., $P(\geq 1)$ and over nearly 4 orders of magnitude in consequences at a conditional probability of 10^{-3} (consequence The conditional means of the 91 CCDFs range from axis). 0.4 to 970 fatalities. Figure 2.4.2-2 presents a histogram of the conditional means of the early fatality CCDFs versus number of sites. Only four sites have means above 250 fatalities; over half are less than 50. Table C-1 in Appendix C lists the conditional mean number of early fatalities, early injuries, and latent cancer fatalities for each of the 91 sites. The 99th percentile^a of the conditional distributions of early fatalities range from zero to 8000. Figure 2.4.2-3 presents a histogram of the 99th percentile of the distributions versus number of sites.

The 91 early injury CCDFs (Figure 2.4.2-1b) range over approximately 1 order of magnitude in the conditional probability of having any injuries $[P(\geq 1)]$ and over 2 orders in consequence magnitude at a conditional probability of 10^{-3} . The conditional mean numbers of early injuries range from 4 to 3600. The latent cancer fatality CCDFs (Figure 2.4.2-1c) show less than 1 order of magnitude spread on both axes. The conditional means of the latent cancer fatality CCDFs range from 230 to 8100.

In Section 2.4.1, it was shown that the meteorological record does not significantly affect the calculated distributions of consequences. Therefore, the wide variability in calculated distributions displayed in Figures 2.4.2-la through c (early fatalities, early injuries, latent cancer fatalities) can be due <u>only</u> to differences in the 91 population distributions since all other factors were either held constant or have no significant effect on predicted consequences.


a. Those consequences that would be equalled or exceeded by 1 out of every 100 releases.

 $= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 + \frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2}$

"如此,我们们是我们的,我们就是我们就是我们的,我们就是我们的。""你们就是我们的,我们就是你们的你就是我们的,你们就是你们的。"

Figure 2.4.2-2. Histogram of Mean Early Fatalities for 91 Sites, Conditional on an SST1 release. Assumptions: 1120 MWe reactor, a representative meteorological record, and Summary Evacuation.

CONDITIONAL ON SST1

Figure 2.4.2-3.

2, 4 5... 2...

Histogram of the 99th Percentile of the Distribution of Early Fatalities for 91 Sites, Conditional on an SST1 Release. <u>Assumptions</u>: 1120 Mwe reactor, a representative meteorological record, and Summary Evacuation.

The different degrees of variability of the three consequences are primarily due to the different distances to which each consequence occurs. Within 20 miles of the reactor there is tremendous variability in the 91 population distributions. Within this distance, the population densities range from 1 to 710 people per square mile (see Section 3). Therefore, the distributions of early fatalities, which are confined to areas within a few tens of miles of the site (most occur within a few miles, see Section 2.6), show the greatest variability. Early injuries can occur to many tens of miles, but most occur within about 30 miles. Within 50 miles of the 91 sites, average population densities range from 10 to 2100 people per square mile. Since this range (factor of 210) is less than that observed to 20 miles (factor of 710), the variability in the 91 early injury CCDFs is less than that obtained for early fatalities. Finally, when averaged over very large areas, the variability in the 91 population distributions is greatly reduced. The population densities within 200 miles of the 91 sites vary between 14 and 335 people per square mile (factor of 24). Thus, the distributions of latent cancer fatalities, which can occur over very large areas, show the least variability.

Some specific characteristics of population distributions which might impact the variability of consequences are discussed in Section 2.7.4. Finally, for each of the 91 sites examined in this report, early fatality, early injury, and latent cancer fatality CCDFs conditional on an SST1 release are presented in Appendix C. When examining these CCDFs, it is important to remember that they are not truly site specific. Although each CCDF was calculated using the site's wind rose, the population distribution about the site, and an appropriate substitute meteorological record, the SST1 release assumed in each calculation was not modified to reflect the specific design of the site's reactor. Instead, a standard 1120 MWe PWR was assumed in each calculation.

2-37

 (A_{1}, A_{2}, A_{2})

2.5 Sensitivity to Emergency Response

Should an accident at a nuclear power plant lead to a significant release of radioactivity, public radiation exposures could be mitigated by evacuation, sheltering, relocation, or medical prophylaxis^a. Summary Evacuation within 10 miles was assumed in most of the calculations presented in other sections of this report. In this section the sensitivity of early fatalities and early injuries to emergency response is examined by a series of parametric calculations. All of these calculations assume an SST1 release from an 1120 MWe reactor, Indian Point population and wind rose, and New York City meteorology. 计标志 化化合金属石油 化分子

The emergency response submodel in CRAC2 was briefly described in Section 2.2.2 and is more fully described in this section and in Appendix E. The model allows for the mitigation of radiation exposures by evacuation or by sheltering followed by relocation. Evacuation is characterized by the delay time between accident warning and the initiation of evacuation, by the distance within which people evacuate, and by the evacuation speed [8]. Sheltering is characterized by the distance within which all people take shelter, the shielding factors afforded by the structures in which they take shelter [29-31], and the delay time between cloud passage and the relocation of sheltered population. The parameters that describe these emergency response scenarios are first defined and then the results of the parametric calculations are presented.

and a second second

and the state of the

Evacuation is the expeditious movement of people а. to avoid exposure to the passing cloud of radio-active material. Sheltering is the expeditious movement of people indoors, if possible, into basements or masonry buildings which afford enhanced shielding from radiation. Relocation is the movement of exposed persons out of contaminated areas after the passage of the radioactive cloud. Medical Prophylaxis is the administration of agents which decrease or block internal exposures (e.g., KI prophylaxis decreases thyroid exposures [28]).

· 是一次,这个人的情况。

The following eight parameters essentially determine the impact of the CRAC2 emergency response model on consequence predictions:

3.6

<u>Warning Time</u>: Time from accident notification by plant personnel to release of radioactivity due to containment failure (e.g., 0.5 hr for SST1).

Delay Time: Time from accident notification to the initiation of emergency response (0 hr for sheltering; 1-5 hr for evacuation).

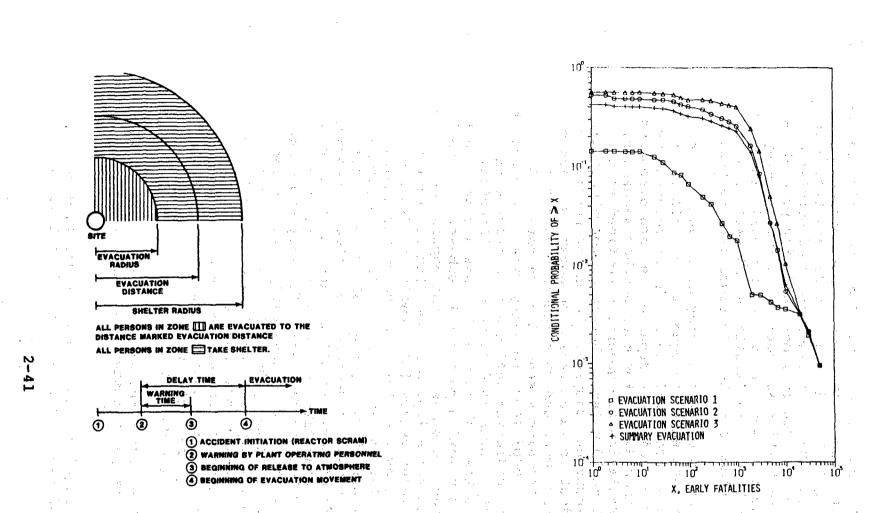
Evacuation Radius: The radius within which all occupants of a 90° sector (centered on the plume centerline) evacuate (10 mi in the base case calculation).

Evacuation Speed: The effective speed at which evacuees move radially away from the reactor (10 mph in the base case calculation).

Evacuation Distance: The radial distance to which the evacuees move (5 mi beyond the evacuation radius; therefore, 15 mi for the base case calculation) before they are removed from the calculation because they are assumed to have enough information to avoid additional exposure.

Sheltering Radius: The radius within which all nonevacuating occupants of a 90° sector (centered on the plume) take shelter. If the sheltering radius is less than or equal to the evacuation radius, only evacuation takes place. If the sheltering radius is larger than the evacuation radius, then all persons between the evacuation radius and the sheltering radius take shelter. Beyond the sheltering radius, normal activity is assumed to continue (i.e., some people are outdoors).

Shielding Factor [29]: The fraction of the dose to an unsheltered individual received by an individual sheltered in a building or in a vehicle (i.e., during evacuation). Shielding factors for buildings depend on the housing stock (percent brick, availability of basements) and, therefore, vary by geographic region. Different shielding factors are used to decrease unshielded exposures to the radioactive plume and to contaminated ground (see Appendix A). Relocation Time: The period which elapses after passage of the radioactive plume before non-evacuating individuals are moved from contaminated areas (24 hr in the base case calculation)


Relationships between several of these eight emergency response model parameters are schematically depicted in Figure 2.5-1.

The CRAC2 emergency response submodel allows for the specification of up to six different emergency response scenarios and will calculate a weighted average of the results for any designated set of scenarios. CRAC2 calculations presented in other sections of this report generally assume "Summary Evacuation," which is the weighted summation of three different evacuation scenarios as follows:

20 gr					Delay
Scen	ario	Type of	Response	Response	Before
Number	Weight ^a	Response	Distance	Speed	Response
	30%	evacuation	10 miles	10 mph	1 hour
2	40%	evacuation	10 miles	10 mph	3 hours
3	30%	evacuation	10 miles	10 mph	5 hours

a. The 30%/40%/30% weighting provides a best fit to EPA evacuation data [7] (See Appendix E).

The sensitivity of the CRAC2 evacuation model to evacuation speed has been previously investigated by Aldrich, et al. [9], who found that, for evacuation within 10 miles after a 3 hour delay, early fatalities were minimally affected by effective evacuation speed provided that the evacuation speed was at least 10 mph. The impact of delay time on early health effects is illustrated in Figure 2.5-2, which presents early fatality CCDFs for 10 mph evacuations within 10 miles after delays of 1, 3, and 5 hours, respectively (scenarios 1, 2, and 3). Also plotted is the CCDF for Summary Evacuation, which is the 30:40:30 weighted summation of the CCDFs for scenarios 1, 2, and 3. Figure 2.5-2 shows (1) that early fatalities are substantially decreased by short delay times ($\lesssim 1$ hr); and (2) that Summary Evacuation yields results nearly identical to those obtained for scenario 2 (3 hr delay).

Figure 2.5-1.

Relationships Between Evacuation Model Parameters

Figure 2.5-2.

Early Fatality Complementary Cummulative Distribution Functions for 10 mph Evacuations within 10 Miles after Delays of 1, 3, and 5 Hours (Scenarios 1, 2, and 3, respectively) and for Summary Evacuation. Assumptions: 1120 MWe reactor, Indian Point population and wind rose, New York City meteorology. Table 2.5-1 presents mean and 99th percentile^a values of early fatalities and early injuries for emergency response scenarios 1, 2, and 3 and for Summary Evacuation. The table shows (1) that, for evacuations of population within 10 miles of the reactor, mean and 99th percentile values of early fatalities are more sensitive to delay time than are the corresponding values for early injuries; and (2) that for both early fatalities and early injuries, 99th percentile values are about 10 times mean values.

The different sensitivities displayed result largely from the fact that each consequence has a different characteristic distance within which the consequence is calculated to occur (distance dependencies are discussed in detail in Section 2.6). For most weather sequences, fatal doses of radiation are generally confined to distances of less than 10 miles. Therefore, for almost all of the weather sequences sampled, the entire population potentially subject to fatal radiation doses is evacuating. Consequently, mean and 99 percentile values for early fatalities are highly sensitive (factors of $8 \approx$ 1400/180 and $7 \approx 10,000/1400$) to delay time. In contrast to this, doses of radiation sufficient to cause early injuries frequently occur to distances significantly greater than 10 miles. Therefore, because a significant fraction of the population potentially subject to doses sufficient to cause injuries (i.e., the population beyond 10 miles) is not evacuating, mean and 99th percentile values of early injuries are less sensitive (factors of 1.7 and 1.1) to delay time than are the corresponding values for early fatalities. Finally, for evacuations of population within 10 miles, peak values (worst case calculated for any weather sequence, conditional probabi-lities of $\leq 10^{-3}$) of early fatalities and early injuries are essentially insensitive to evacuation delay time e.g., in Figure 2.5-2 the four early fatality CCDFs have identical tails). This is because early fatality and injury worst case results (CCDF tails) are caused by rainout of radioactivity from the plume onto population centers (cities) located more than 10 miles from the Since these cities were not evacuated in this reactor. set of calculations, these calculations yield peak values of early fatalities and early injuries that are not affected by evacuation delay time.

Table 2.5-2 presents the effect of the distance within which population is evacuated upon early fatalities

a. Consequence magnitude that would be equalled or exceeded following 1 out of every 100 releases.

Table 2.5-1.	Effect of Delay Time on Early Fatalities
· · · · ·	and Early Injuries for Evacuation to 10
. <u>.</u>	Miles. Results are Conditional on an SST1
,	Release.

Delay	Ea	rly Fatalities	Early Injuries			
Time (hr)	Mean	99th Percentile	Mean			
1	180	1,400	2500	30,000		
3 , y =	920		4000	32,000		
551111111111111	1400	10,000	4300	34,000		
Summary	830	8,300	3600	33,000		

Assumptions: 1120 MWe reactor, SST1 release, Indian Point 1475 - 97 population and wind rose, New York City meteorology.

. .

Table 2.5-2. Effect of Evacuation Distance on Early Fatalities and Early Injuries for Summary Evacuation. Results are Conditional on an SST1 Release. . .) λ.

Evacuation Distance (mi)		ly Fatalities 99th Percentile	Early Injuries Mean 99th Percentile		
0 ^a	3600	18,000	6300	41,000	
5	1100	11,000	5500	40,000	
10	830	8,300	3600	33,000	
25	700	7,200	1800	9,400	

a. No evacuation

Assumptions: 1120 MWe reactor, SST1 release, New York City meteorology, Indian Point population and wind rose.

and early injuries for Summary Evacuation. The table shows that mean and 99th percentile values of early fatalities and injuries are all quite sensitive to the distance within which population is evacuated. Because worst case results (conditional probabilities of $\leq 10^{-3}$) for early fatalities are generally caused by rainout of the radioactive plume onto a city located further than 10 but less than 25 miles from the reactor, evacuation within 25 miles lowers the worst case number of early fatalities from 57,000 (for evacuation within 10 mi) to 15,000 (for evacuation within 25 mi).

The next three tables examine the sensitivity of early health effects to sheltering parameters. Table 2.5-3 displays the effect of the distance within which population takes shelter in preferred locations (building interiors, basements if available) on early fatalities and early injuries. Examination of the table shows that the effect of response distance for sheltering is similar to that for evacuation. Mean and 99th percentile values of early fatalities and injuries are all quite sensitive to sheltering distance. As before, 99th percentile values are about 10 times the mean result and a 25 mile response distance significantly decreases (by about a factor of 5) the worst case result (conditional probability of $\lesssim 10^{-3}$) below the result obtained with a 116日 章 10 mile response distance.

Table 2.5-4 illustrates the impact of the availability of basements upon the degree of shielding (and thereby the reductions in consequences) afforded by sheltering. The table shows that mean and 99th percentile values of early fatalities are substantially decreased, if Northeast regional shielding factors (building characteristics: 87% basements, 47% brick) are used rather than Pacific Coast regional shielding factors (building characteristics: 23% basements, 27% brick) [29]. Because sheltering was assumed to take place only to 10 miles, mean and 99th percentile values of early injuries show a lessened sensitivity. These results are consistent with results previously obtained by Aldrich et al. [27].

(b) For the first second second state of the second s

an an an an a' Cairte Anna Anna Anna Anna Càirte Anna Anna Anna Anna	Fataliti Preferen Relocati on an SS	f Sheltering es and Early tial Shelteri on. Results Tl Release.	Injuries ng Follow	for ved by tional
Sheltering Distance (mi)		<u>Fatalities</u> th Percentile		y Injuries th Percentile
5	830	9,300	56 0 0	40,000
10	56 0	5,500	3700	32,000
15 .	490	4,900	2700	25,000
25	42 0	4,500	1800	11,000

Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City meteorology, no evacuation, Northeast regional shielding factors, relocation after 6 hr.

Table 2.5-4. Effect of Early Fatalities and Early Injuries for Sheltering to 10 Miles Followed by Relocation. Results are Conditional on an SST1 Release.

Number of Basements	Mean	ly Fatalities 99th Percentile		erly Injuries 99th Percentile
Few ^a	,	9,300	4100	34,000
Many ^b	56 0	5,500	3700	32,000

a. 23% basements (Pacific Coast regional shielding factors used, see Appendix A).

b. 87% basements (Northeast regional shielding factors used, see Appendix A).

Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City meteorology, no evacuation, relocation after 6 hr. After plume passage, relocation of sheltered populations decreases exposure to contaminated ground. The effect upon early fatalities and early injuries of decreasing relocation time from 24 to 6 hours is presented in Table 2.5-5. As before, because sheltering was assumed to take place only to 10 miles, mean and 99th percentile early injury values show little sensitivity, while mean and 99th percentile values for early fatalities decrease by a factor of two.

Table 2.5-5. Effect of Relocation Time on Early Fatalities and Early Injuries for Sheltering to 10 Miles. Results are Conditional on an SST1 Release.

1.1.1.2.1.1.1.1

中国人民族的中国人民族的人民族的主义。 医弗里尔氏试验检尿杆菌 医尿道 化氯化氯化 化氯化氯化 化氯化氯化 化氯化氯化 化氯化氯化 化氯化氯化 化氯化乙酰胺 化乙酰胺 化乙酰胺 化乙酰胺 化乙酰胺 化乙酰胺

Relocation Time (hr)		v Fatalities Oth Percentile		ly Injuries Oth Percentile
6	560	5,500	3700	32,000
12	750	7,500	3800	33,000
24	1200	9,300	4100	34,000

Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City meteorology, no evacuation, Northeast regional shielding factors.

Table 2.5-6 gathers together in a single table the results of all the calculations which examined evacuation or sheltering separately. The table presents the variation with response distance of early health consequences for five evacuation scenarios and three sheltering scenarios. Examination of Table 2.5-6 shows that for any response distance, expeditious evacuation (1 hr delay, 10 mph) and sheltering with expeditious relocation (after 6 hr) yield the smallest predictions of early health consequences. The table also confirms the strong dependence of mean early health consequences on response time and the less strong dependence on response distance.

Emerge	ncy Response	Response Distance (mi)									
Туре	Characteristics	0ª	5	10	15	25	0 ^a	5	10	15	25
			<u>Mean E</u>	arly Fatal	<u>ities</u>			Mean	Barly Inju	ries	
Evacuation	5 hr delay, 1 mph	3,600 3,600	2,100 1,600	1,900 1,400	1,800	1,800 1,250	6,300 6,300	6,200 6,000	5,300 4,300	5,100 3,300	4,700
	5 hr delay, 10 mph	3,600	1,200	920	1,300 960	1,250 ~	6,300	5,800	4,300	3,000	2,300
5	3 hr delay, 10 mph Summary Evacuation	3,600	1,200	830	780	790	6,300	5,500	3,600	2,700	1,80
	1 hr delay, 10 mph	3,600	440	180	110	40		4,600	2,500	1,500	70
4	I HI Geray, Io mph	3,000	440	190	110	40	6,300	4,000	2,500	1,500	70.
Sheltering ^b	24 hr relocation	3,600	c	1,200	c	с	6,300	c	4,100	с	с
Shertering	12 hr relocation	3,600	c	750	Č.	с	6,300		3,800	c i	c
	6 hr relocation	3,600	830	56 0.	490	420	6,300	5,600	3,700	2,700	1,80
									· · · · · · · · · · · · · · · · · · ·		
										- · · · d	
		<u>99t</u>	n Percent	ile Early 1	atalities		<u>9</u>	9th Perce	ntile Early	Injuries-	
Evacuation	5 hr delay, 1 mph	18,000	16,000	14,000	12,000	11.000	41.000	41,000	40,000	41,000	28,00
Dracuación	5 hr delay, 10 mph	18,000	14,000	10,000	9,400	8,800	41.000	40,000	34,000	26,000	10,00
1	3 hr delay, 10 mph	18,000	11,000	8,000	7,300	7,000	41.000	40,000	32,000	26,000	10,00
· ·	Summary Evacuation	18,000	11,000	8,300	7,600	7,200	41.000	40,000	33.000	26,000	9,40
	1 hr delay, 10 mph	18,000	7,000	1,400	1,200	1,000	41,000	39,000	30,000	24,000	5,20
1					- • - • - • •		11,000			,	-,
Sheltering ^b	24 hr relocation	18,000	с	9,300	C	c	41,000	с	34,000	c	· c
. -	12 hr relocation	18,000	с	7,500	C	с	41,000	C	33,000	Ċ	с
	6 hr relocation	18,000	9,300	5,500	4,900	4,500	41,000	40,000	32,000	25,000	11,00

Table 2.5-6. Dependence of Early Fatalities and Early Injuries on Response Distance for Eight Emergency Response Scenarios. Results are Conditional on an SST1 Release

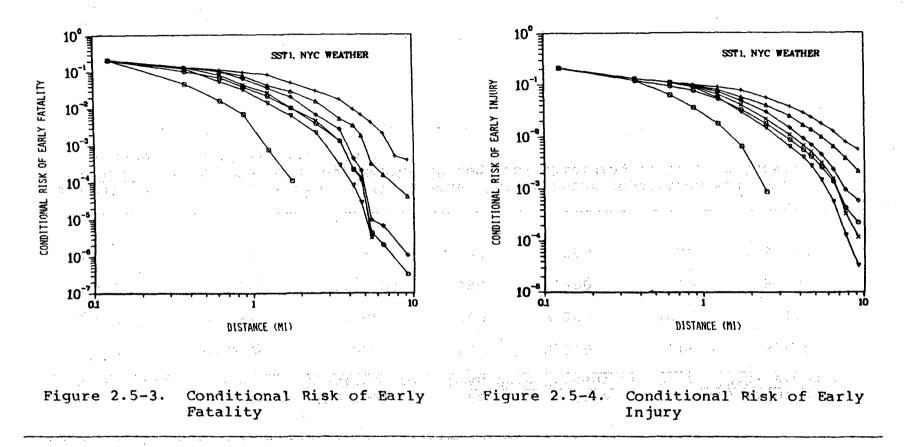
Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City Meteorology.

a. No emergency response.

b. Northeast Regional Shielding Factors.

and wind rose, New York City Me

Not calculated.


d."

c.

Consequence magnitude equalled or exceeded following 1 out of every 100 releases.

Figures 2.5-3 and 2.5-4 present the variation with distance of the risk to an individual of early health effects (death or injury) for seven emergency response scenarios. The figures show that, as distance decreases, the different scenarios predict increasingly similar individual risks (the seven risk curves converge). The curves converge at short distances because many weather sequences result in radiation doses large enough to have fatalities or injuries for each of the seven emergency response scenarios. For example, expeditious evacuation (1 hr delay) is not always adequate because for many weather sequences the radioactive plume reaches people before they begin to evacuate. And sheltering with expeditious relocation is inadequate because for many weather sequences fatal or injury causing doses are still received by sheltered persons even with expeditious relocation. Accordingly, because at short distances each of the seven scenarios fails to provide sufficient protection for a substantial number of weather sequences, at these distances little sensitivity to differences in emergency response is observed. Tn agreement with Table 2.5-6, both figures show that individual risk of early health consequences decreases most rapidly with distance for expeditious evacuation (1 hr delay, 10 mph) or sheltering with expeditious relocation (after 6 hr).

The emergency response submodel in CRAC2 is able to apply one emergency response scenario to an inner region and a second scenario to an outer region. Using this option, the impact of emergency response scenarios, which call for both evacuation and sheltering, and the effect of response beyond 10 miles were briefly examined. Table 2.5-7 presents some evacuation data from Table 2.5-2 and contrasts that data with results obtained for emergency response scenarios which call for evacuation of population within 10 miles and sheltering of population from 10 to 25 miles. The table shows that for Summary Evacuation, increasing the response distance from 10 to 25 miles decreases mean and 99th percentile early injury values by factors of 2 and 3.5, respectively, while mean and 99th percentile early fatality values are somewhat lowered (mean, 198; 99th, 15%). The table also shows (1) that Summary Evacuation to 10 miles in combination with sheltering (relocation after 24 hr) from 10 to 25 miles is as effective as Summary Evacuation to 25 miles; and (2) that in comparison to Summary Evacuation, expeditious evacuation (1 hr delay, 10 mph)

Legend

+ - No evacuation Δ - 5 hr delay, 1 mph, within 10 mi

- \diamond 5 hr delay, 10 mph, within 10 mi \times 3 hr delay, 10 mph, within 10 mi
- o Summary Evacuation, within 10 mi
- ∇ Sheltering within 10 mi, 6 hr relocation
- I 1 hr delay, 10 mph, within 10 mi

Assumptions: 1120 MWe reactor, uniform wind rose, New York City meteorology, results conditional on an SST1 release.

inde ogene på

and the second second

Table 2.5-7. Impact of Emergency Response Beyond 10 Miles on Early Fatalities and Early Injuries. Results are Conditional on an SST1 Release.

	· · · · ·	Sheltering <u>Distance (mi)</u> None None 10 - 25						
Evacuation	Evacuation	Sheltering	Early Fatalities Early Injuries					
Distance (mi)	Delay	Distance (mi)	Mean 9	99th Percentile	Mean	99th Percentile		
0 - 10	Summary	None	830	8,300	36 00	33,000		
0 - 25	Summary	None	700	7,200	1800	9,400		
0 - 10	Summary	10 - 25	690	5,400	1900	8,400		
0 - 10	l hr	10 - 25	40	75 0	750	5,800		
			4			•		

Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City Meteorology, Northeast regional shielding factors, relocation of sheltered individuals after 24 hr.

18.27 A.3.47 A.

to 10 miles combined with the sheltering (relocation after 24 hr) from 10 to 25 miles substantially reduces mean and 99th percentile values for early fatalities (factors of 17 and 7, respectively) and significantly reduces mean and 99th percentile values for early injuries (factors of 2.5 and 1.5, respectively). Further, peak early fatalities (conditional probabilities $\leq 10^{-3}$) are reduced by a factor of almost 10 (peak 15,000 to 1,600). Because of the substantial impact of emergency response beyond 10 miles upon peak early fatalities, it should be noted that most results presented in other sections of this report assume no immediate emergency response beyond 10 miles and consequently may significantly overestimate early fatality peaks.

Finally, Figure 2.5-5 indicates the sensitivity of early fatalities to the range of emergency response scenarios examined. In Figure 2.5-5 the CCDF for Summary Evacuation is the "base case" (see Section 2.2.4) result. The two bounding early fatality CCDFs for no emergency response and for expeditious evacuation to 25 miles show that the emergency response scenario selected has a substantial impact on consequence magnitude.

1976年1月1日,1996年1月1日(1976年1月)(1976年1月)(1976年1月)(1976年1月)

a shekara ta ƙwallon ƙasar ƙwallon ƙwallon ƙ

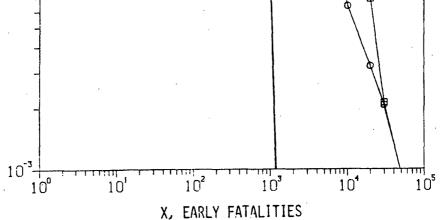


Figure 2.5-5. Impact of Range of Emergency Response Scenarios upon Early Fatalities. Results Conditional upon an SST1 Release

- D No emegency response
 O Summary Evacuation, within 10 mi
- 1 hr delay, 10 mph, within 25 mi

Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City meteorology. 2.6 Distance Dependencies of Reactor Accident Consequences

This section considers distances within which selected consequences might occur, as well as distances within which Protective Action Guides (PAGs) for radiation exposure [32] might be exceeded following a severe reactor accident. The sensitivities of these distances to meteorological conditions at the time of the accident, to differences between meteorological records, to accident severity, and to emergemcy response are examined. Because of the current controversy concerning the magnitudes of source terms for severe accidents (see Section 2.3.2), the impact of source term reductions on distance estimates is also considered.

The consequences that could result from a severe reactor accident include short-term effects such as early fatalities and injuries and long-term effects such as delayed cancer deaths and interdiction of land. Because early consequences would occur only after large, acute doses of radiation, these effects would be limited to areas close to the reactor (a few tens of miles). Population restrictions within these areas could therefore significantly impact the number of early consequences. As a result, estimates of distances to which fatal or injury-causing doses of radiation could be received are of interest for the development of reactor siting criteria. Following a severe reactor accident, contamination could be sufficiently high to require interdiction of property (buildings and land) to substantial distances (several tens of miles). Because interdiction of large areas could be a significant, and possibly dominant, contributor to the offsite costs of a reactor accident, distances to which land might be interdicted could also be an important consideration for the development of siting criteria. Since latent cancers can be induced by small doses of radiation, they can occur at large distances from the reactor. As a result, latent cancers would generally be less affected by population restrictions close to a reactor than would early fatalities or early injuries.

For each sampled meteorological sequence, the CRAC2 code calculates the maximum distances at which selected consequences might occur. These distances will depend on the magnitude and characteristics of the source term as well as plume dispersion and depletion processes. By using the weather sequence sampling technique discussed in Section 2.2.1, the CRAC2 code can generate CCDFs of "maximum" consequence distances for any given source term. These curves illustrate the impact that radionuclide dispersion, which is determined by the weather conditions at the time of the accident, has on distances to which consequences occur.

Figures 2.6-1, 2.6-2, and 2.6-3 show SST1 and SST2 early fatality distance, early injury distance, and interdiction distance^a CCDFs for the 29 meteorological records discussed in Section 2.4. The figures show that for an SST1 release early fatality distances range from 1 to 20 miles, early injury distances from 1 to 80 miles, and interdiction distances from 1 to 100 miles. Thus, for a single event, consequence distances are strongly influenced by the weather at the time of the release. However, the figures also show that for a specific release (e.g., SST1), CCDFs calculated using different meteorological records are quite similar. For example, the 90th percentile values of the 29 early fatality CCDFs calculated assuming an SST1 release range only from 6 to 9 miles.

These results also show that for the SST1 release, early fatalities would be limited to about 20 miles, injuries to about 50 miles, and land interdiction to about 100 miles. For the SST2 release, early fatalities would generally be limited to about 2 miles, injuries to about 8 miles, and land interdiction to about 10 miles. For each set of CCDFs, the variation in the peaks, and probabilities of the peaks, is principally due to a combination of (1) the order of magnitude variation in rain frequencies for the 29 meteorological records and (2) errors inherent in the weather sequence sampling procedure (see Section 2.4).

men a grade a conserv

 Fatality and injury distances are defined to be distances within which individuals are at risk of being an early fatality or injury given the assumed release (SST1 or SST2). The interdiction distance is defined to be the distance within which land would be interdicted following the assumed release. The SST3 release is not large enough to cause early fatalities, early injuries, or interdiction of land offsite.

1

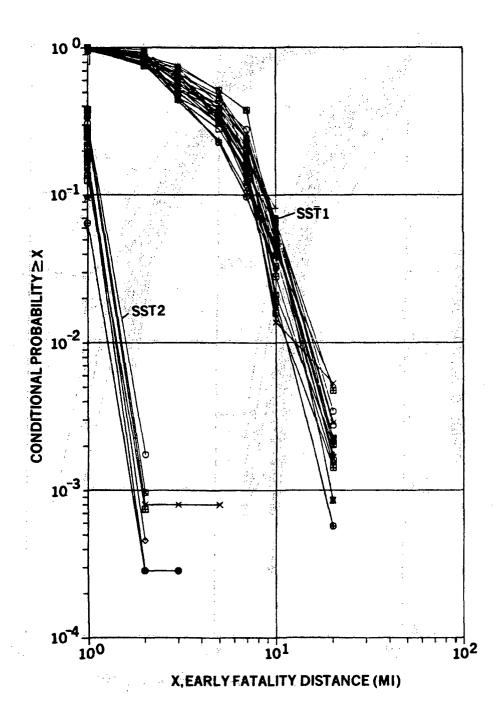


Figure 2.6-1.

Conditional CCDFs of Early Fatality Distance for 29 Meteorological Records Calculated Assuming SST1 and SST2 Releases from an 1120 MWe PWR and No Emergency Response.

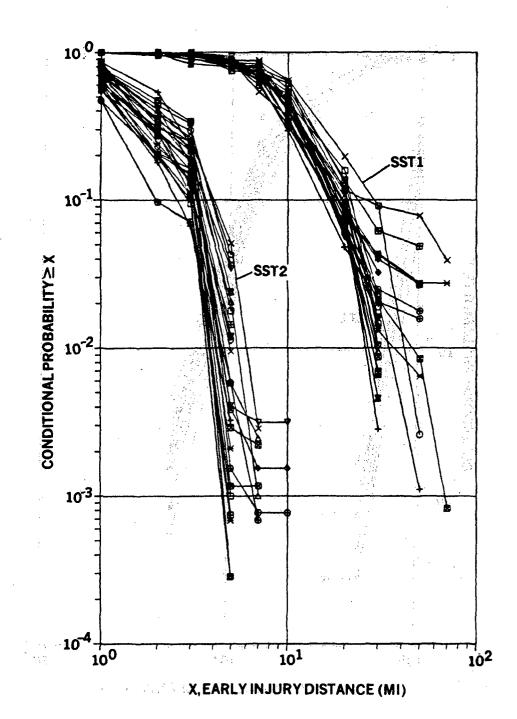
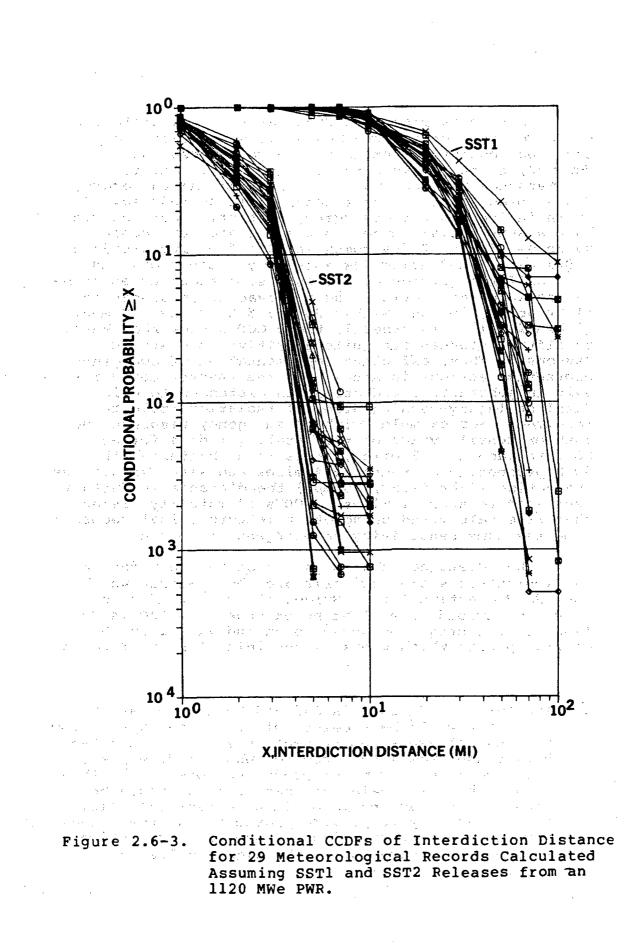



Figure 2.6-2. Conditional CCDFs of Early Injury Distance for 29 Meteorological Records Calculated Assuming SST1 and SST2 Releases from an 1120 MWe PWR and No Emergency Response.

 \mathbb{S}^{2}

The results presented thus far show the distances to which fatal or injury-causing doses of radiation could be received assuming no emergency response. However, given a severe reactor accident, some type of emergency response would be expected and therefore, acute doses close to the reactor could be reduced. As shown in Section 2.5, emergency protective actions can have a substantial impact on reactor accident consequences. Figure 2.6-4 compares SST1 fatality distance CCDFs calculated using New York City meteorology and four different emergency response scenarios: no emergency response, sheltering, and two evacuation scenarios (1 hr delay, 10 mph, within 25 mi; 5 hr delay, 10 mph, within 25 mi). In general, these CCDFs show that early fatality distances are quite sensitive to emergency response. Thus, effective implementation of emergency protective actions in areas near the reactor could result in substantial reductions in distances to which fatal or injury-causing doses of radiation could be received. For example, with no emergency response the 90th precentile value of the fatality radius for an SST1 release is $\gtrsim 8$ miles, while with sheltering the 90th percentile distance is 4 miles and with expeditious evacuation (1 hr delay, 10 mph) the distance is further decreased to about 2 miles. CCDFs of fatality distance that were calculated using other meteorological records show the same sensitivity to emergency response.

Other distances that might be of interest for the development of siting criteria are those within which the EPA Protective Action Guides (PAGs) [32] for whole body and thyroid dose might be exceeded. A PAG is defined as the projected dose^a to an individual in the general public which warrants the initation of emergency

a. The "projected dose" is defined by the EPA as the dose that would be received within a few days following the release if no protective actions are taken.
PAGs range from 1 to 5 rem for whole body exposure and from 5 to 25 rem for projected dose to the thyroid. The lower value of these ranges should be used if there are no major local constraints limiting the ability to provide protection at that level. However, when determining the need for protective action, in no case should the higher value be

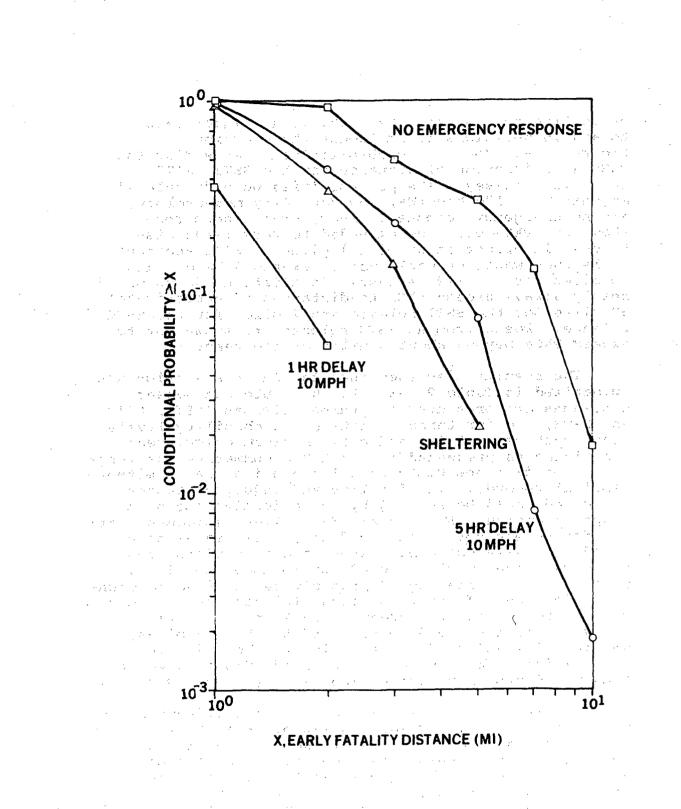


Figure 2.6-4.

Sensitivity of SST1 Early Fatality Distances to Emergency Response. <u>Assumptions:</u> New York City meteorology, 1120 MWe PWR, and 25 Mile Response Radius.

protective actions and, as such, is a trigger value to aid in decisions to implement these actions. Figure 2.6-5 shows the probabilities of exceeding the PAGs as a function of distance for the SST1, SST2, and SST3 releases. The probabilities were calculated assuming an 1120 MWe PWR, New York City meteorology, and no emergency response. In general, these results show that PAGs could be exceeded to very large distances (in excess of 50 miles) given an SSTI accident while they would probably not be exceeded beyond about 30 miles for an SST2 release. In addition, doses would nearly always exceed PAGs tc distances of approximately 30 miles for the SST1 release and 2 miles for the SST2 release. Doses from an SST3 release are shown not to exceed PAGs beyond about 3 miles of the reactor.

States and the second s

The results discussed thus far in this section are summarized in Table 2.6-1. In the table consequence distances are presented for three releases (SST1, SST2, and SST3) and for three conditional probability levels: mean, 99th percentile, and peak (maximum calculated). The distances presented in the table summarize the large number of distance CCDFs calculated using the 29 meteorological records. The fatality and injury distances presented could be reduced by any effective emergency response action. In general, Table 2.6-1 suggests that: (1) for severe core melt accidents, early fatalities would generally not occur beyond about 15 miles, and in the worst case, would be confined to about 25 miles, while early injuries would probably be confined to downwind distances of about 50 miles; (2) for smaller core melt accidents (on the order of SST2 in severity), early fatalities would be confined to about 2 miles, and injuries and land interdiction to about 7 miles; and (3) for accidents on the order of SST3 in severity, PAGs would probably not be exceeded beyond a few miles.

As discussed earlier, latent somatic effects could result from relatively small doses of radiation. Therefore, given a reactor accident, these consequences could occur at large downwind distances from the reactor. Figure 2.6-6 shows the cumulative fraction of latent cancer fatalities versus distance for the SST1, SST2, and SST3 releases. These curves were calculated assuming an 1120 MWe PWR, New York City meteorology, and a one mile per hour evacuation to ten miles after a five hour delay. In general, the results show that significant fractions of latent health effects could occur at large distances from the reactor. For the uniform

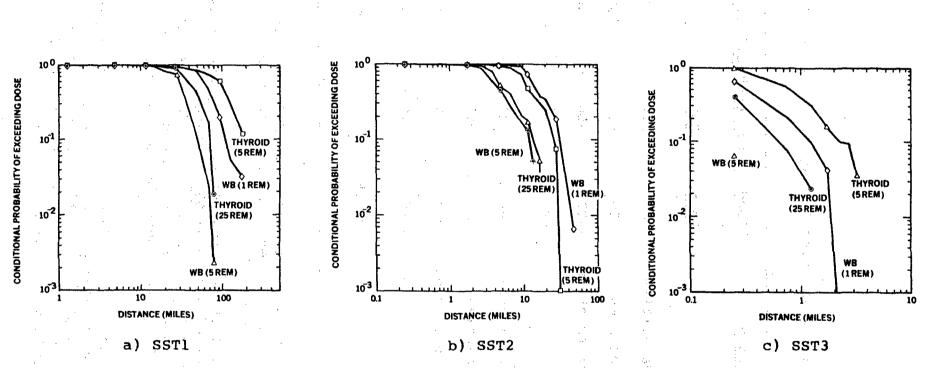
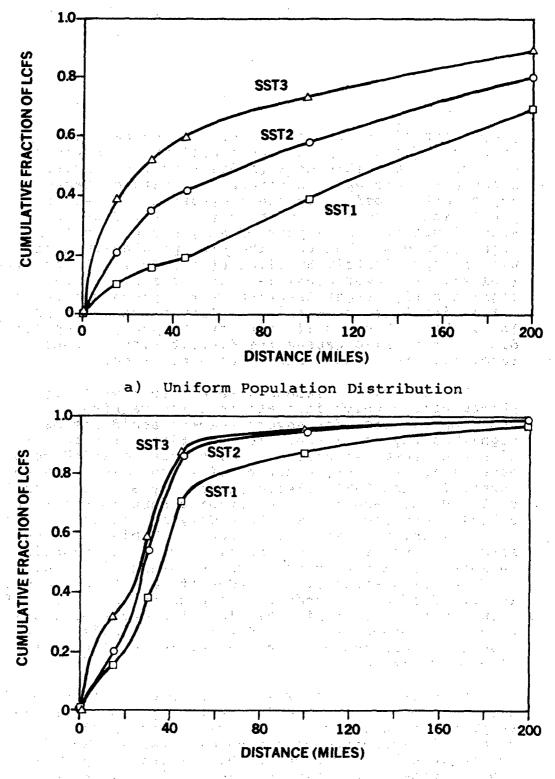


Figure 2.6-5.


Conditional Probability of Exceeding PAGs Versus Distance for SST1, SST2, and SST3 Source Terms. <u>Assumptions</u>: 1120 MWe PWR, New York City meteorology, and no emergency response.

Scurce	Consequence	<u>Conditi</u>	onal Prob	ability Level
<u>Term</u>		Mean	<u>99</u> %	<u>Calc Max</u>
SSTl	Early Fatalities	< 5	≤15	< 25
	Early Injuries	~10	~30	≳50
	Land Interdiction	~20	>50	>50
	PACS ^C	≳50	>50	> 50
SST2	Early Fatalities	~0.5	<2	≲2
	Early Injuries	< 2	< 5	~ 5
	Land Interdiction	< 2	~7	~10
	PAGS ^C	≲20	~20	< 50
SST3	PAGS ^C	≈0.5	< 2	< 3

Table 2.6-1. Summary of Consequence Distances^a (miles)

a. These distances are for a 1120 MWe PWR which is comparable in size to many of the most recently sited nuclear reactors.

- b. <u>Mean</u> distances are the average of the probability distributions of distance; <u>99%</u> distances refer to those beyond which a consequence or dose is calculated to occur in 1 in 100 accidents; and the <u>calculated maxima</u> represent the largest distances calculated.
- c. A PAG is defined as the "projected" dose to an individual in the general public which warrants the initiation of emergency protective actions. PAGs range from 1 to 5 rem for whole body exposure and from 5 to 25 rem for projected dose to the thyroid.

b) Indian Point Population Distribution

Figure 2.6-6. Cumulative Fraction of Latent Cancer Fatalities as a Function of Distance from the Reactor a) for a Uniform Population Distribution and b) for the Indian Point Population Distribution.

Assumptions: 1120 MWe PWR, New York City meteorology, and a slow evacuation (5 hr delay, 1 mph, 10 mi response distance).

population distribution, the calculated cancer fatalities are shown to be somewhat uniformly distributed with distance. This uniform distribution results because the decrease in cancer risk with distance is approximately offset by the increase in the exposed The results shown for the Indian Point population. site illustrate the impact of a highly non-uniform population distribution. The high population densities within approximately 50 miles of the Indian Point site (relative to lower densities further away) cause a significantly larger fraction of the predicted cancer fatalities to occur within 50 miles of the reactor. Thus, the high non-uniformity of the exposed population distribution also causes the distribution of cancer fatalities to be non-uniform with distance.

Section 2.3.2 discussed recent reviews of accident phenomenology which indicate that the magnitudes of current source terms for severe reactor accidents may be significantly too large. To investigate the impact of source term reductions on distances to which consequences might occur, a series of calculations was performed for the SST1 release reduced by arbitrary factors of 2, 10, 20, and 100. Important assumptions for the calculations included New York City meteorology, an 1120 MWe PWR, and no emergency response. Table 2.6-2 summarizes the results and in general shows that reductions in severe accident source terms substantially reduce consequence distances. An order of magnitude reduction in the SSTI release reduced the peak fatal distance from about 20 miles to 5 miles while a two-order of magnitude reduction reduced the peak distance to 1 mile. Similar reductions are shown for early injury and land interdiction distances.

This section has examined the impact of meteorological conditions, accident severity, and emergency response on consequence distances. Four factors, that also could influence consequence distances, are discussed in other sections of this report. They are reactor size (i.e., size of radionuclide inventory, see Section 2.7.1), plume heat content (determines plume rise, see Section 2.7.2), dry deposition velocity (see Section 2.7.3) and interdiction criteria (see Section 2.7.5).

2-64

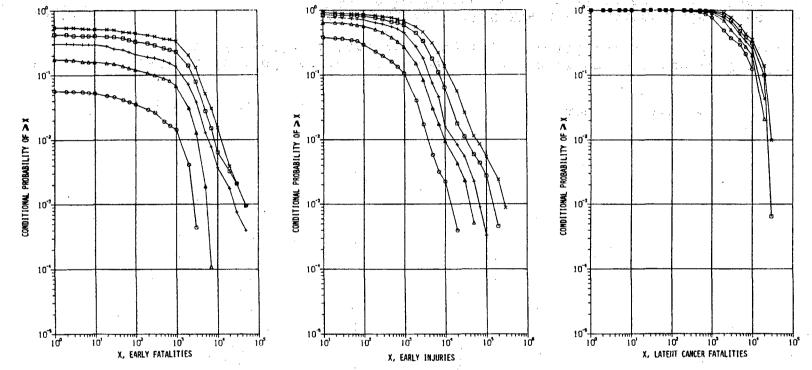
Table 2.6-2. Sensitivity of Fatal, Injury, and Interdiction Distances to Release Magnitude^a

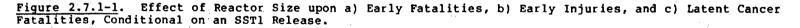
Source	Fatal Distance (mi)			Injury Dista	nce (mi)	Interdict	Interdiction Distance (mi		
Term	Mean	998 ^b	Peak ^b		· · · · · · · · · · · · · · · · · · ·		· · · · ·	Peak ^b	
SST1	3.9	12	18	11 35	50	19	55	85	
1/2 SST1 ^C	2.5	10	18	7.0 20	25	14	45	50	
1/10 SST1 ^C	0.9	2.2	5.0	2.8 10	18	5.5	18	25	
1/20 SST1 ^C	0.5	2.0	2.0	1.9 7.0	10	3.6	12	18	
1/100 SST1 ^C	0	1.0	1.0	0.9 4.0	5.0	1.1	10	10	

- a. Assumptions: New York City meteorology, 1120 MWe PWR, and no emergency response.
- b. The 99 percent distances refer are the distances beyond which a consequence is calculated to occur in only 1 in 100 accidents. The peak result is that obtained for the most unfavorable weather sequence sampled.
- c. Release fractions reduced for all isotopes except noble gases.

2.7 Other Sensitivity Calculations

2.7.1 Reactor Size


All of the calculations presented in previous sections of this report assume an 1120 MWe reactor. This reactor size was selected because many reactors currently operating and most under construction are about this size. Because consequences depend strongly on the amount of radioactivity released (see Section 2.3, Accident Source Terms), which in turn is dependent on reactor size, the sensitivity of consequences to reactor size was examined. Calculations were performed for nine reactor sizes ranging from 11.2 to 1500 MWe. All calculations assumed a 1120 MWe core radionuclide inventory scaled according to reactor size, an SST1 release, New York City meteorology, and the Indian Point population distribution and wind rose. The linear scaling procedure used is described in Appendix B, Core Radionuclide Inventories, which also discusses inventory changes due to annual operating cycle and differences between PWR and BWR inventories.


Figures 2.7.1-1 and 2.7.1-2 present conditional CCDFs of early fatalities, early injuries, latent cancer fatalities, interdiction distance, and interdicted land area for five of the nine reactor sizes examined, assuming Summary Evacuation. Table 2.7.1-1 presents the mean and 99th percentile values of these distributions. The effects of emergency response and reactor size on mean early fatalities are presented in Table 2.7.1-2. Finally, Figure 2.7.1-3 presents plots of the mean values presented in each table versus reactor size.

.

Several conclusions can be drawn from these results. First, Figure 2.7.1-3 shows that mean values of all five consequences increase roughly linearly with reactor size. The rates of increase are largest for early fatalities and smallest for interdiction distance. Table 2.7.1-1 shows that mean values increase more rapidly than 99th percentile values. The mean early fatality results presented in Table 2.7.1-2 clearly display the significant impact of emergency response, seen previously (see Section 2.5). For an 1120 MWe reactor, No Evacuation yields a mean result of almost 3600 early fatalities, while Best Evacuation (1 hr delay, 10 mph, 10 mi response region) decreases this number to less than 300. Figure 2.7.1-3a shows that for an emergency response of a given effectiveness, there is a reactor size (x-axis

Legend

Assumptions: 1120 MWe core radionuclide inventory scaled to reactor size, SST1 release, New York City Meteorology, Indian Point wind rose and population, Summary Evacuation.

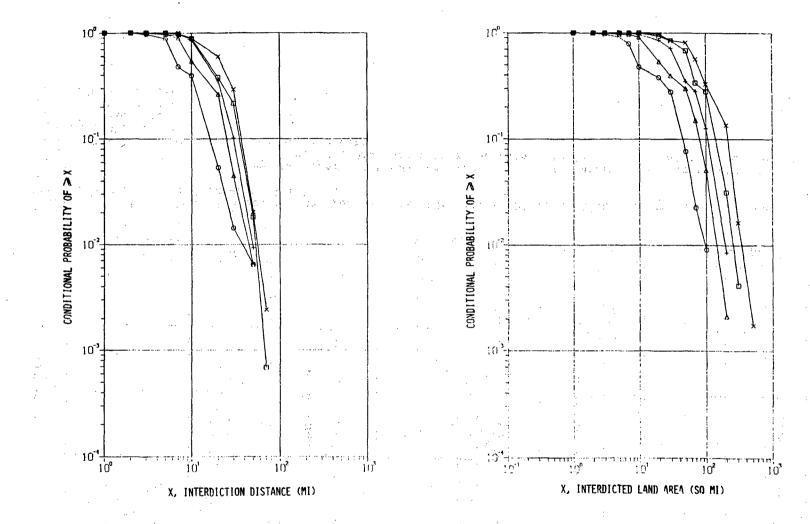


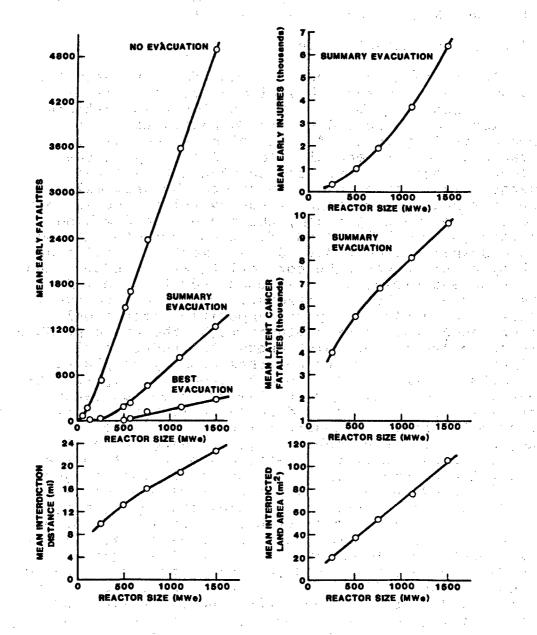
Figure 2.7.1-2. Effect of Reactor size upon a) Interdiction Distance (mi) and b) Interdicted Land Area (sq mi), Conditional on an SST1 Release.

Legend

x = 1500 MWe reactor $\Box = 1120$ Mwe reactor+ = 750 MWe reactor $\Delta = 500$ MWe reactoro = 250 Mwe reactor

Assumptions: 1120 MWe core radionuclide inventory scaled to reactor size, SST1 release, New York City meteorology, Indian Point wind rose and population, Summary Evacuation.

Reactor Size (MWe)	Early	Fatalities	Early	Injuries		t Cancer Lities	Interdi Distance		Interd Land (sq	Area
· · ·	Mean	<u>99th</u>	Mean	99th	Mean	99th	Mean	99th	Mean	<u>99th</u>
250	34	1,200	323	3,800	3970	10,000	9.7	38	20.8	97
500	172	3,200	1020	9 , 700.	5560	20,000	13.1	45	37.2	120
750	455	5,900	1880	16,000	6710	20,000	16.0	49	53.7	190
1120	831	8,200	3640	33,000	8110	24,000	19.3	54	75.8	250
1500	1250	12,000	6340	57,000	9600	30,000	22.8	56	106	340


Table 2.7.1-2 Dependence of Mean Early Fatalities Upon Reactor Size and Evacuation Scenario, Conditional on an SST1 Release^a

> an Da Na Sa

·.,

9	Evacuation Scenario		
Reactor Size (MWe)	Best Evacuation ^b	Summary Evacuation	No Evacuation
11.2 ^c 56 ^c		0.3	1.
112 ^c	0 1	9	147
250	0.01	34	551
500	6	172	1490
560 ^C 750	17 m 41 102 m 41 102 m 41	224 455	1700 2380
1120	176	831	3580
1500	287	1250	4880

- a. 1120 MWe core raduinuclide inventory scaled according to reactor size, SST1 release, New York City meteorology, Indian Point population and wind rose.
- b. 1 hour delay, 10 mph, 10 mi response region (see Section 2.5).
- c. Noble gas release fractions not scaled; this has no significant impact on early fatalities (see Section 2.3, Accident Source Terms).

e S

> Figure 2.7.1-3. Plots of Mean Values of a) Early Fatalities, b) Early injuries, c) Latent Cancer Fatalities, d) Interdiction Distance (mi), and e) Interdicted Land Area (sq mi) vs Reactor Size, Conditional on an SST1 Release.

Assumptions: 1120 Mwe core radionuclide inventory scaled to reactor size, SST1 release, New York City meteorology, Indian Point population and wind rose. intercept) for which on the average (mean result) few early fatalities would be expected. For Best Evacuation that size is ~ 500 MWe; for Summary Evacuation, ~ 100 MWe; and for no evacuation, ~ 10 MWe.

2.7.2 Energy Release Rate

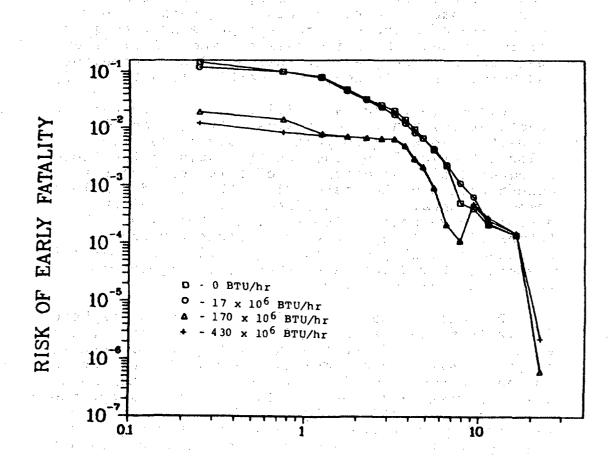
The calculations considered so far have been for ground-level releases containing no sensible heat, i.e., nonbuoyant plumes. In an accident where there is a large uncontrolled release directly to the atmosphere, it is possible for the plume to contain a sizable amount of sensible heat. For example, the release categories described in WASH-1400 [1] had energy release rates of up to several hundred million BTUs per hour.^a The rate of energy release determines the final plume height and, therefore, the downwind distance at which the plume first contacts the ground (touchdown). Since under the same weather conditions a buoyant plume would be more dilute at touchdown than a nonbuoyant plume, a significant reduction in the number of early health effects is possible. However, since plume depletion by dry deposition occurs only after touchdown, buoyant plumes might therefore produce ground concentrations high enough to produce early effects at greater distances than nonbuoyant plumes. Furthermore, for highly buoyant plumes, precipitationwashout is the primary mechanism by which radioactive material reaches the ground in sufficient concentrations to cause early health effects. Thus, for a buoyant release the probability of having any early fatalities and injuries is strongly dependent on the occurrence of precipitation. The final plume height. is calculated in CRAC2 using the formulae developed by Briggs [33] for emissions from smokestacks. Considerable differences could exist between smokestack plumes and plumes released in a reactor accident [34]. These differences have been investigated by Russo, Wayland, and Ritchie [35] who found that predicted consequences were only marginally sensitive to the moisture content of the plume and atmosphere but, under certain conditions, consequences could be guite sensitive to radioactive heating and initial plume momentum.

For the present study, the sensitivity of predicted consequences to energy release rate was investigated

a. In WASH-1400, an energy release rate of 170 x 10^6 BTU/hr was assumed for a PWR-2 accident.

by performing calculations for an SST1 release with three arbitrary energy release rates: 17, 170, and 430 million BTU/hour. New York City meteorology and a uniform population density of 50 people per square mile beyond 1 mile were assumed. Table 2.7.2-1 compares selected results for these energy release rates with a cold (no sensible heat) SST1 release (the base case, see Section 2.2.4).

Table 2.7.2-1. Sensitivity of Estimated Consequences to Energy Release Rate^a


<u>Release</u>	SST1	SST1	SST1	SST1
Energy Release Rate (BTU/hr)		17x10 ⁶	170x10 ⁶	430x10 ⁶
Mean Early Fatalities			na an thair 10 Béan an	
Summary Evacuation No Evacuation	22 140	12 140	9 47	10 47
Mean Early Injuries			· · · · · · · · · · · · · · · · · · ·	· · · ·
Summary Evacuation No Evacuation	140 350	180 390	110 270	85 150
Mean Latent Cancer Fatalities	730	790	830	860
Maximum Calculated Fatal Distance (mi)	17.5	17.5	25	25
Maximum Calculated Injury Distance (mi)	50	50	50	60
Maximum Calculated Land Interdiction Distance (85	85	85

a. <u>Assumptions</u>: New York City meteorology, uniform population of 50 people per square mile beyond 1 mile. The results for the low-energy release (17 x 10⁶ BTU/hr) differ only slightly from those for the cold release, because this release rate is not large enough to cause substantial differences in the plume touchdown point. The two high-energy release rates result in consequences markedly different from the cold release. Because the occurrence of precipitation is necessary to cause significant numbers of early health effects for hot releases, the mean number of early effects is lower for the high-energy releases.

At very large distances, the amount of initial plume-rise does not significantly affect the transport and deposition of radioactive material. Consequently, latent cancer fatalities, which occur to great distances (see Section 2.6), are not significantly affected by plume buoyancy. The maximum observed fatal distance is 8 miles farther for the high-energy releases, although the maximum calculated injury distance is only slightly increased and interdicted land distance is unaffected. Neither land interdicted rate because these consequences also occur to distances where initial plume rise is generally not important.

Figure 2.7.2-1 plots the conditional individual risk of early fatality versus distance for the four energy release rates, assuming a uniform wind rose. Within 10 miles, the hot releases have lower risks than the cold releases. However, for low probability events (i.e., precipitation), the hot releases could result in fatalities out to 25 miles. The non-monotonicity in the risk at about 8 miles for the two hot releases (170 x 10^6 and 430 x 10^6 BTU/hr) is believed to be an artifact of the weather-sequence sampling procedure used (see Section 2.4.1).

In summary, for an SST1 release the estimated numbers of early fatalities and injuries and the distance to which early fatalities occur are both quite sensitive to the energy release rate. However, consequences which can occur to great distances, such as latent cancer fatalities, are not sensitive to energy release rate. The maximum <u>distances</u>, to which early injuries may occur or land may be interdicted, are also not sensitive to energy release rate. A <u>cautionary note</u>: these conclusions may not hold for source terms significantly smaller than SST1.

DISTANCE (MILES)

Figure 2.7.2-1.

Individual Risk of Early Fatality Versus Distance for 4 Energy Release Rates, Conditional on an SST1 Release. Assumptions: SST1 release, New York City meteorology, uniform wind rose, no emergency response.

2.7.3 Dry Deposition Velocity

The deposition of radioactive material on the ground is the first step in many of the pathways by which radioactive material can reach people. Dry deposition of airborne material onto a surface is a complex process which includes a number of different phenomena such as gravitational settling, turbulent and molecular diffusion, and inertial impaction [36].

Hosker [37] and Kaul [38] have reviewed current models of dry removal processes. All current drydeposition models incorporate a "dry-deposition velocity" which is defined as the ratio of the timeintegrated air concentration of a material to the concentration of the material on the ground. A large number of parameters can affect the value of the deposition velocity. About 80 have been listed by Sehmel [39]. Among these are surface roughness, relative humidity, chemical composition, and particle diameter. Dry deposition velocity is highly sensitive to particle diameter [39].

Radioactive material released to the atmosphere is likely to have a range of particle diameters, each with a different deposition velocity. Despite this, in CRAC2 only a single deposition velocity may be input for each element considered, and generally the same value (1 cm/sec) is used for all elements except noble gases (the deposition velocity of noble gases is zero). All CRAC2 calculations presented in other sections of this report treat deposition velocity in this manner.

As discussed in Section 2.2.3, there are large uncertainties about the characteristics of the radioactive aerosol released from containment. Because predicted ground concentrations can be very sensitive to deposition velocity, a sensitivity analysis was performed to assess the impact of dry deposition velocity on predicted consequences. The analysis was somewhat simplistic in that only a single deposition velocity was used. Thus, no attempt was made to account for a range of particle sizes by use of a distribution of deposition velocities. Also neglected were effects of chemical composition and the possibility that different elements may be associated with particles of different Gravitational settling of particles, which can sizes. 👘 be treated by "tilted plume" models [40] was also ignored (gravitational settling would be the dominant

contributor to dry removal for particle diameters greater than about 5 microns).

4 M. + 7 M.

Calculations were performed for an SST1 release with five deposition velocities: 0.1, 0.3, 1.0, 3.0, and 10.0 cm/sec.^a These values are believed to span the range of possible deposition velocities. Only nonbuoyant releases were considered. For buoyant releases, early consequences are dominated by the occurrence of precipitation; therefore, the variation of consequences with dry deposition velocity could be substantially smaller for buoyant releases (see Section 2.7.2). Other assumptions included Summary Evacuation, an 1120 MWe reactor, the Indian Point population distribution and wind rose, and New York City meteorology. Different population distributions and emergency response assumptions could impact the observed variation of early consequences with deposition velocity (see Sections 2.4 and 2.5).

Figure 2.7.3-1 presents the early fatality CCDFs for the set of deposition velocities examined. Except for the low-probabililty, high-consequence events, there are only very minor differences. Mean numbers of early fatalities vary by less than a factor of 1.5. Deposition velocities of 0.1, 0.3, and 1.0 cm/sec yield the highest consequence events (over 50,000 fatalities) from weather sequences with precipitation beginning between 10 and 20 miles from the reactor. With either a 3 or 10 cm/sec deposition velocity, the particulate matter in the plume is sufficiently depleted before this distance range is reached and, thus, rain does not produce a ground concentration in this interval high enough to cause significant numbers of early fatalities.

Figure 2.7.3-2 shows the conditional individual risk of early fatality versus distance within 10 miles of the reactor. Larger values of deposition velocity result in slightly greater individual risk within 2 miles of the reactor but a much reduced risk farther out. Table 2.7.3-1 lists the means, 90th and 99th percentiles, and maxima of the CCDFs of early fatality distance, early injury distance, and interdicted land

 a. In all calculations a single deposition velocity was used for all elements except noble gases. The deposition velocity of the noble gases was assumed to be zero.

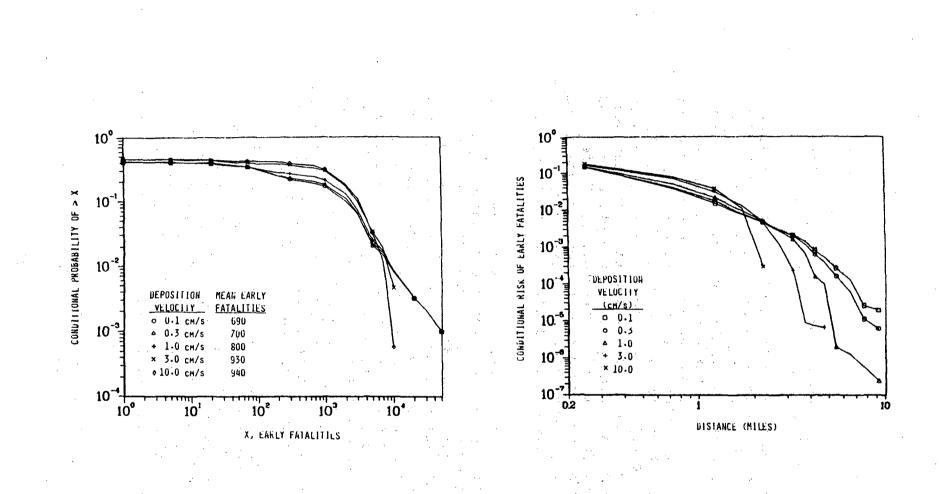


Figure 2.7.3-1. Early Fatality CCDFs for Five Different Deposition Velocities (for particulate matter only), Conditional on an SST1 Release. Figure 2.7.3-2. Individual Risk of Early Fatality vs Distance for 5 Deposition Velocities, Conditional on an SST1 Release

ð

Assumptions: 1120 MWe reactor, SST1 release, Indian Point wind rose and population, New York City meteorology, Summary Evacuation.

Early Fatality Distar			Distance	Early Injury Distance			istance_	Land Interdiction Distance			
Dry- eposition Velocity (cm/sec)	Mean	90%	998	Maximum Calcu- lated	Mean	90%	998	Maximum Calcu- lated	Mean	908 991	Maximum Calcu- a lated
0.1	2.1	4	15	25	7.2	15	55	65	11	30 60	100
0.3	1.9	4	15	25	7.1	20	40	50	16	40 65	85
1.0	1.7	4	12	18	8.3	25	35	50	19	40 60	85
3.0	1.6	3	4	18	6.6	12	23	25	20	25 40	45
10	1.4	3	3	3	3.5	6	15	18	13	22 23	25

Table 2.7.3-1 Sensitivity of the Distances (miles) to which Consequences Occur for Various Deposition Velocities.

an an the children in the second s Second second

Evacuation within 10 miles.

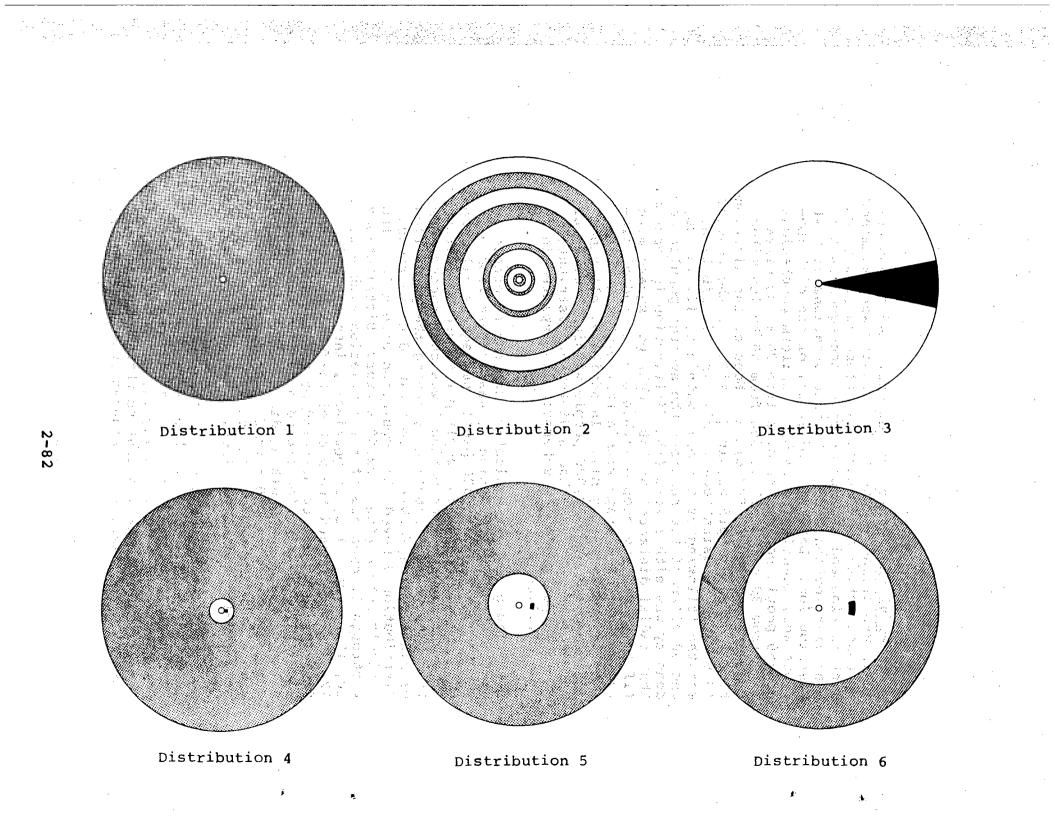
N

distance (see Section 2.6). The mean distances for each consequence are only marginally sensitive to deposition velocity. However, the tail of the distributions (99th percentile and maximum calculated) are very sensitive to deposition velocity. As the deposition velocity increases, there is a large reduction in the 99th percentile and maximum calculated distances. Again, the tails of each distribution result from sequences with precipitation beginning some distance from the reactor. Deposition velocities above about 3 cm/sec deplete the plume closer to the reactor, and thus the distance to which precipitation can produce significant ground concentrations is much reduced.

Despite the narrow scope of this sensitivity analysis (only the deposition velocity has been studied rather than trying to account for the more realistic condition of a distribution of deposition velocities), the following conclusions can be drawn:

- o For a single deposition velocity applicable to all particulate matter, the maximum distance to which land is interdicted and early fatalities and injuries occur is very sensitive to deposition velocity. These maximum distances occur for low-probability, worst-case weather conditions.
- o For the population distribution and emergency response scenario assumed (Summary Evacuation), the mean number of early fatalities is only moderately sensitive to deposition velocity and thus may be largely insensitive to the particlesize distribution of the released material.

2.7.4 Population Distribution


Results presented in Section 2.4, Site Meteorology and Population, showed that early fatalities and early injuries are strongly sensitive to the characteristics of the surrounding population distribution. Three sets of calculations were performed to better define the sensitivity of early fatalities and injuries to the following features of population distributions: (1) radial and angular variations in population density, (2) the size and distance of population centers, and (3) exclusion zone size.

Radial and Angular Variations. Radial and angular variations in population density were examined by constructing a hypothetical reference population distribution and then calculating consequences for that distribution and eight transformations of that distribution. Beyond 20 miles all of the distributions were identical. Each had uniform populations of 750 people per square mile from 20 to 30 miles, 2500 from 30 to 50 miles, 500 from 50 to 100 miles, and 300 from 100 to 500 miles. None of the distributions had any people within 0.5 miles of the reactor (0.5 mile Exclusion Zone). All nine distributions met the following criterion: within 5, 10, 15, 20, and 30 miles of the reactor, the average population density was either zero (the distribution is empty to that radial distance) or 750 people per square mile (if there are any people within a given radial distance, then on average within that distance there are 750 people per sq mi). In addition, all nine distributions had 939,000 people within 20 miles of the reactor, but each had a different distribution of those people, as is schematically depicted in (Figure 2.7.4-1.

如此,此此就是是一些有些不能是不能是不能是不能是一些不能是是一些不能是是是是一些的。""你们就是是一些不能能是不是一个人,你们就是一个人,你们就是一个人,你们就是 我们就是是一个人,就是一些我们不是一个人,就是一个人们就是一个人们就是是一些人们就是是一个人们的,我们就是一个人们的人们。"

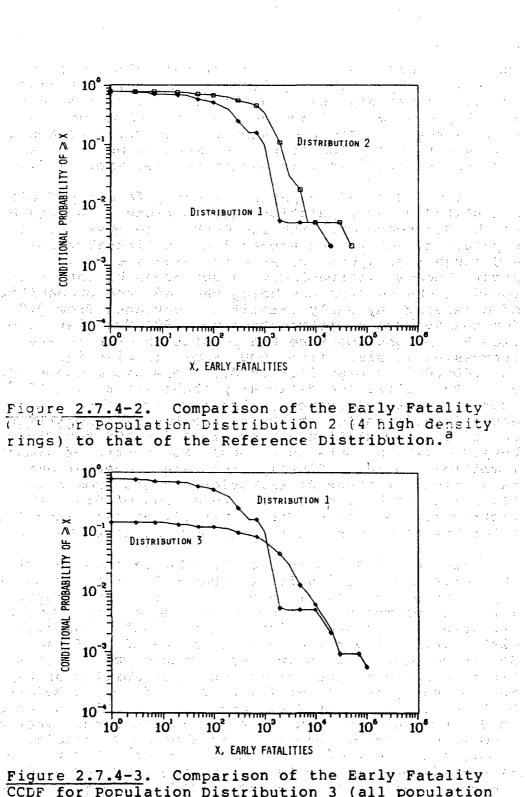
Figure 2.7.4-1 indicates that the reference distribution (Distribution 1) was uniform from 0.5 to 20 miles. It had 530 people per square mile from 0.5 to 2 miles and 750 people per square mile from 2 to 20 miles. Distribution 2 was constructed from the reference distribution by moving the population within 20 miles forward into 5 high density rings. Distribution 3 moved the population within 20 miles entirely into a single 22.5° sector. Distributions 4 through 8 moved all of the population within 2, 5, 10, 15, or 20 miles, respectively, into a single 22.5° sector toward the back of the vacated region. Distribution 9 was constructed by scaling the actual population distribution around a New England reactor site, so that the resulting distribution had 530 people per square mile from 0.5 to 2 miles and 750 people per square mile in each of four distance intervals: 2-5, 5-10, 10-15, and 15-20 miles.

The transformations used to generate Distributions 4 through 8 in effect created population centers by vacating 15 of the 16 sectors of the reference distribution out to 2, 5, 10, 15, or 20 miles, respectively. The population centers thereby created had the following sizes and distances from the reactor:

Distribution 9 2-83 Distribution 8 Distribution 7

Figure 2.7.4-1. Schematic Representations of the Nine Hypothetical Population Distributions Used to Examine the Impact on Consequences of Radial and Angular Variations in Population Density.

1)	Distribution	1 (R	eferen	ce Distri	ibution):	uniform t	to 20 m	ni.			
2)	Distribution	2: •	4 high	density	population	n rings.				· · · · · · · · · · · · · · · · · · ·	
3)	Distribution	3:	all po	pulation	in 1 secto	or.	이 가지 않는 것 : : : : : : : : : : : : : : : : : : :				
4) -	Distribution	4:	city a	t 1.0 mj	i, uniform	beyond 2	2 mi.			· · · · ·	
5)	Distribution	5:	city a	t 3.0 m	i, uniform	beyond 5	5 mi.				
6)	Distribution	6:	city a	t 6.8 mi	l, uniform	beyond 10) mi.				
	Distribution										
	Distribution										
9)	Distribution	9: 3	real d	istributi	ion scaled	to match	the de	ensities	of Dis	tributior	11.


والمتحافظ وبداوي ويربع والمحافظ والمحافظ والمحافظ والمحافظ	بر این	an a
Distribution	City Size	City Distance (mi)
4	6,300	1
5	55,800	3
6	232,000	6.75
7	527,000	12.5
8	940,000	16.25

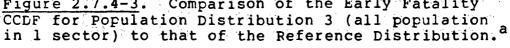

For each of the nine population distributions, early fatality and early injury CCDFs were calculated assuming an SST1 release from an 1120 MWe reactor, Summary Evacuation, New York City meteorology, and a uniform wind rose. The early fatality CCDFs are presented in Figures 2.7.4-2 through 2.7.4-5. For each early fatality and early injury CCDF, mean (expected) and 99th percentile (consequence magnitude equalled or exceeded following 1 out of every 100 releases) values and the probability of having at least one early fatality or injury are presented in Table 2.7.4-1.

Figure 2.7.4-2 compares the second population distribution to the Reference Distribution. Moving population forward into five high-density rings (densities of 2700, 7000, 5100, 1700, 1600, respectively) increases the number of early fatalities calculated at each probability level (the reference CCDF is shifted toward higher consequences).

Figure 2.7.4-3 compares the third population distribution to the Reference Distribution. Moving all of the population into 1 sector (vacating 15 sectors out to 20 miles) reduces the likelihood of having any early fatalities (the CCDF shifts downward) but increases the number observed, whenever fatalities do occur (the CCDF shifts to the right).

The CCDF shifts downward because, with 15 sectors vacant to 20 miles, many plumes do not intersect any population before plume concentrations fall below fatality dose thresholds. Therefore, the probability of having at least 1 early fatality is substantially decreased. If plumes were always exactly 1 sector wide, then the probability of having at least 1 early fatality would decrease by a factor of exactly 16. Because plume meander frequently causes plumes to be much wider

a. Assumptions: 1120 MWe reactor, SST1 release, New York City meteorology, uniform wind rose, Summary Evacuation.

than 1 sector, the probability of observing at least 1 early fatality actually decreases by only a factor of ~ 6 . Conversely, because all of the people out to 20 miles are now in 1 sector, when the plume goes out that sector, consequence magnitudes increase by about the same factor. Therefore, the mean (expected) result (400 early fatalities) is unchanged (see Table 2.7.4-1).

Figure 2.7.4-4 compares the early fatality CCDFs calculated using population distributions 4 through 8 to the Reference Distribution CCDF. The presence of population centers and vacant land in Distributions 4 through 8 produces two effects which are related. First, because increasingly larger areas of land surrounding the reactor are being vacated, the probability of observing any early fatalities decreases from 0.8 for the Reference Distribution to 0.001 for Distribution 8. Second, because the population centers are increasing in size (from 6000 people in Distribution 4 to 1,000,000 in Distribution 8), the maximum number of early fatalities (conditional probabilities of $\lesssim 10^{-3}$, caused by adverse weather) also increases from 2.5 x 10^4 early fatalities for the Reference Distribution (which contains no population center) to 4.0×10^5 for Distribution 8 (which contains a population center of almost 1 million people). Finally, the mean number of early fatalities for these distributions ranges from a low of 110 for Distributions 6 and 8 to a high of 560 for Distribution 4, while 99th percentile values range from 0 for Distributions 7 and 8 to 8500 for Distribution 5.

Figure 2.7.4-5 compares the CCDF calculated using the Reference Distribution to that calculated using Distribution 9. Figure 2.7.4-5 shows that incorporation into the Reference Distribution of radial and angular irregularities characteristic of a "real" population distribution alters the early fatality CCDF of the Reference Distribution in a predictable way. Because Distribution 9 is not uniform, the probability of having any early fatalities falls to 0.2 from the Reference Distribution value of 0.8, mean early fatalities decrease to 260 from 400, but the 99th percentile result increases from 1200 to 2800. Because Distribution 9 contains population centers (17,700 at 2.75 miles; 62,800 at 5.5 miles; 150,000 at 19 miles), the largest calculated number of early fatalities increased to 6.5 x 10^4 from the Reference Distribution value of 2.5 x 10^4

Examination of Table 2.7.4-1 and Figures 2.7.4-2 through 2.7.4-4 shows that the chance of having any early fatalities or early injuries, and the numbers that

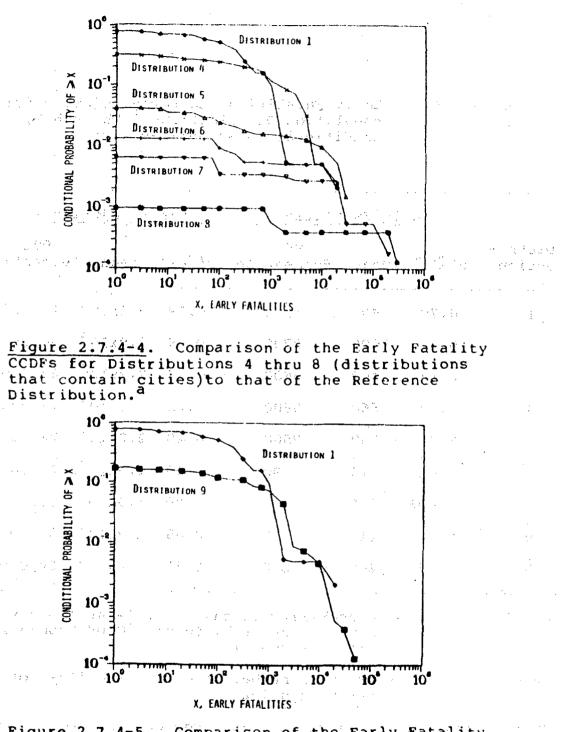


Figure 2.7.4-5. Comparison of the Early Fatality CCDF of Distribution 9 (scaled real population distribution) to that of the Reference Distribution.^a

a.	Assumptions:	1120 MWe read	ctor, SS'	fl release,
· ` .	New York City	meteorology,	uniform	wind rose,
	Summary Evacua	ation.		

Early Fatalities and Early Injuries for Population Distributions 1 Through 9, Table 2.7.4-1. Conditional on an SST1 Release . •

.

	Ear	ly Fata	lities	Ear	ly Injur	ies
Distri- bution	P(≥1)	Mean	99th Percentile	P(≥1)	Mean	99th Percentile
1	0.79	400	1200	0.99	2.2×10^3	19,000
2	0.79	1000	2700	0.99	3.9x10 ³	30,000
3	0.14	400	5600	0.17	2.2×10^3	67,000
4	0.32	5 6 0	5800	0.82	2.3x10 ³	17,000
5	0.04	250	8500	0.48	2.2×10^{3}	26,000
6	0.01	110	90	0.38	1.5x10 ³	27,000
7	0.006	160	0	0.20	1.9x10 ³	59,000
8	0.001	110	0	0.05	1.2×10^{3}	34,000
9	0.17	260	2800	0.62	1.8x10 ³	24,000
P(≥1)		fatal	bility of h ity or earl intercept).	aving at y injury	t least 7 (CCDF	l early probabilit
Mean			ted number injuries.	of early	y fatali	ties or
99th Per	centile		quence magn wing 1 out			
Assumpti City met			reactor, SS rm wind ros			

might occur, are both highly variable. Therefore, because each of the nine distributions met the same radial population density criterion (populated radial intervals have population densities of 750 people per sq mi), it appears that any siting population criterion that restricts only the number of people within various radial distances may allow population distributions with significantly different risk characteristics. For this reason, consideration should perhaps be given to additional criteria which limit the number of people in any single sector or annular region.

Size and Distance of Population Centers. The effect of the size and distance of population centers upon consequences was further examined by imposing population centers of three sizes $(10^4, 10^5, \text{ and } 10^6 \text{ people})$ upon a 50 people per square mile background population density at the distances given in Table 2.7.4-2, thereby generating 13 population distributions, the background distribution and 12 distributions with population cen-Early fatality CCDFs were calculated for each ot ters. the 13 distributions assuming an SST1 release from a 1120 MWe reactor, New York City meteorology, a uniform wind rose, a 1-mile population exclusion zone, and evacuation to 10 miles at 10 mph with a distribution of delay times (Summary Evacuation, see Section 2.5). Mean, 90th, 99th, and maximum early fatality values for each CCDF are presented in Table 2.7.4-2.

Four conclusions may be drawn from the results presented in Table 2.7.4-2. First, irrespective of size, population centers beyond 25 miles do not contribute to early fatalities, i.e., these population centers have early fatality CCDFs identical to the background CCDF. Early fatalities are confined to 25 miles because, even for unfavorable meteorological conditions, plume concentrations fall below all early fatality thresholds before that distance.^a

Second, population centers between 10 and 20 miles cause peak early fatality values^b to increase substantially and mean values to increase by up to factors

a. The maximum distance to which early fatalities occur for an SST1 release was shown in Section 2.6 to range from 13 to 25 miles, depending on meteorology, and is 18 miles for New York City meteorology.

Start in the

b. Improbable events with conditional probabilities of $\leq 10^3$ caused by adverse weather, e.g., rainout of the radioactive plume onto a population center.

					alla an
Center Population	Center Distance	i i en	Early	Fatalitie	5
	20 - 20 (mi)، 20 ه الله (معليه 20 م) الأرادي (ماريكان)، م الله (ماريكان)، 20 م	Mean	90 Per- centile	99 Per- centile (Maximum Calculated ^z
Background ^b	a haa <u>n a</u> sa Ahiingan jire	23	67	150	1,700
ante en presidente en angles en 19 de terretorio de la compositional 19 de terretorio de la compositional de la compositional de la composition	175.0	23	67	150	1,700
	92.5	23	67	150	1,700
10%	52.5	23	67	150	1,700
	32.5	23	67	150	1,700
	52.5	23	67	150	1,700
10 ⁵	27.5	23	67	150	1,700
103	16.25	37	67	150	51,000
	11.25	44	67	160	49,000
	16.25	26	67	150	11,000
10 ⁴	11.5	27	67	150	10,000
10.	5.5 [°]	24	68	160	1,700
e de Francis e de Francis Compositor de Compositor de Compositor de Compositor de Compositor de Compositor de C	2.25	120	190	2,300	5,100

a. Maximum value calculated for any weather sequence. An improbable event (conditional probability $\leq 10^{-3}$) typically caused by adverse weather (rainout of the radioactive plume onto a city).

b. Background population density = 50 people per sq mi.

Assumptions: 1120 Mwe reactor, SST1 release, New York City meteorology, uniform wind rose, Summary Evacuation. of 2, but do not affect 90th or 99th percentile values (only mean and peak values differ from those of the background CCDF). Examination of individual calculations shows that population centers between 10 and 20 miles experience early fatalities principally when rain falls on the radioactive plume after it arrives over the population center. Because this is an improbable event, it affects only the CCDF peak and not its 90th, or 99th percentile values.^a

\$i'''

Third, if effectively evacuated, population centers between 5 and 10 miles probably can avoid early fatalities (the CCDF for the population center at 5.5 miles is almost identical to the background CCDF). The population center at 5.5 miles experiences few early fatalities because the characteristics of Summary Evacuation (delay times, evacuation speed, see Section 2.5) assure that most persons in the population center avoid large exposures to radioactivity by evacuation for most weather sequences sampled.

Fourth, population centers very close to a reactor $(\leq 5 \text{ miles})$ are more likely to experience early fatalities even with evacuation (the CCDF of the population center at 2.25 miles differs from the background CCDF at all levels of probability). Early fatalities are likely to occur because only a timely warning followed by a very prompt evacuation could assure that all people in population centers within 5 miles of a reactor will escape plume exposures (see Section 2.5).

Exclusion Zone Size. All existing reactors are surrounded by an exclusion zone, which has no permanent inhabitants and is controlled exclusively by the utility operating the reactor. At current reactor sites exclusion zones are irregularly shaped with minimum exclusion distances which range from 0.1 to 1.3 miles (average 0.6 miles, see Appendix D). Larger exclusion zones would be expected to reduce the incidence of early health effects (those health effects induced by relatively large doses to individuals). The influence of exclusion zone size on early fatalities and injuries was examined for each

a. The effects of rain are discussed more fully in Sections 2.4 and 2.6; the effects of assuming emergency response beyond 10 miles are considered in Section 2.5. of four emergency response scenarios (Scenarios 1, 5, 6, and 7 as defined in Section 2.2.2). Scenario 1 is an expeditious evacuation (1 hr delay, 10 mph), Scenario 5 is No Emergency Response, Scenario 6 is Poor Evacuation (5 hr delay, 1 mph), and Scenario 7 is Summary Evacuation. All calculations assumed no immediate emergency response beyond 10 miles, a uniform population distribution (100 persons per square mile), an SST1 release from an 1120 MWe reactor, and New York City meteorology.

Table 2.7.4-3 presents for each emergency response scenario the mean number of early fatalities calculated to occur within each of 20 distance intervals to 17.5 miles (for New York City meteorology, early fatalities are confined to 17.5 miles). Without any emergency response, the expected total number of early fatalities is 338, given an SSTL release at a reactor having a surrounding population density of 100 persons per square mile and no exclusion zone. However, if the reactor had a 1-mile exclusion zone, 58 fatalities would be avoided. Alternatively, an effective emergency response within 10 miles (e.g., Best Evacuation) would reduce the mean number of fatalities observed from 338 to 23 without any exclusion zone, and to 14 fatalities (those occurring beyond 10 miles) with a 1-mile exclusion zone.

The combined effects of exclusion zone size and emergency response effectiveness are further illustrated by the data in Table 2.7.4-4, which is drawn from Table 2.7.4-3. Table 2.7.4-4 presents for various combinations of emergency response effectiveness and exclusion zone size the number of early fatalities occurring within and beyond 10 miles and their sum. Table 2.7.4-4 shows that for large core-melt accidents mean early fatalities are reduced 16-fold (from 320 to <20) by an 0.5-mile exclusion zone and a very effective evacuation (Best Evacuation), by a 3-mile exclusion zone and a reasonably effective evacuation (Summary Evacuation), or by a 5-mile exclusion zone and an ineffective evacuation (Poor Evacuation). Alternatively, an 0.5-mile exclusion zone and a very effective evacuation within 2 miles (achieved possibly by early warning [41]) and a reasonably effective evacuation from 2 to 10 miles reduced mean early fatalities 12-fold (320 to 26).

Table 2.7.4-5 shows how the probability of having at least 1 early fatality or early injury varies with

Table 2.7.4-3.	Mean Early Fatalities by Distance
	Intervals for Four Emergency Response Scenarios, All Evacuations ^a

•		Responseb	Emergency		Distance	
 	Best	Summary	Poor	None	<u>Interval</u>	
				an a a a	0.0	
	3.9	5.6	6.3	6.3	0.25	
· ·· ·	2.4	8.6	11.4	11.5	0.5	
-	1.6	9.9	16.6	17.6	0.75	
· · · · ·	0.6	8.2	16.3	22.2	1.0	
	0.2	12.6	26.1	51.4	1.5	
	0.1	7.7	25.7	42.3	2.0	
	0.0	4.5	21.0	38.9	2.5	
	0	2.3	10.0	29.5	3.0	
	0	1.5	6.5	26.6	3.5	
	0	0.7	5.1	19.6	4.0	
	0	0.2	3.9	14.7	4.5	
	0	0.1	2.1	11.3	5.0	
	0	0.0	0.6	15.2	6.0	
• •	0	0.0	0.2	7.8	7.0	
	0	0	0	3.1	8.5	
-	0	0.0	0.6	6.4	10.0	
	6.9	6.9	6.9	6.9	12.5	
	0	0	0	0	15.0	
	7.1	7.1	7.1	7.1	17.5	
	23	76	166	338	Total	

- a. <u>Assumptions</u>: SST1 release, 1120 MWe reactor, New York City meteorology, uniform wind rose, 100 people per square mile.
- b. No emergency response beyond 10 miles; relocation after 1 day (i.e., 1-day exposure to radioactivity deposited on the ground).

Table	2.7.4-4.	Dependence of Mean Early Fatalities
		on Emergency Response Effectiveness
1100		and Exclusion Zone Size ^a

ŝ.

Emergency Response	Exclusion Zone (mi)	Mean Early Fatalities				
<u>Response</u>	Zone (mi)	>10 mi	\leq 10 mi	Total		
Best Evacuation	n ^b 0.5	14	2.5	16.5		
Summary Evacuation ^b	3.0 2.0 1.0 0.5	14 14 14 14	2.5 9.3 29.6 47.7	16.5 23.3 43.6 61.7		
Poor Evacuation ^b	5.0 3.0 2.0 1.0 0.5	14 14 14 14 14	1.4 19.0 50.0 101.8 134.7	15.4 33.0 64.0 115.8 148.7		
NO Evacuation	5.0 3.0 2.0 1.0 0.5	14 14 14 14 14	32.5 104.7 173.1 266.8 306.6	46.5 118.7 187.1 280.8 320.6		
Best ≤2 mi Summary >2 mi	0.5	14	11.8	25.8		

a. <u>Assumptions</u>: SSTl release, 1120 MWe reactor, New York City meteorology, 100 people per square mile.

b. No emergency response beyond 10 miles; relocation after 1 day (i.e., 1-day exposure to radioactivity deposited on the ground).

Emergency	None	Poor	Summary	Best	None	Poor	Summary	Bes
Response			<u></u>					
		· · · · · · · · · · · · · · · · · · ·	·		· · ·			
Distance (mi)		Early 1	<u>Satalities</u>			Early 1	Injuries	
(mr)		:	· ·	. *	an an an Araba. An Araba an Araba	·		
0	1.00	1.00	0.96	0.88	1.00	1.00	1.00	1.0
0.25	1.00	1.00	0.81	0.38	1.00	1.00	1.00	1.0
0.5	1.00	0.97	0.76	0.26	1.00	1.00	0.92	0.7
0.75	0.97	0.85	0.55	0.21	1.00	1.00	0.85	0.5
1.0	0.97	0.60	0.37	0.10	1.00	1.00	0.82	0.4
2.0	0.59	0.40	0.19	0.01	0.98	0.97	0.76	0.3
5.0	0.20	0.10	0.02	0.01	0.78	0.57	0.39	0.3
	•		· · · ·	e Merio				

Table 2.7.4-5. Probability of Having at Least l Early Fatality or Injury^a by Exclusion Zone Distance^b

b. <u>Assumptions</u>: SST1 release, 1120 MWe reactor, New York City meteorology, 100 people per square mile.

exclusion zone size. The table shows that the probability of having at least 1 early fatality following a large core-melt accident (SST1 release) can be reduced to 0.2 by the following combinations of an Emergency Response and an Exclusion Zone distance:

Emergency	ency Response			Poor	Summary	Best	
			- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997				
Exclusion	Zone	(mi)	. 5 .	4	2	0.75	

Taken together Tables 2.7.4-3 through 2.7.4-5 suggest that a large Exclusion Zone without an emergency response is not nearly as effective as a substantially smaller Exclusion Zone and a timely emergency response.

Finally, because atmospheric releases of radioactivity of the size of SSTI are improbable (possibly extremely improbable, see Section 2.3.2, Source Term Uncertainties), it is important to note that for smaller releases (e.g., SST1 reduced an order of magnitude or SST2) the mean and peak distances to which early fatalities and injuries are likely to occur is much reduced, even with no emergency response (see Section 2.6, Distance Dependencies). Thus, for SSTl reduced 10-fold, on the average (mean result) fatalities would be confined to 1 mile and injuries to 3 miles, while for SST2 these distances are 0.5 miles and 2 miles, respectively. Thus, for releases substantially smaller than SST1, because early health effects are usually confined to only a few miles, typical Exclusion Zones (\sim 1 mi) can have a substantial impact even without an emergency response.

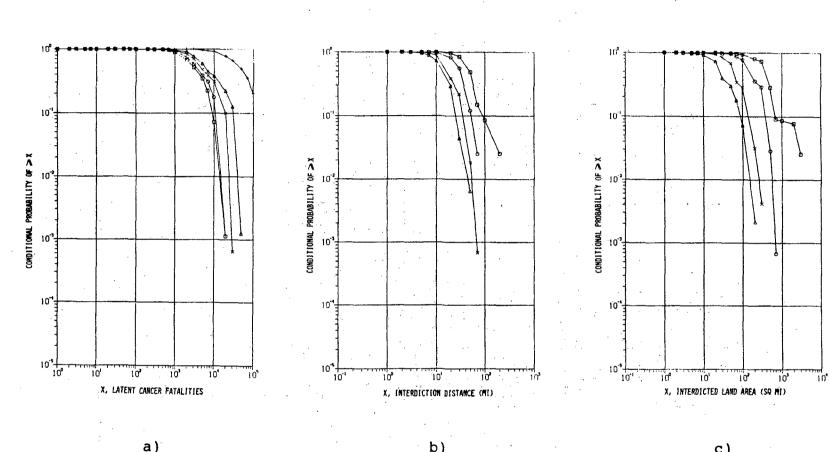
2.7.5 Interdiction Dose Criterion

Following a nuclear power plant accident, continued usage of land contaminated by radioactive material deposited from the plume would result in increased population exposures, and thus would increase latent health effects. Chronic exposure to contaminated land can be avoided by interdicting the usage of the land until removal processes (decontamination, radioactive decay, weathering, runoff) have decreased exposures to acceptable levels. The dose criterion (allowed groundshine dose to an individual accumulated in 30 years) for interdiction of land is called the "interdiction dose." As interdiction dose increases, latent health effects increase (because more people are continuing to use contaminated land) and interdicted land area and interdiction costs decrease (because less land is interdicted).

All of the calculations presented in other sections of this report used an interdiction dose of 25 rem due to a 30-year exposure to contaminated land. This section examines the sensitivity of latent cancer fatalities and of interdiction distance (distance to which land is interdicted), area, and costs to interdiction dose. Calculations were performed for four different 30-year interdiction doses (5, 10, 25, and 50 rem) and also for no interdiction. All of these calculations used an 1120 MWe reactor, the SSTI source term, the Indian Point population distribution and wind rose, and New York City meteorology.

Figures 2.7.5-1a through 2.7.5-1c present CCDFs for latent cancer fatalities and the interdiction distance and area. Table 2.7.5-1 presents mean and 90 percentile (conditional probability of 10⁻¹) values of latent cancer fatalities and of interdiction distance, area, and costs as a function of interdiction dose. In Figures 2.7.5-2a through 2.7.5-2c the mean values in Table 2.7.5-1 (except the cost data) are plotted versus interdiction dose. Examination of the CRAC2 code showed that the near linear dependence of mean latent cancer fatalities upon interdiction dose displayed in Figure 2.7.5-2a was to be expected.^a Figure 2.7.5-2a shows that, if all contaminated ground were interdicted (interdiction dose of zero), then 3200 latent cancer fatalities would still result due to the pre-interdiction dose (cloudshine dose; inhalation dose, which includes the chronic dose from

繁荣的中华的一种的"中华"的"中华",在这一个中华的"中华"的"中华","中华"的"中华"的"中华"。"中华"的"中华","中华"的"中华"。"中华"的"中华","中华"的"中华"。"中华","中华"的"


. .

500

a. Latent cancer fatalities ~ population dose $\sim \rho$ D(x)xdx,

where ρ = population density (approximately constant over large areas), D(x) = dose at distance x, x = interdiction distance, and 500 mi = maximum distance for latent cancers (variable but large). From the transport and deposition algorithms used in CRAC2, D(x) ~ x⁻². So latent cancer fatalities

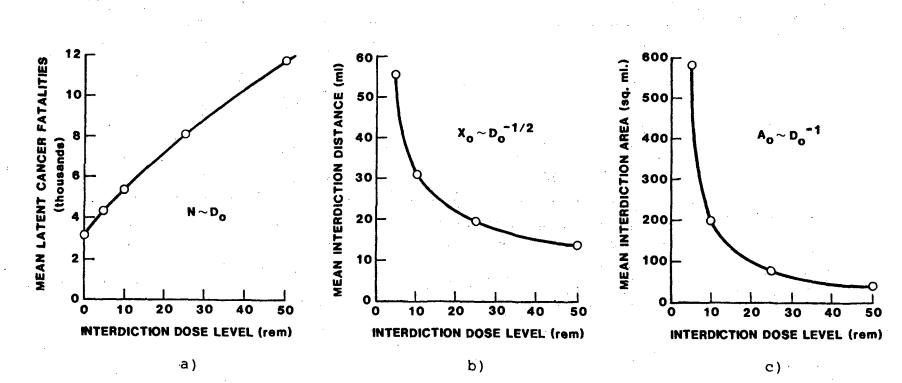
 $\sim \rho \ln x \Big|_{x_0}$ which is approximately linear in x_0 for $x_0 \leq 50$ mi.

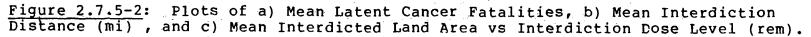
b)

c)

Figure 2.7.5-1: Impact of 30-Year Interdiction Dose upon a) Latent Cancer Fatalities, b) Interdiction Distance (mi), and c) Interdicted Land Area (sq mi)

Legend


+- no interdiction Δ - 50 rem interdiction dose X- 25 rem interdiction dose 0-10 rem interdiction dose 5 rem interdiction dose 0Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City meteorology.


Ν .-98

Interdiction Dose (rem)	Latent Cancer Fatalities		Interdiction Distance (mi)		Interdicted Land Area (sq. mi)		Interdiction Costs (billions)	
	Mean	90 Per- centile	Mean	90 Per- centile	Mean	90 Per- centile	Mean	
5	4,300	9,100	56	90	580	640	36	
10	5,400	11,000	32	52	200	380	17	
25	8,100	20,000	:19	35	76	140	5	
50	12,000	31,000	14	25	41	86	2	
None	68,000	130,000	0	0	0	0	0	

Table 2.7.5-1. Mean and 90th Percentile Values of Several Consequences by Interdiction Dose Level^a

a. SST1 release, 1120 MWe reactor, Indian Point population and wind rose, New York City meteorology.

Assumptions: 1120 MWe reactor, SST1 release, Indian Point population and wind rose, New York City meteorology.

٢w

radioactivity deposited in the respiratory system; and pre-interdiction groundshine dose, which is assumed to be 1 day in duration). Figure 2.7.5-2b shows that interdiction distance is inversely proportional to the square root of the interdiction dose $(x_0 \sim D_0^{-1/2})$ and Figure 2.7.5-2c shows that interdiction area is inversely proportional to interdiction dose $(A_0 \sim D_0^{-1})$, which is not surprising since interdiction area should be roughly proportional to the square of interdiction distance $(A_0 \sim x_0^{-2})$.

Table 2.7.5-1 and Figures 2.7.5-1a through 2.7.5-1c show that latent cancer fatalities, and interdiction distance, area, and costs are all quite sensitive to interdiction dose. If all contaminated land were interdicted, the mean number of latent cancer fatalities would be reduced by about a factor of 20 from the number that would occur, if no land were interdicted (at the 90 percentile level the reduction factor is 15). Similarly, a 10-fold increase (5 to 50 rem) in interdiction dose produces about a 10-fold decrease in mean interdiction area and nearly a 20-fold decrease in mean interdiction costs.

Data in Table 2.7.5-1 can be used to illustrate the inverse relationship between latent fatalities and interdiction costs. For example, changing the interdiction dose criterion from no interdiction (all doses are tolerated) to an interdiction dose of 50 rem decreases mean latent fatalities by 57,000 and produces interdiction costs of \$1.9 x 10⁹ or \sim \$3 x 10⁴ per life saved. Further decrease from 50 rem to 25 rem saves an additional 4000 lives at a cost of \sim \$7 x 10⁵ per life, while the decrease from 25 rem to 10 rem saves 3000 lives at a cost of \sim \$5 x 10⁶ per life. Therefore, because of the inverse relationship between latent cancer fatalities and interdiction area, the high cost of interdicting land may make the interdiction of large areas (selection of a low interdiction dose) unacceptable.

行名注意的

The second se

2.8 Summary

This chapter has presented results from a large number of CRAC2 calculations, which characterize the sensitivity of accident consequences to input data and model parameters. Sensitivities were determined by comparison to a Base Case Calculation which assumed an SSTI release from a standard 1120 MWe reactor, meteorology typical of New York City, the Indian Point wind rose and population distribution, and Summary Evacuation. The principal conclusions derived from the results of these calculations are as follows:

o Estimates of the number of <u>early fatalities</u> are very sensitive to <u>source term magnitude</u>. Mean early fatalities (average result for many weather sequences) are decreased dramatically (about two orders-of-magnitude) by a one orderof-magnitude decrease in source term SST1 (large core melt, loss of most safety systems). Because the core melt accident <u>source terms</u> SST1-3 used in this study neglect or underestimate several <u>depletion mechanisms</u>, which may operate efficiently within the primary loop or the containment, consequence magnitudes calculated using these source terms may be significantly overestimated.

- o The weather conditions at the time of a large release will have a substantial impact on the health effects caused by that release. In marked contrast to this, mean health effects (average result for many weather sequences) are relatively insensitive to meteorology. Over the range of meteorological conditions found within the continental United States (1 year meteorological records from 29 National Weather Service stations), mean early fatality values for a densely populated site show a range (highest value/lowest value) of only a factor of 2, and mean latent cancer fatality values a factor of 1.2.
- Peak early fatalities (maximum value calculated for any weather sequence) are generally caused by <u>rainout</u> of the radioactive plume onto a population center. For an SST1 release, the peak result is about 10-times less probable in a dry locale than in a wet one.

 The distances to which consequences might occur depend principally upon source term magnitude and meteorology. Frequency distributions of these distances, calculated using large numbers of weather sequences, yielded expected (mean), 99 percentile, and maximum calculated distances (expressed in miles) for early fatalities and early injuries as follows:

10 3

和过去。 计断部字

O`

Source Term	<u>Consequence</u>	<u>Mean</u>	998	Maximum Calculated
	Early Fatalities Early Injuries	<5 ~10		<25 ≲50
	Land Interdiction		>50	>50
SST2	Early Fatalities	~0.5	_	<2
	Early Injuries Land Interdiction	<2 <2	-	~5 ~10

The maximum calculated distances are associated with very improbable events, (e.g., rain-out of the plume onto a population center). For the SST1 release reduced by a factor of 10, early fatalities are confined to ~5 miles, early injuries to ~20 miles, and interdiction of land to ~25 miles.

Calculated consequences are very sensitive to <u>site population distribution</u>. For each of the 91 population distributions examined, early fatality, early injury, and latent cancer fatality CCDFs were calculated assuming an SST1 release from an 1120 MWe reactor. The resulting sets of CCDFs had the following ranges:

Early Fatalities. ~3 orders-of-magnitude in the peak and mean numbers of early fatalities and in the probability of having at least one early fatality.

Early Injuries. ~ 3 orders-of-magnitude in the means, ~ 2 in the peaks, and ~ 1 in the probability of having at least one early injury.

Latent Cancer Fatalities. ~1 order-ofmagnitude in the peaks and the means and in the probability of having at least one latent cancer fatality. Generally, mean results are determined by the average density of the entire exposed population, while peak results (especially for early fatalities) are determined by the distance to and size of exposed population centers.

0

Ο

0

0

Early fatalities and early injuries can be significantly reduced by emergency response actions. Both sheltering (followed by relocation) and evacuation can be effective, provided the response is expeditious. Access to basements or masonry buildings significantly enhances the effectiveness of sheltering. Expeditious response requires timely notification of the public. If the evacuation is expeditious (timely initiation), evacuation speeds of 10 mph are effective. Evacuation before containment breach within 2 miles, after release within 10 miles, and sheltering from 10 to 25 miles appears to be a particularly effective response strategy.

Because accident source terms increase with reactor size, smaller reactors pose lesser risks to the public than are posed by larger reactors.

Buoyant plumes (high heat content) can be lofted over close-in populations, thereby decreasing the risk of early health effects at short distances (≤ 10 mi) but increasing that risk at longer distances (~ 20 mi). Because only rainout of lofted plumes is able to produce fatal exposures, mean early fatality values for buoyant plumes are substantially decreased by comparison to non-buoyant plumes (early fatalities result from fewer weather sequences).

Dry deposition velocity has a substantial impact on the distance to which land is interdicted and early health effects occur. However, the number of early health effects calculated are only moderately sensitive to dry deposition velocity.

 Exclusion zones (unless very large) are unlikely to significantly reduce early health effects for very large core melt accidents such as SST1. However, for smaller accidents (e.g. 1/10 SST1, SST2) early health effects could be significantly mitigated by exclusion zones of 1 to 2 miles.

如此是是 \$P\$ 小学生,是他的学生,是的学生,这些是是是愿意的人,就是是我们的人,就是我们的人,就是我们有些不能是我的人们也是没有要的人情的。\$P\$ 不是

o Decreasing the level of contamination at which land is interdicted decreases latent cancer fatalities and increases the amount of land interdicted. As interdiction dose is increased, interdiction costs (value of interdicted land and buildings) increase more rapidly than does the number of latent cancer fatalities avoided.

1.45

المراجعة الم المراجعة الم المراجعة الم

 $(1,2^{2n}) = (2^{n}) \sum_{i=1}^{n} (1,2^{n}) = (1,2^{n}) \sum_{i=1}^{n} (1,2^{n}) \sum_{i=1}^{$

References for Chapter 2

- <u>Reactor Safety Study, Appendix VI: Calculation</u> of Reactor Accident Consequences, U.S. Nuclear Regulatory Commission, WASH-1400 (NUREG-75/014), 1975.
- 2. L. T. Ritchie, J. D. Johnson, and R. M. Blond, <u>Calculations of Reactor Accident Consequences,</u> <u>Version 2 (CRAC2): Computer Code User's Guide,</u> <u>NUREG/CR-2326, SAND81-1994, Sandia National</u> Laboratories, Albuquerque, NM (to be published).
- 3. L. T. Ritchie, et al., CRAC2, <u>Calculation of</u> <u>Reactor Accident Consequences</u>, <u>Version 2</u>, <u>Model</u> <u>Description</u>, <u>SAND82-0342</u>, <u>NUREG/CR-2552</u>, <u>Sandia</u> <u>National Laboratories</u>, <u>Albuquerque</u>, <u>NM</u> (to be published).
- 4. I. B. Wall et al., <u>Overview of the Reactor Safety</u> <u>Study Consequence Model</u>, U.S. Nuclear Regulatory Commission, NUREG-0340, 1977.

- 5. R. M. Blond, D. C. Aldrich and E. H. Johnson, "International Standard Problem for Consequence Modeling," International ANS/ENS Topical Meeting on Probabilistic Risk Assessment, Port Chester, New York, September 20-24, 1981.
- D. C. Aldrich et al., "International Standard Problem for Consequence Modeling: Results," International ANS/ENS Topical Meeting on Probabilistic Risk Assessment, Port Chester, New York, September 1981.
- 7. J. M. Hans, Jr., and T. C. Sell, <u>Evacuation</u> <u>Risks - An Evaluation</u>, U.S. Environmental Protection Agency, EPA-520/6-74-002, 1974.
- 8. D. C. Aldrich, R. M. Blond, and R. B. Jones, <u>A</u> Model of Public Evacuation for Atmospheric Radiological Releases, SAND78-0092, Sandia Laboratories, Albuquerque, NM, 1978.
- 9. D. C. Aldrich, L. T. Ritchie, and J. L. Sprung, <u>Effect of Revised Evacuation Model on Reactor</u> <u>Safety Study Accident Consequences</u>, SAND79-0095, <u>Sandia National Laboratories</u>, 1979.

- 10. G. C. Holzworth, <u>Mixing Heights, Wind Speeds, and</u> <u>Potential for Urban Air Pollution Throughout the</u> <u>Contiguous United States</u>, Publ. No. AP-101, U.S. <u>Environmental Protection Agency</u>, Office of Air Programs, Research Triangle Park, NC, 1972.
- 11. D. E. Bennett, <u>Radionuclide Core Inventories for</u> <u>Standard PWR and BWR Fuel Management Plans</u>, Sandia National Laboratories, SAND82-1111. NUREG/CR-2724 (to be published).

- 12. Planning Basis for the Development of State and Local Government Radiological Emergency Response Plans in Support of Light Water Nuclear Power Plants, NUREG-0396, U. S. Nuclear Regulatory Commission, 1978.
- 13. Deutsche Risikostudie Kernkraftwerke, Fachband 8: Unfallfolgenrechnung und Risikoergebnisse, TUV Rheinland, Koln, Federal Republic of Germany, 1981.
- 14. <u>PRA Procedures Guide</u>, Review Draft, U.S. Nuclear Regulatory Commission, NUREG/CR-2300, September 1981.
- 15. M. Levenson and F. Rahn, "Realistic Estimates of the Consequences of Nuclear Accidents," Nucl. Technol. 38, 99 (1981).
- 16. Technical Basis for Estimating Fission Product Behavior During LWR Accidents, NUREG-0772, U.S. Nuclear Regulatory Commission, June 1981.
- 17. K. Woodard and T. E. Potter, "Modification of the Reactor Safety Study Consequence Computer Program (CRAC) to Incorporate Plume Trajectories," Trans. Amer. Nucl. Soc., 33, 193 (1979).
 - 18. Zion Probabilistic Safety Study, Commonwealth Edison Co., Chicago, IL, September 1981.
 - 19. D. J. Alpert, P. H. Gudiksen, and K. Woodard, "Modeling Atmospheric Dispersion for Reactor Accident Consequence Evaluation," International ANS/ENS Topical Meeting on Probabilistic Risk Assessment, Port Chester, NY, September 20-24, 1981.

- 20. BEIR (Committee on the Biological Effects of Ionizing Radiation), The Effects on Populations of Exposure to Low Levels of Ionizing Radiation, National Academy of Sciences, Washington, DC, 1980.
- 21. W. E. Loewe and E. Mendelsohn, "Revised Dose Estimates at Hiroshima and Nagaski", UCRL-85446, Lawrence Livermore National Laboratory, 1980.
- 22. Regulatory Impact of Nuclear Reactor Accident Source Term Assumptions, NUREG-0771, U.S. Nuclear Regulatory Commission, June 1981.
- 23. R. O. Campbell, A. P. Malinauskas, and W. R. Stratton, "The Chemical Behavior of Fission Product Iodine in Light Water Reactor Accidents," Nucl. Technol., <u>38</u>, 111, (1981).
- 24. H. A. Morewitz, "Fission Product and Aerosol Behavior Following Degraded Core Accidents," Nucl. Technol. 38, 120, (1981).
- 25. U.S. Nuclear Regulatory Commission, "Onsite Meteorological Programs," Regulatory Guide 1.23, 1972.
- 26. J. L. Sprung, An Investigation of the Adequacy of the Composite Population Distributions Used in the Reactor Safety Study, SAND78-0556, Sandia National Laboratories, Albuquerque, NM, 1978.
- 27. D. C. Aldrich, P. E. McGrath and N. C. Rasmussen, Examination of Offsite Radiological Emergency Protective Measures for Nuclear Reactor Accidents Involving Core Melt, SAND78-0454, NUREG/CR-1131, Sandia National Laboratories, Albuquerque, New Mexico, October (1979).
- 28. D. C. Aldrich, and R. M. Blond, <u>Examination of</u> the Use of Potassium Iodide (KI) as an Emergency Protective Measure for Nuclear Reactor Accidents, SAND80-0981, NUREG/CR-1433, Sandia National Laboratories, Albuquerque, NM, March 1980.
- 29. D. C. Aldrich, D. M. Ericson, Jr., and J. D. Johnson, <u>Public Protection Strategies for Potential</u> <u>Nuclear Reactor Accidents: Sheltering Concepts</u> <u>With Existing Public and Private Structures</u>, <u>SAND77-1725</u>, Sandia Laboratories, Albuquerque, NM, February 1978.

- 30. D. C. Aldrich, and D. M. Ericson, Jr., <u>Public</u> Protection in the Event of a Nuclear Reactor Accident: Multicompartment Ventilation Model for <u>Shelters</u>, SAND77-1555, Sandia Laboratories, Albuquerque, NM, February 1978.
- 31. A. F. Cohen, and B. L. Cohen, Infiltration of Particulate Matter Into Buildings, NUREG/CR-1151, SAND79-2079, Sandia Laboratories, March 1980.
- 32. Manual of Protective Action Guides and Protective Actions for Nuclear Incidents, EPA-520/1-75-001, U. S. Environmental Protection Agency, September 1975.
- 33. G. A. Briggs, "Plume Rise Predictions" in Lectures on Air Pollution and Environmental Impact Analysis, D. A. Haugen, ed., American Meteorological Society, Boston, MA, 1975, pp. 59-105.
- 34. A. J. Russo, <u>Reactor Accident Plume Rise Calcula-</u> tions, SAND76-0340, Sandia National Laboratories, <u>Albuquerque</u>, NM, 1976.
- 35. A. J. Russo, J. R. Wayland, L. T. Ritchie, <u>Influence of Plume Rise on the Consequences of</u> <u>Radioactive Material Releases</u>, SAND76-0534, Sandia National Laboratories, Albuquerque, NM, 1977.
- 36. T. W. Horst, "A Surface Depletion Model for Deposition From a Gaussian Plume," Atmos. Environ. 11, 41 (1977).

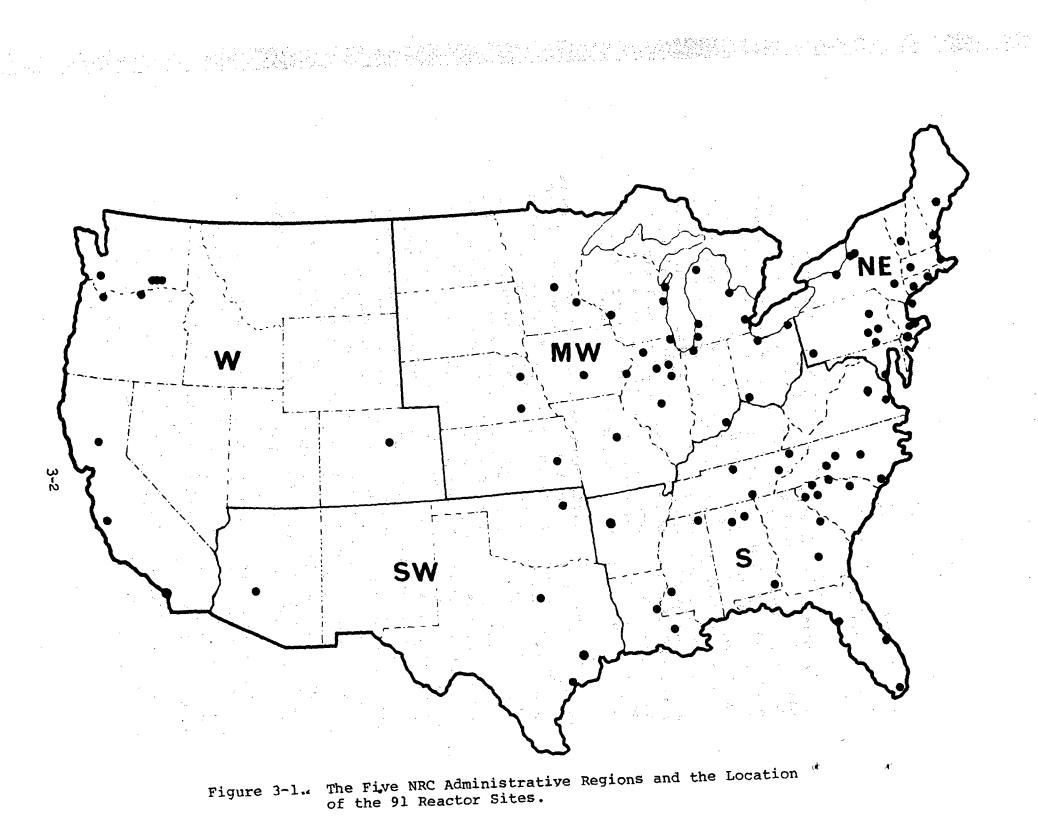
- 37. R. P. Hosker, Jr., "Practical Application of Air Pollutant Deposition Models -- Current Status, Data Requirements, and Research Needs," in <u>Proc. Intern.</u> <u>Conf. on Air Pollutants and Their Effects on the</u> <u>Terrestrial Ecosystem</u>, Banff, Alberta, Canada, May 10-17, 1980, S. V. Krupa and A. H. Legge, ed., John Wiley and Sons, NY, 1980.
- 38. D. C. Kaul, "The Effect of Plume Depletion Model Variations on Risk Assessment Uncertainties," International ANS/ENS Topical Meeting on Probabilistic Risk Assessment, Port Chester, NY, September 1981.
- 39. G. A. Sehmel, "Particle and Gas Dry Deposition -A Review," Atmos. Environ. 14, 983 (1980).

 40. T. J. Overcamp, "A General Gaussian Diffusion-Deposition Model for Elevated Point Sources," J. Appl. Meteor. <u>15</u>, 1167 (1976).

41. R. P. Burke, <u>In-Plant Considerations for Optimal</u> Offsite Response to Reactor Accidents, Master's Thesis, MIT Department of Nuclear Engineering, Cambridge, MA, November 1981.

. .

3. Population Statistics for Current Reactor Sites


3.1 Introduction

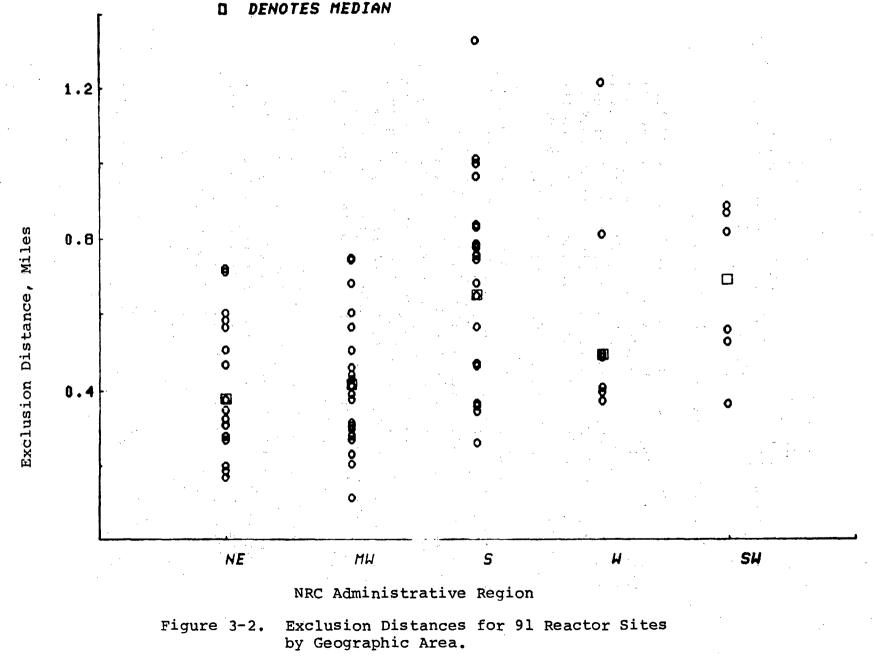
「そうな」となっていたのであったができます。それないできたいですがないです。 いっちょう しょうせい きちょう しょうきょう 読み たいざい たんかかたいがく ままや マネン 感染 たいしょう たいしょう

This chapter examines a variety of characteristics of the population distributions about the 91 reactor sites first discussed in Section 2.4 and described in detail in Appendices A and C. Each of these sites has either an operating license or a construction permit. The site characteristics examined include distance to the boundary of the reactor site exclusion zone, site population factors, the distribution of population densities within different radial annuli and distances, maximum population densities within 22.5 and 45 sectors, and time-dependent trends in site population densities. As a group these analyses delineate the demographic characteristics of current reactor sites and provide a perspective of past siting decisions.

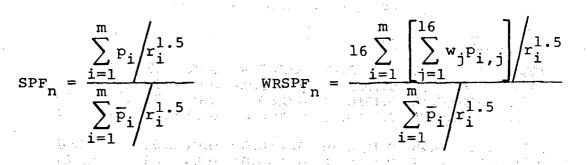
The population distributions examined in this chapter were derived from 1970 census data. A computer program was used (see Appendix A) to construct from U. S. Census Enumeration District (CED) data, the population distribution (16 sectors, 34 radial intervals) surrounding each of the 91 reactor sites. The procedure used may produce a distribution with significant errors close to the site. Errors may result because the computer program assumes that the entire population of each CED is located entirely at the "centroid" of the CED, when it may actually be dispersed over areas which are substantially larger than the area of the spatial interval in which the centroid is located. Because a CED typically contains about 1000 persons, the magnitude of this error decreases as population density increases. Given the spacing of the circular polar grid, the error is most likely negligible beyond 20 miles even for sparsely populated regions (\lesssim 40 people per sq mi). Beyond 7 miles, errors are unlikely to be substantial for population densities greater than 500 people per square mile.

Throughout this chapter results are frequently presented for each of the five NRC administrative regions. Figure 3-1 displays the boundaries of these regions and the locations of the 91 reactor sites examined. In Section 3.2 scatter plots of site exclusion zone distances and site population factors are presented by region. Section 3.3 presents population density CCDFs and displays percentile values drawn from the CCDFs for each region. Scatter plots of these data are also

presented. Time trends of site population characteristics are analyzed by region in Section 3.4. Finally, population characteristics for individual sites and additional regional results are presented in Appendix D, and additional population data are available in NUREG-0348 [1].


3.2 Exclusion Zones and Site Population Factors

Distance to the exclusion zone boundary, distance to nearby cities, and site population factors have all been used by the NRC to describe population distributions about reactor sites. Consequence sensitivity to exclusion zone size and to distance to nearby cities was examined in Section 2.7.4. This section examines regional variation (1) of the minimum distance to the exclusion zone boundary and (2) of site population factors, with and without wind rose weighting.


All reactors are surrounded by an exclusion zone, which has no permanent inhabitants and is controlled exclusively by the utility operating the reactor. Exclusion zones are usually irregularly shaped. For the 91 sites examined in this study, minimum distances to the exclusion zone boundary range from 0.1 to 1.3 miles with 0.5 miles being about average. The value for each of the 91 sites is presented in Appendix D. Figure 3-2 displays these values as scatter plots, one for each NRC administrative region. Median values for each scatter plot are indicated on the figure. The median values increase in the order NE, MW, W, S, SW.

Site population factors were developed by the NRC [2] to provide a way to compare populations around different sites. The factors are intended to be dimensionless measures of the total risk to the population within a specified radial distance. Since correlations between population distribution and wind direction may significantly influence risk at some sites, a wind rose weighted formulation of the site population factor was also developed.

The Site Population Factor (SPF) and Wind Rose weighted Site Population Factor (WRSPF) are defined as follows:

DENOTES MEDIAN

where r_i is the outer radius of annulus i of m concentric annuli $(r_0 = 0, r_m = n)$.

Pi

is the outer radius of the outermost annulus, annulus m.

is the population of annulus i assuming a uniform population density of $_{2}1000_{2}$ people per sq mi, i.e., $\bar{p}_{i} = 10^{3} \pi (r_{i} - r_{i-1})$

p_i p_i is the actual population of annulus i.

P_{i,j} is the actual population of the ith radial interval of wind rose sector j.

w_j is the fraction of time that the wind blows into sector j.

Finally, the power 1.5 to which the radius r_i is raised was selected because it approximates the functional relationship between risk and distance; and WRSPF_n = SPF_n whenever $w_i = 1/16$ for all j, i.e., whenever the wind rose is uniform.

Site population factors (both SPF_n and WRSPF_n for n = 5, 10, 20, and 30 miles) are presented in Appendix D for each of the 91 sites. Table 3-1 presents average values for these factors for each of the five NRC administrative regions. Examination of Table 3-1 shows that, for each distance and for both factors, the regional average values are highest for the Northeast region and lowest for the Southwest region, and decrease in the order NE, MW, S, W, SW.

Table 3-1

SPF and WRSPF Values for the Five NRC Administrative Regions^a

÷.	NE	MW	<u>s</u>	W	SW
SPF5	0.16±0.22	0.09±0.15 0.10±0.14	0.03±0.04	0.01±0.02 0.03±0.03	
SPF10 SPF20 SPF30		0.12±0.12	0.05±0.03 0.08±0.06 0.09±0.06	0.04 [±] 0.03 0.05 [±] 0.04	0.03±0.02
50	0.17±0.29	0.10±0.18	0.04±0.04	0.02±0.02	0.01±0.01
WRSPF	0.18±0.22	0.11±0.16 0.13±0.14	0.05±0.03 0.08±0.07	0.04±0.06 0.05±0.04	0.02±0.01 0.03±0.02
WRSPF ₃₀	0.22±0.20 0.26±0.26		0.09±0.07	0.06±0.06	0.04±0.03

^aStandard Deviations are indicated as bounds

3.3 Site Population Statistics

The 91 population distributions examined in this chapter are all constructed on a 16 sector, circular polar grid. For any specified portion (a circle, an annulus, a sector) of that grid, 91 values of population density are available, one for each of the 91 population distributions. By cumulation of the 91 values for a given portion of the grid, a population density CCDF may be constructed.* Six different sets of population density CCDFs have been constructed for the following areas of the population distribution grid:

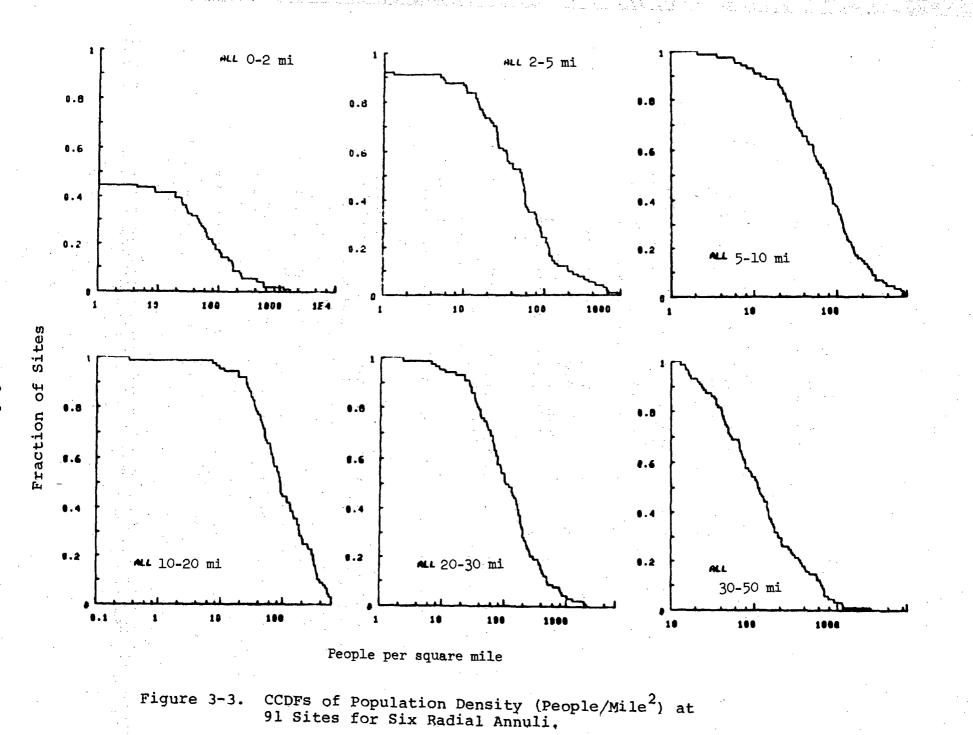
Set 1: eight annuli (0-2, 2-5, 5-10, 10-20, 20-30, 30-50, 50-100, and 100-200 mi).

Set 2: eight radial distances (0-2, 0-5, 0-10, 0-20, 0-30, 0-50, 0-100, and 0-200 mi).

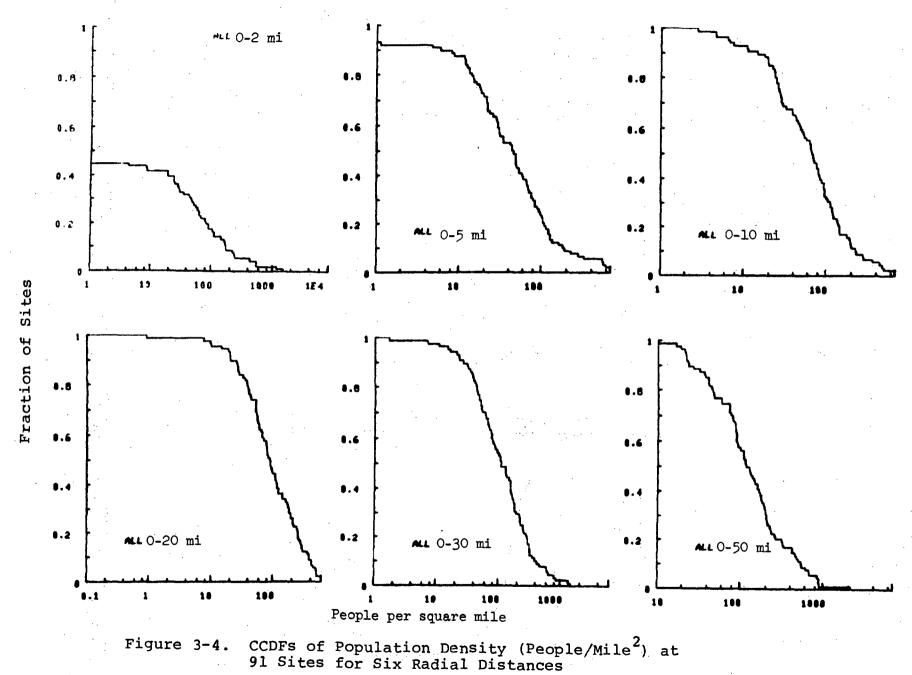
*Population density CCDFs are Log-Log plots of the fraction of sites vs population density. Any point on the distribution gives the fraction of sites (y-axis value), which have a population density within the specified portion of the grid (annulus, circle, sector), that is greater than or equal to the specified population density (x-axis value). Set 3: the most populated 22.5° sector in each of six annuli (0-2, 2-5, 5-10, 10-20, 20-30, and 30-50 mi) on the 16 sector grid.

Set 4: the most populated 22.5° sector in each of six radial distances (0-2, 0-5, 0-10, 0-20, 0-30 mi, and 0-50 mi) on the 16 sector grid.

Set 5:


the most populated 45° sector (two adjacent 22.5° sectors) in each of six annuli (0-2, 2-5, 5-10, 10-20, 20-30, and 30-50 mi) on the 16 sector grid.

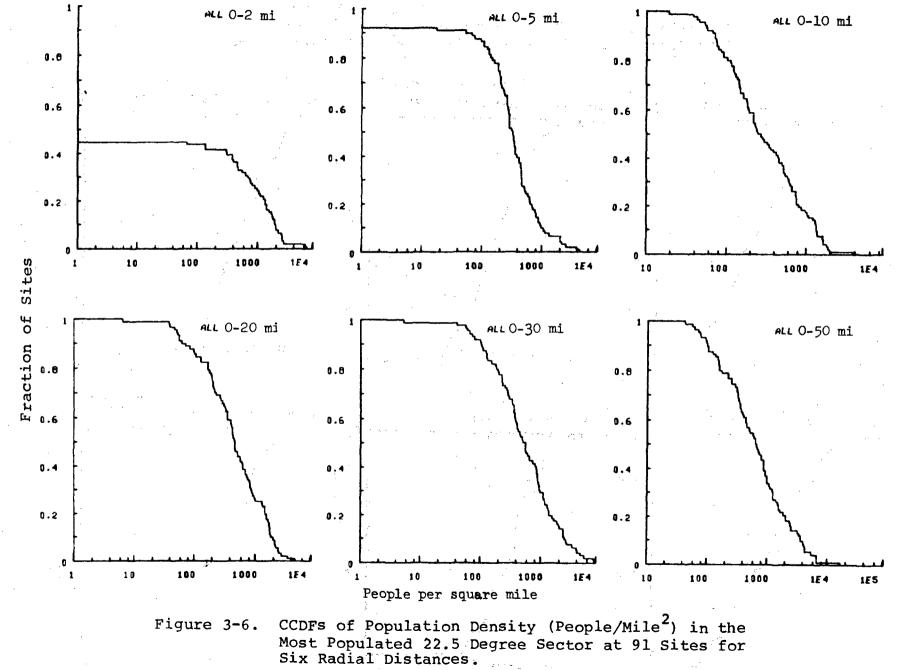
Set 6:

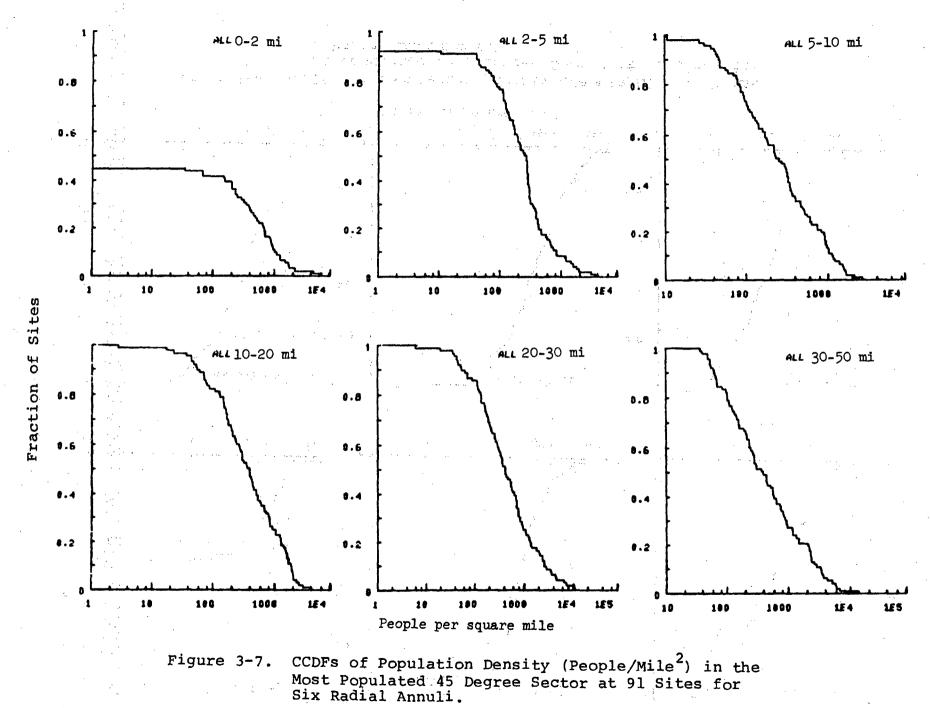

the most populated 45° sector (two adjacent 22.5° sectors) in each of six radial distances (0-2, 0-5, 0-10, 0-20, 0-30, and 0-50 mi) on the 16 sector grid.

Each set of CCDFs contains CCDFs for each of the five NRC administrative regions (NE, MW, S, W, SW) and for all regions combined (All). CCDFs were also calculated for 45° sectors because atmospheric dispersion can produce plumes with an angular dispersion greater than 22.5°.

Because of the large number of CCDFs calculated (total of 240) most of the CCDFs are presented in Appendix D. Also presented in Appendix D are the site specific data from which the CCDFs were constructed. In this section, Figure 3-3 presents CCDFs of population density at the 91 sites for six radial annuli (0-2, 2-5, 5-10, 10-20, 20-30, and 30-50 mi) and Figure 3-4 presents CCDFs for six radial distances (0-2, 0-5, 0-10, 0-20, 0-30, and 0-50 mi). CCDFs of population density, in the most populated 22.5° and 45° sectors at each of the 91 sites, are presented for the same two sets of six annuli and six radial distances in Figures 3-5 through 3-8. Tables 3-2 and 3-3 list maximum, 90th percentile, median, and minimum population densities for each of the five NRC administrative regions and for all regions combined for eight annuli and eight radial distances. Table 3-4 presents population densities for 4 radial distances of the most populated 22.5° sector for each of the five administrative regions and for all regions combined. Finally, Figures 3-9 through 3-11 present scatter plots

ω-8




3-9 .

ALL 2-5 mi 1 1 ALL 5-10 mi . ALL 0-2 mi $e_1 = \frac{1}{2} e_1^2$ 0.8 0.8 0.8 ير دون مير. وي وي 0.6 0.6 0.6 S11 0.4 0.4 0.4 0.2 0.2 0.2 10 100 1000 1E4 10 100 1000 10 1000 1 1E4 100 1 1E4 Sites 3-10 Fraction of ALL 10-20 mi ALL 20-30 mi ALL 30-50 mi 0.8 0.0 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 100 1000 1 10 1E4 1 10 100 1000 1 People per square mile 1E4 1E5 100 1000 1E4 10 1 1E5 CCDFs of Population Density (People/Mile²) in the Most Populated 22.5 Degree Sector at 91 Sites for Six Radial Annuli. Figure 3-5. Сę,

1

¢

3-12

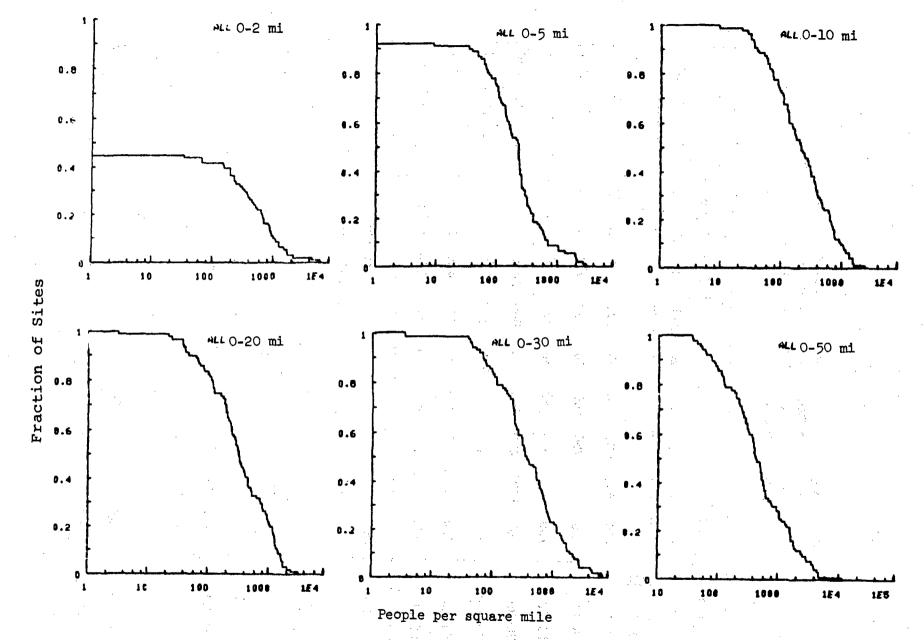


Figure 3-8. CCDFs of Population Density (People/Mile²) in the Most Populated 45 Degree Sector at 91 Sites for Six Radial Distances.

Table 3-2.

-2. Maximum, 90th Percentile, Median, and Minimum Population Densities (people/sq mi) for Seven Radial Annuli by Geographic Region and for All Regions Combined.

CCDF Value	Махіл						90+1	Perc	centil	P			1
Region	NE	MW	S	Ŵ	SW	All	NE	MW	S	w	SW	A11	
Interval (mi)		1°174		••••••••••••••••••••••••••••••••••••••						••••••		AII	
		F 40	100	100	20	700	740	270	100	100		100	
0-5	790	540		100	30	790	740	270	100	100	30	190	
5–10	620	700	250	100	40	700	550	280	180	200	40	260	
10-20	730	530	510	180	150	730	670	340	300	180	150	380	
20-30	2000	1300	490	490	230	2000	1800	620	200	490	240	490	
30–50	2500	1200	210	630	290	2500	770	940	160	620	280	660	
50-100	880	440	180	310	90	880	820	430	110	310	90	420	
100-200	350	190	160	150	40	350	280	170	110	150	40	190	
CCDF Value	Media	n					Mini	mum	,	. *			
Region	NE	MW	S	W	SW	A11	NE	MW	S	W	SW	All	
Interval (mi)	,	· fan /		n dharaanna ar	,		(5.000 (9.00 Min 6.000				
0-5	100	60	30	20	10	40	0	8	· 0	0	0	0	
5-10	130	60	80	30	20	80	6	4	8	2	7	2	
10-20	170	90	70	60	30	90	40	9	10	0	7	0	
20-30	180	120	100	50	40	110	50	9 ·	8	2	7	2	
30–50	400	100	80	40	130	110	50	20	10	20	30	10	
50-100	360	130	80	50	40	90	20	10	30	10	20	10	
100-200	170	110	70	30	30	80	20	30	8	9	6	6	ł

Table 3-3.

Maximum, 90th Percentile, Median, and Minimum Population Densities (people/sq mi) for Seven Radial Distances by Geographic Region and for All Regions Combined.

CCDF Value	Maxim	um		E .			90th	Perce	ntile			
Region	NE	MW	s	W	SW	Al].	NE	MW	S	W	SW	A11
Interval (mi)												
0–5	790	540	180	100	30	79 0	740	270	100	100	3 0	190
0-10	650	660	200	170	30	660	470	270	150	170	280	23 0
0-20	710	470	410	160	110	710	630	340	250	160	110	380
0-30	1500	850	380	320	180	1500	1300	460	29 0	330	180	420
0–50	2100	890	210	460	200	2100	880	830	200	460	200	530
0-100	760	370	170	3 50	100	760	750	350	130	360	100	440
0–200	3 50	210	160	120	50	350	340	200	100	120	50	290
CCDF Value	Media	n	· .	:	*	• ,••	Minim	um				
Region	NE	MW	S	W	SW	ALL	NE	MW	S	W	SW	A11
Interval (mi)												
0-5	100	60	30	20	10	40	·. 0	8	0	0	0	0
0-10	120	60	7 0	3 0	20	70	4	10	6	3	7	3
0-20	210	90	60	50	30	90	30	10	20	ļ	8	1
0-30	23 0	120	100	50	30	110	50	20	10	2	7	2
0-50	320	120	90	50	90	120	50	20	20	10	20	10
0-100	330	120	80	70	70	9 0	80	10	40	10	30	10
0-200	290	130	80	40	40	9 0	50	3 0	20	20	10	10

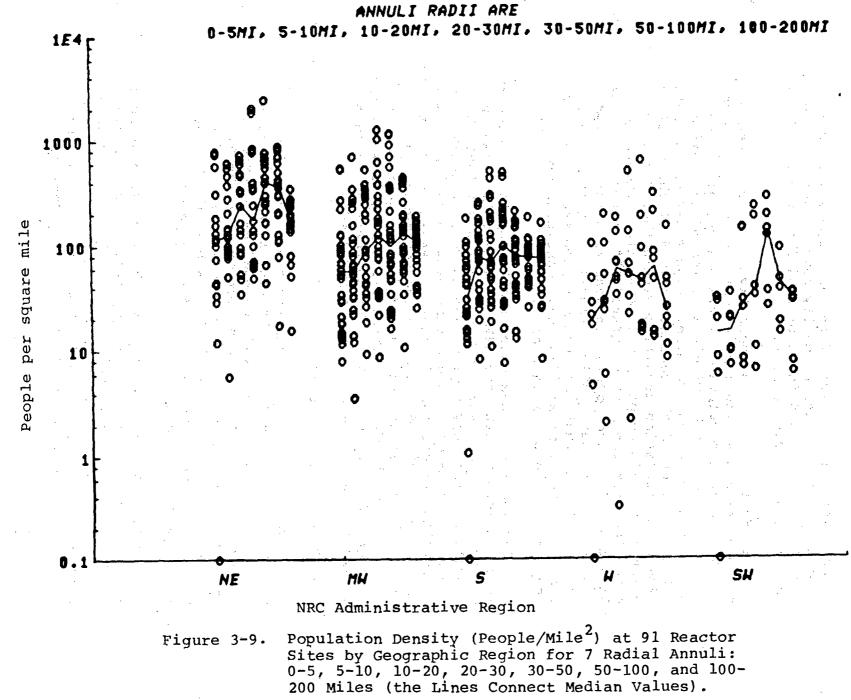
Table 3-4. Maximum, 90th Percentile, Median, and Minimum Population Densities (people/sq mi) for the Most Populated 22.5° Sector within Four Radial Distances by Geographic Region and for All Regions Combined.

	······											
CCDF Value	Maxim	um		2			<u>90th</u>	Percen	tile	- - 		
Region	NE	MW	S	W	SW	A1.1	NE	MW	S	W	SW	A11
Interval (mi)			: '			·						
0-5	4200	2000	950	450	320	42 00	3500	2000	510	460	310	950
0-10	2000	3800	1300	1600	140	3800	1300	1400	1000	1500	140	1000
0-20	4500	3400	2600	800	860	4500	2000	2100	2100	780	860	1800
0–30	8700	5200	4000	1800	1600	8700	3700	3200	1300	1800	1600	2500
CCDF Value	Media	<u>n</u>					Mini	mum				· · ·
Region	NE	MW	S	W	SW	All	NE	MW	S	W	SW	All
Interval (mi)										יאַרָּאַ אַראַראַראַראַר אַראָר א יי		
0-5	630	350	240	280	170	330	0	50	0	0	0	0
0-10	· 75 0	220	280	150	··· 7 0	27 0	40	40	60	20	50	20
0-20	880	6 2 0	3 60	430	150	480	170	40	50	6	40	• 6
0-30	940	.800	430	290	120	550	110	60	40	5	7 0	5
		;		•								

3-16

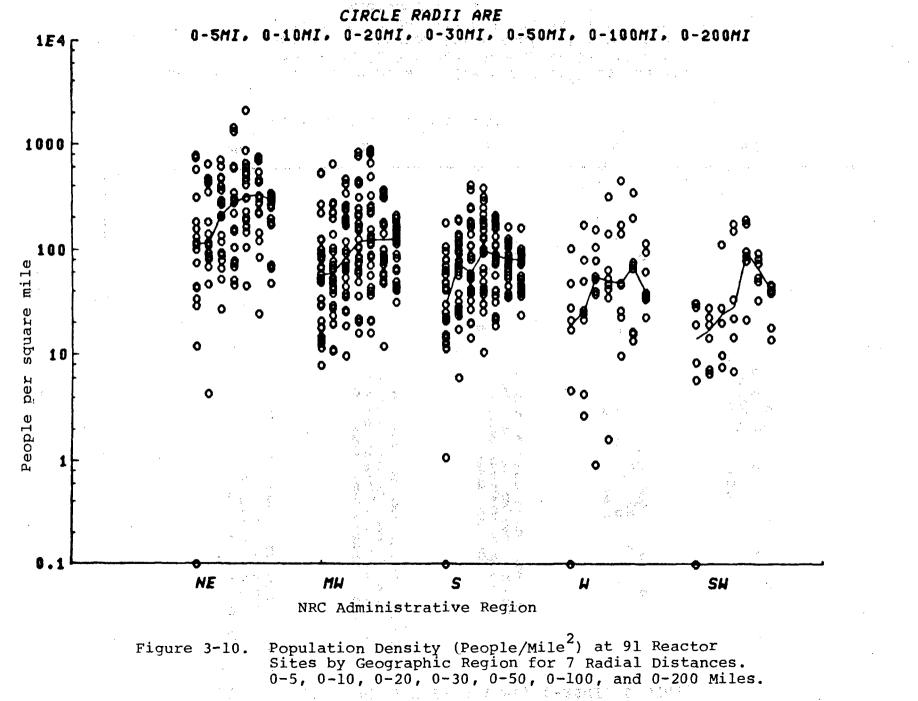
٤.

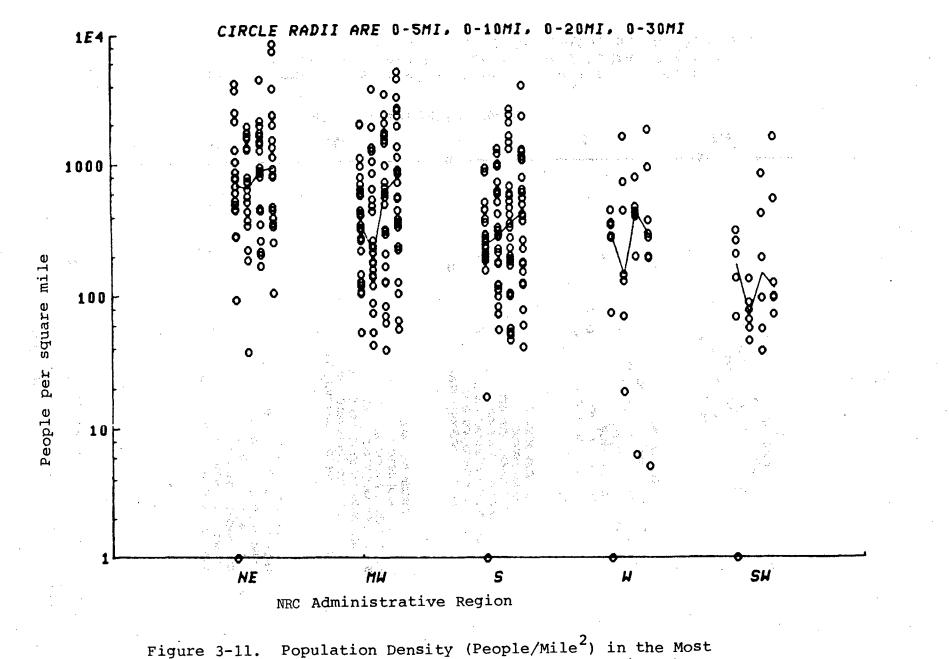
by administrative region of the site specific population data for population density seven annuli and seven radial distances, and for four radial distances of the most populated 22.5° sector.


In Section 2.7.4 the sensitivity of consequences to population distribution was examined using a number of hypothetical population distributions, all of which had average densities within 30 miles of the reactor of 750 people per square mile. Figure 3-4 shows that, within 30 miles of the reactor, only 4 of the 91 sites (4%) have population densities within that distance which exceed 750 people per square mile. Figure 3-8 shows that for the most populated 45° sector 30 of the 91 sites (33%) have population densities that exceed 750 people per square mile. Finally, Figure 3-6 and Table D1.4 show that for the most populated 22.5 sector 38 of the 91 sites (42%) have densities greater than 750 people per square mile.

Examination of the reactor site population density scatter plots for the five NRC administrative regions presented in Figures 3-9 through 3-11 shows that the densities within any region range across approximately two orders of magnitude and that between regions there is substantial overlap of ranges. Densities are largest in the Northeast and lowest in the Southwest; qualitatively the densities are ordered from largest to smallest: NE, MW, S, W, SW. Tables 3-2 through 3-4 confirm this qualitative ordering, although there are a number of exceptions (S and W are often inverted).

3.4 Time Dependent Trends


Figure 3-12 presents scatter plots by region of the year of site selection (the year in which a construction permit was granted was used as a surrogate for the actual year of site selection) for the 91 reactor sites examined in this study. Only four sites were selected prior to 1960, two each in the Northeast and the Midwest. Not until 1973 was a reactor site selected in the Southwest.


Because the years during which sites were selected are distributed over time quite differently by region, trends by selection year in the density of the population distributions surrounding reactor sites were also examined both by region and for all regions combined. Figure 3-13 presents plots of population density within

.5

1

-11. Population Density (People/Mile⁻) in the Most Populated 22.5 Degree Sector at 91 Sites by Geographic Region for 4 Radial Intervals: 0-5, 0-10, 0-20, and 0-30 Miles.(The lines connect median values).

٩,

30 miles of the site versus year of site selection, for each region and for all regions combined. The line on each plot is the least squares linear fit of the data. The slope of the line is the change in the logarithm of 30-mile population density with time. The lines for the Northeast, Midwest, and South have slopes which, given the scatter in the data points, are little different from zero (NE = -0.04, MW = -0.01, S = 0.03). Given the narrow time span and considerable scatter of the five Southwest site selection years, the slope of that plot (SW = 0.7), though substantial, is of no importance. Only for the West (W = -0.23) and to a lesser degree for all regions combined (All = -0.08) do the slopes of the plots seem important.

To better define the significance of the time trends displayed in Figure 3-13, an analysis of variance [3] of the logarithm-transformed population density data was The analysis partitioned the variability performed. in the data among four terms: one for the common time trend of all regions combined, one for unique time trends within each region, one for regional differences corrected for regional time trends, and a residual term for variability not attributable to either regional differences or time trends. The results of this analysis are presented in Table 3-5. In the table, the mean square value is obtained by dividing the sum of squares value by its number of degrees of freedom (number of independent terms in the sum of squares). Comparison of the magnitude of the mean square values indicates the relative importance of the three terms (mean square values large by comparison to the residual mean square value are useful in explaining the observed variability).

Table 3-5 Analysis of Variance

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square
Common time trend	11.2	1	11.2
Regional time trend	18.4	4	4.6
Regional differences corrected for regional time trends	7.1	4	1.8
Residual	82.0	81	1.0
TOTAL	118.7	90	

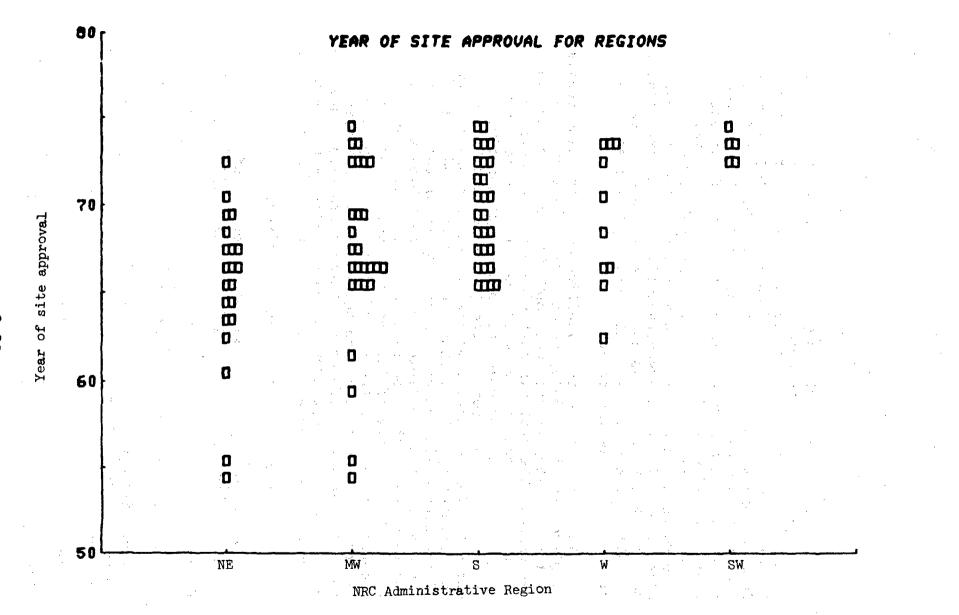
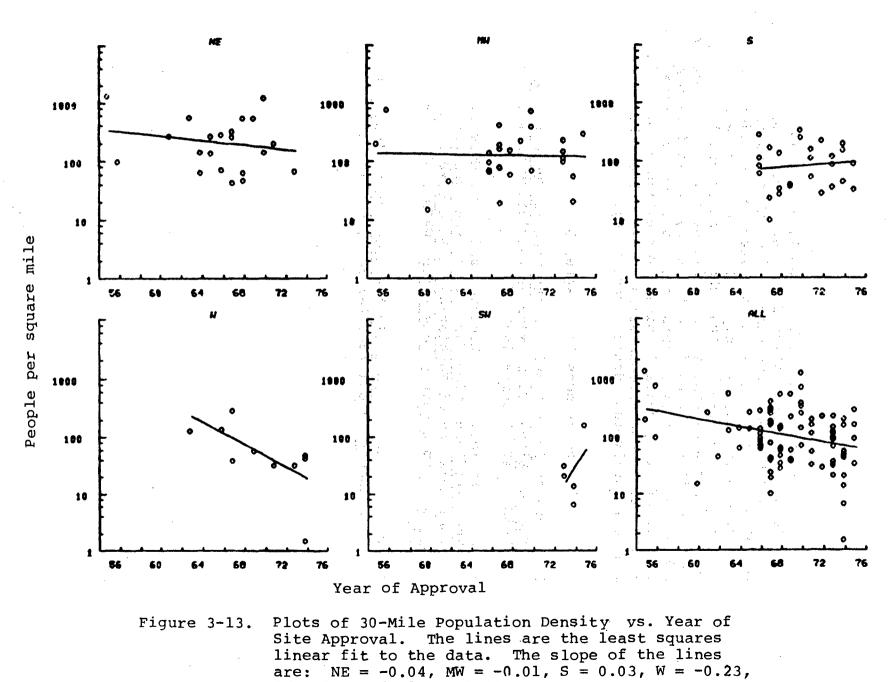



Figure 3-12. Scatter Plot by Region of Year of Site Approval.

3-22

۵.

SW = 0.7 and All = -0.08.

POPN DENSITY US APPROVAL YEAR FOR 91 REACTOR SITES BY REGION 3-23

Table 3-5 suggests that the variability in logarithmtransformed site population data results principally from a common trend with time. Since this common trend is not strong (the slope of the linear correlation for all regions combined is only -0.08), its importance is unclear. It is possible that the trend toward less dense siting with time is (1) real, or (2) an artifact of the data. If the trend is real, it may result from some factor not addressed by this analysis (e.g., with the passage of time, suitable sites near cities become unavailable, so more remote sites are selected, which are necessarily less densely populated).

References for Chapter 3

1. Demographic Statistics Pertaining to Nuclear Power Reactor Sites, U. S. Nuclear Regulatory Commission, NUREG-0348, October 1979.

2. J. E. Kohler, A. P. Kenneke, and B. K. Grimes, <u>The Site Population Factor: A Technique For</u> <u>Consideration of Population In Site Comparison</u>, <u>U. S. Atomic Energy Commission</u>, WASH-1235, October 1974.

3. P. W. M. John, <u>Statistical Design and Analysis of</u> Experiments, Macmillan, New York, NY, 1971.

Site Availability Impacts

na en la seconda estructura de la grada por conservador Persona de la constructura de la constructura de la conserva 4.1 Introduction

The previous chapters of this report have examined the potential consequences of accidents at nuclear power reactors and the relationship of site population distribution to consequences. In addition, the population characteristics of current sites were examined. In order to reduce societal risk from siting, it is desirable to locate reactors in areas of low population density. This, of course, forces a trade-off between reduced risk and site availability. To evaluate more precisely the implications of this trade-off, this chapter reports on work performed by Dames and Moore, under contract to Sandia, to study the impacts of siting criteria alternatives on land availability. The study included consideration of the impacts on site availability of environmental factors (seismicity, topographic character, surface and groundwater availability, and restrictions due to regulations (wetlands, National parks, etc.)) as well as population.

4.2 Methodology

The study was performed in three steps: identification of issues affecting site availability, data collection, and analysis and display of data. The final step was performed iteratively, using Dames and Moore's Geographic Information Management System (GIMS), which manipulates geographical data in a grid cell format. e tele le construction en le trèfen de

4.2.1 Issues of Concern

A set of general siting issues was defined and used to identify and discriminate more suitable siting areas from less suitable ones. These issues cover a variety of demographic considerations and a diverse set of environmental siting criteria relating normally to costs. The second second second second

Three issues were defined for population criteria. These are:

 Stand-off Zones -- restrictions imposed by distance from urban centers of a particular size;

2. <u>Population Density</u> -- a measure of population density within a specified (circular) area; and

3. Angular Population Distribution -- a measure of the uniformity of population distribution within a specified (circular) area.

Four issues were defined for environmental criteria. These are:

- 1. <u>Restricted Lands</u> -- those areas in which the development of a nuclear power plant is difficult due to legal constraints or the predominance of wetlands;
- 2. Seismic Hardening -- the additional cost or difficulty of compliance with seismic design criteria; assumed to be measured by the maximum expected (50 year) horizontal ground acceleration expressed in fractions of gravity (g);
- 3. <u>Site Preparation</u> -- A relative measure of the ruggedness or topographic character expressed as an index which indicates the percentage of land with access and construction difficulty; and
- 4. <u>Water Availability</u> -- an index reflecting the relative cost of obtaining water for cooling.

The latter three issues were further combined to define an overall environmental suitability measure.

It is necessary to keep in mind that the goal of this study was to provide information regarding land availability and not to select sites on which to construct nuclear power plants. The defined issues were analyzed on a nationwide basis to yield trends and indicate areas on a regional basis that could be considered for selection of power plant sites. Site selection analyses are generally conducted at a more specific scale and level of resolution. This is especially true for environmental criteria. Many site selection issues are related to physical features that are not geographically extensive, or consider factors that are important in the site planning process (which includes the precise location of the reactor and other plant facilities within the site). While these factors are important for specific site identification, they are not considered here.

4.2.2 Data Structure Diagram

A data structure diagram describing the flow of data and information through the Dames and Moore study is presented in Figure 4-1. The diagram shows the sources and flow of information on the demographic and environmental issues as well as how these issues are combined to provide assessments of land availability for various siting criteria.

The data structure diagram is principally an aid to help conceptualize the entire impact analysis. For the most part, each box on the diagram represents a map that was created or a data file that could be displayed as a map.

4.2.3 Display of Results

Results are presented as maps which display the impact of a criterion, which when printed on a transparent medium, can be overlaid on other maps to see the effect of composite criteria. Many of the results are displayed for the whole U.S. as well as for the northeastern section of the U.S. (the most populous region of the country).

In addition to maps, results are presented as tabulations of statistics for each state for various categories of information. Most of this statistical work was performed for comparisons of impacts of environmental suitability and population criteria and is described in Section 4.6.

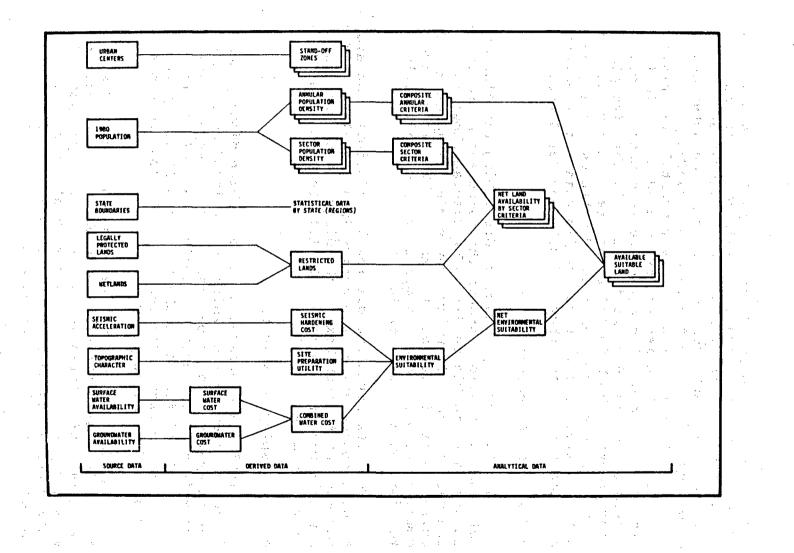


Figure 4-1 Data Structure Diagram for the Dames and Moore Study

4

. e**i**r=

4.2.4 Geographic Information Management System

The Dames and Moore Geographic Information Management System (GIMS) was employed for this study. GIMS is a computerized system that provides planners with a comprehensive approach to recording, storing, manipulating and displaying the mappable information used in studies of this nature. The system provides a data base which can be readily updated, and allows evaluation of many alternative criteria that would otherwise be explored by time-consuming manual procedures.

建筑建筑研究主要的 化二氯化合物 化合金

4.2.5 Mapping Approach

The mapping approach is a function of four related factors: (1) characteristics of the study area; (2) nature of the input data; (3) analysis methodology; and (4) desired output or display products. All of these factors are important in determining the base map and grid cell size and shape. Based on these considerations, the Albers Equal Area projection was chosen at a scale of 1:3,168,000 (1 inch = 50 miles) for digitizing input data and displaying output results. In addition, it was decided that data would be analyzed using a grid system consisting of square cells 5 km on a side (each cell represents 25 km² or 9.65 square miles). An artificial equal-area grid was placed on the base map by converting longitude and latitude coordinates into X and Y coordinates given in meters on the ground from an origin in the southwest corner of the map. Using grid cells of this size and shape and the Albers projection ensures that any maps produced from the analysis have several important characteristics:

- Format is consistent with map projection and level of detail of input data;
- A reliable sampling of population data (especially for the smaller area annuli) is maintained;
- Computer time and cost are at an efficient level;
- 4. Maps are of manageable size while retaining important visible regional patterns;

5. Directional bias of analysis is minimal; and
 6. Line printer graphics show area relationships truly, and thus, do not distort the implied impacts of criteria.

4.3 Data Base

,我们就是我们一下去了,不可能是一个人,我们们不是不可能。我们们不会们的我们就是我们有些不能是我们就是我们就是我们就能让你们,这个人,我们不是不是不是不是我们的,我们就不是是不是我们的,我们就是不是我

The data base consists of those data necessary for analyzing both demographic criteria and net environmental suitability. It includes:

 $(x,y_1,y_2,y_3) \in \mathcal{F}$

1. Demographic Data

 Location and population of urban centers
 1980 population estimated for enumeration districts

2. State and national boundaries

3. Restricted lands

o Legally protected

o Major wetlands

4. Seismic hardening

o Seismic acceleration

5. Site preparation

o Topographic character

6. Water availability

o Surface water availability

o Groundwater availability

4.3.1 Demographic Data

Site availability impacts based on demographic characteristics considered both standoff distances from urban centers and surrounding population density and angular distribution. These analyses required two types of data.

4.3.1.1 Urban Centers

Data concerning urban centers were extracted from NUREG-0348 [1]. This publication categorizes urban centers into three groups: those centers with population in excess of 25,000 people, greater than 100,000 people, and greater than 200,000 people. The data were updated with information provided by the NRC to include population figures for urban centers greater than 250,000 people, greater than 500,000 people and greater than 1,000,000 people.

Populations for these urban centers were identified geographically by latitude and longitude coordinates. The degrees of longitude and latitude were converted into X and Y coordinates which corresponded to the same geographic grid that was applied to the Albers base map as discussed in Section 4.2.5. This conversion prepared the data for eventual use in the production of maps showing how much land would be available after imposing population center standoff zone criteria. The analysis of standoff zones is discussed in Section 4.5.1.

4.3.1.2 Population Density

To calculate population density, analyze various criteria, and ensure that the results are reliable in the face of changing national population trends, it was necessary to obtain the most up-to-date and detailed population figures. Figures from the 1980 decennial census were not available in time for use in this study. In their place, estimates for 1980 population were used. Data were supplied by the National Planning Data Corporation (Ithaca, New York). While it is difficult to give an estimate for the percent error, it is believed that the data are guite reliable, especially when individual data points (which correspond to centroids of enumeration districts or block groups) are taken in groups of 4 or 5. This is typically the case in this study. It is especially true for all areas except the most remote and rural. Thus, the data are considered reliable for its intended function, the analysis of population data around the more urbanized areas of the country.

The 1980 population estimates were obtained formatted on magnetic tapes with population figures geographically referenced by latitude and longitude. As with urban center data, the degrees of longitude and latitude were converted into X and Y coordinates on the Albers grid system. This process prepared the demographic data base for analysis of population density. The analysis is discussed in Section 4.5.2.

4.3.2 State Boundaries

Using the Albers base map at 1:3,168,000 scale, all coastlines, international boundaries, and state boundaries were digitized. The area within each state was assigned a unique code to identify it for further use. The state boundaries map file allows analysis or display of results on an individual state basis or by any group of states.

4.3.3 Restricted Lands

The nature of certain areas of the country causes them to be protected or restricted from development. Two types of lands were considered as restricted: legally protected lands and existing wetlands.

4.3.3.1 Protected Lands

The Energy Reorganization Act of 1974 (Section 207) states that national forests, national parks, national historic monuments and national wilderness areas should be excluded from consideration as potential nuclear energy center sites. While this study did not deal with nuclear energy centers, it is reasonable to consider such lands as protected from the siting of a single nuclear power plant, regardless of a national policy on this matter. Utility industries tend to avoid such areas because of the possibility of time consuming and costly legal battles. The following areas were considered to be protected:

o National Parks

o National Forests

o National Monuments

o National Wilderness Areas

ο	National	Grasslands
	and the second	all share that the start of

National Wildlife (Game) Refuges 0

0 National Recreation Areas

National Seashores 0

State Parks ο

e an e come a come a

State Forests

0

- State Reserves/Refuges 0
- State Recreation Areas 0
- o Military Reservations
- Indian Reservations ο

A REAL PROPERTY AND A

Three different map sources were used to obtain the locations of these protected lands. The United States base map utilized in this study (compiled by the U.S. Geological Survey, 1965) was used to extract the location of national parks, forests, monuments, wildlife refuges, and Indian reservations. Sectional sheets at a scale of 1:2,000,000 from the National Atlas [2] were used to update the boundary information for the above protected lands as well as to obtain the location of national recreational areas. Because of the relatively small size of protected state areas and some protected national areas, a screening process was used for certain types of land, rather than identifying and digitizing every one. Because this study dealt not with site selection but with the general patterns of land availability, a minimum size screen of 100 square miles was used for the following types of areas: military reservations, national grasslands, state parks, state forests, state monuments, state reserves and refuges, and state recreational areas. Information for these types of lands was obtained from the 1980 Rand McNally Atlas, as this was the most detailed, up-to-date and uniform source of information.

4.3.3.2 Wetlands

Besides the above legally protected lands which would be restricted from development either on the basis of national policy or avoidance on the part

of the utility industry, certain types of environmental restrictions might be imposed as well. For this study, one such environmental constraint was applied -- namely, the location of major wetlands. It is the policy of the Water Resources Council to ensure the protection of wetlands from adverse impacts and degradation [3].

No uniform nationwide data base exists regarding the location of major wetlands. After consideration of several approaches to defining the extent of wetlands in an efficient manner, a source was found to satisfy the needs of this study. The 1:2,000,000 scale sectional sheets of the National Atlas [2] were used to outline the extent of major wetlands. At this scale, only major wetlands can be shown. A comparison of these source data with more detailed map data shows that some of the wetland boundaries have been generalized and most wetlands less than 60 square miles were probably not shown on the sectional sheets.

The locations of both protected lands and wetlands were digitized into separate map files. Each of the 15 different types of protected lands was given a unique identifying code to allow individual consideration of each type of protected land. The two map files were added together to produce a map file called restricted lands (Figure F1 in Appendix F). The restricted lands file was later added to the individual environmental issue map files as well as the environmental suitability map file to produce maps showing the location of restricted lands, and conversely, the net availability of land.

4.3.4 Seismic Hardening

There are generally three major factors to be considered in the seismic evaluation of a nuclear power plant site:

- Fault Rupture Hazard -- primarily a siting problem;
- 2. <u>Dynamic Soil Stability (liquefaction)</u> -- both a siting and a design problem; and
- 3. <u>Strong Ground Motion (vibratory)</u> -- both a siting and design issue.

Siting requirements are specified by the NRC [4] and the evaluation of a site (for design purposes) is based on the additional cost imposed by the site-related conditions. Although a detailed site qualifications study would require the careful consideration of all three factors, their evaluation generally requires effort far beyond the scope of this study. However, after careful consideration of their overall impact, a methodology was developed for a coarse screening process which reflects the overall impact of these factors. The data necessary to evaluate the potential problem from the standpoints of rupture hazard and dynamic soil stability were not uniformly available throughout the United States. For this reason, seismic hardening was evaluated solely on the basis of vibratory ground motion.

Strong ground motion criteria are determined by the postulated Safe Shutdown Earthquake (SSE) which is the largest possible event on the controlling seismogenic feature, which could be a capable fault (not necessarily the closest one) or a tectonic province. The SSE is determined on the basis of historical earthquake data (seismicity) and detailed investigation of the length and capability of nearby faults, according to procedures specified by the NRC [5]. The plant must be able to survive such an earthquake in a manner which will not result in the release of radioactivity in excess of stated limits. An additional design requirement is imposed by the Operating Basis Earthquake (OBE) which is commonly defined as having a peak acceleration equal to 1/2 that of the SSE. The plant must be designed so that it can continue to operate during and after an OBE: alternatively, none of the structural or mechanical components may be stressed beyond their elastic limit by the OBE.

While the detailed investigations required for the determination of the SSE for each 5 km by 5 km grid cell were clearly beyond the scope of this study, it was possible using available data to probabilistically evaluate the relative severity of the strong ground motion hazard in the study area and consider costs of seismic hardening. This was accomplished using probabilistic studies of seismic risk prepared by Algermissen and Perkins [6] and the Applied Technology Council (ATC) [7] and supplemented with information from a U.S. Geological Survey professional paper [8]. The ATC map represents an adaptation of a comprehensive analysis by Algermissen and Perkins. The map shows accelerations in bedrock expressed as a fraction of gravity. The combination of these three sources resulted in the seismic acceleration source data map illustrated in Figure F2, Appendix F.

The map shows the horizontal acceleration (expressed as a fraction of gravity) in rock with a 90 percent probability of not being exceeded in 50 years. According to Algermissen and Perkins:

"Certain facilities such as nuclear power plants may require design adequate for accelerations with exceedance probability no larger than 0.5 percent in 50 years. For structures for which very low exceedance probabilities are appropriate, it is clear that this source map indicates only a relative idea of the hazards -- the design motions will be high for much smaller exceedance probabilities. In those regions where seismicity is lower than in California, the accelerations shown on this map vary with return period according to the very approximate rule: the level of motion doubles as the return period increases by 5 (exceedance probability decreases by 5)."

This rule was used to modify the values on the source data map. The exceedance probability was decreased by a factor of 5 -- from 10 percent to 2 percent -- and the acceleration values were doubled. Another iteration of this process decreased the exceedance probability from 2 to 0.4 percent and again doubled the acceleration values. The new values were then considered to be four times the values expressed in Figure F2. Thus, the data in the modified map file became consistent with the notion of using a 0.5 percent exceedance probability for nuclear power plants (as suggested by Algermissen and Perkins).

The seismic risk source data file was further adapted by interpolating between the contour levels to develop a more continuous distribution of seismic risk (horizontal acceleration). The continuous distribution was desirable from a siting standpoint, so that sites falling on either side of a dividing contour would not appear to have greatly differing seismic requirements. (The contours of the source map do not generally have any geological significance which would warrant such sharp distinctions.) It is still recognized that the absolute resolution of the source data map is probably no more precise than the contour intervals given. However, the relative ranking of areas for reactor sites is probably representable to the finer resolution implied by the interpolation.

The general impact of seismic design requirements is assumed to be proportional to the specific cost of the additional design and construction features required to satisfy the seismic design requirements. In NUREG/CR-1508 [9], seismic hardening costs were calculated and shown on a graph relating the Safe Shutdown Earthquake expressed as a fraction of gravity to the estimated cost differential in millions of dollars. The cost curve used in this study is shown in Figure 4-2.

The map shown in Figure F2, Appendix F, indicates that the lowest acceleration contour is equal to 0.05g. Remembering that the exceedance probability was twice decreased by a factor of 5 (thereby twice doubling the ground motion), the lowest acceleration contour may now be considered equivalent to 0.2g. By applying Stevenson's cost information to the modified probabilistic seismic acceleration information, a cost surface that shows the additional cost of seismic hardening was generated.

Using the curve shown in Figure 4-2, acceleration values between 0.2g and 0.6g (0.05 and 0.15 on the source map) were assigned costs ranging from \$23.7 million to \$55.5 million. Acceleration values of less than 0.2g were assigned a cost of \$23.7 million (the same as for 0.2g). This was because nuclear power plants in the U.S. are designed for an SSE of 0.2g, although it may be possible to build them more cheaply. For acceleration values greater than 0.6g, it was felt that there is no reasonable way to accurately estimate the increased costs of seismic hardening. Rather than assign a cost, they were labeled "inestimably high".

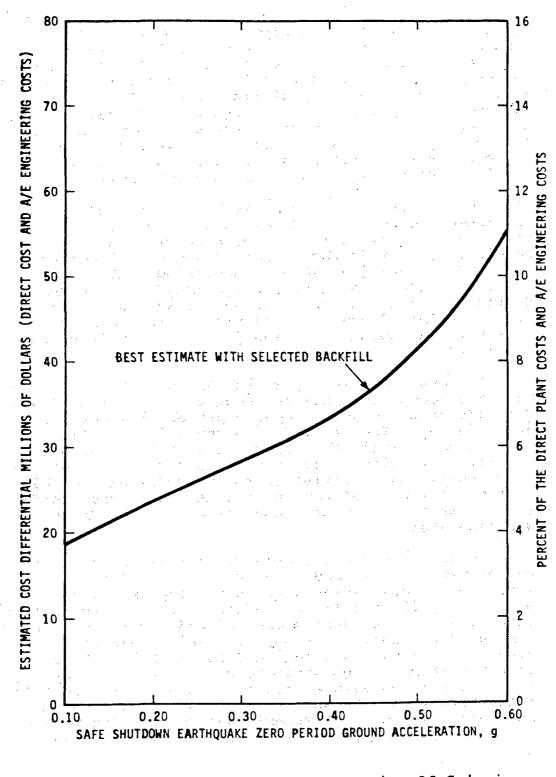


Figure 4-2. Cost Increase As A Function Of Seismic Load for Nominal 1100-MWe Nuclear Power Plant (1977 Dollars)

The costs derived from Figure 4-2 (1977 dollars) were next converted to 1980 dollars yielding a low of \$31.5 million and a high of \$73.9 million. To calculate the cost of seismic hardening that was considered as "additional", the design-basis value of \$31.5 million was subtracted from all the costs. This resulted in a range of costs of 0.0 to \$42.4 million. The graphic display of seismic hardening cost is shown in Figure F3, Appendix F.

4.3.5 Site Preparation

An increase in slope or ruggedness of terrain translates directly into increased cost for construction. This includes the difficulty that may be encountered in excavation for foundations, construction of access roads where low grades are required (due to the transport of large components such as the turbine or pressure vessel), and finally, measures that must be taken to mitigate environmental disturbances such as control of run-off and erosion from cut slopes.

To evaluate the impact of topographic character on site preparation cost over a large regional area, a general index that indicates both the steepness of slopes and the areal extent of such slopes was sought. Such data was found in a paper by E. H. Hammond [10] and his map which was adapted and found in the National Atlas [2]. Regions on the map are characterized by the percentage of their area which is classified with a topographical gradient of less than 8 percent slope (gently sloping). The 8 percent slope is not a critical threshold value for land utilization. It does, however, indicate a value beyond which movement of vehicles becomes impeded, and in general, construction and operation becomes more difficult.

The smallest region delimited and given a classification has an area of about 800 square miles. Smaller areas are omitted or absorbed into the adjacent region that they most resemble. With this level of resolution, it is possible that sites suitable for building a nuclear power plant exist within the area characterized by even the highest proportion of rugged terrain. However, at this regional level of analysis, these special conditions are not practically observed. Because not only site ruggedness but the ruggedness of the access route for implacement of heavy components affects the construction costs, the analysis of site preparation costs is based solely on the general indication of topographic character, as defined by the data. Figure F4, Appendix F, is a map showing the source data with grey tones implying preparation costs. Four terrain classifications are shown: regions with less than 20%, 20 to 50%, 50 to 80%, and greater than 80% gently sloping (less than 8% slope).

4.3.6 Water Availability

Cooling system cost has become a major component of total power plant cost. Several factors are involved in determining cooling system cost: the type of cooling system -- mechanical draft wet towers, natural draft wet towers, cooling ponds, or once through cooling; climatic temperature distributions; existing priorities for use of available water; and restrictions such as wild and scenic rivers. While a detailed analysis of these factors is beyond the scope of this study, a methodology was developed to present a general picture of water availability and the cost involved in its use. Sources of both surface water and groundwater were mapped and costs were determined for each. The two map files were then overlaid, and a map was produced showing the least cost of available water.

4.3.6.1 Surface Water

Hydrological implications of water consumption by nuclear power plants have been discussed by Giusti and Meyer [11]. Many existing power plants are located on sites next to streams and draw their water directly from those streams without provisions for significant storage. In siting plants along rivers one must consider the periods of low flow when the impact on the water resources of total water consumed in the cooling process is at a maximum. This consideration is especially significant for plants that do not use cooling ponds with a large amount of storage capacity. In light of this, it is important to have reliable estimates of the low flow of streams from which plants can draw cooling water. According to Giusti and Meyer there are several reasons for estimating these flows:

1. Safety -- the regulatory staff of the U.S. Atomic Energy Commission (1972) in reference to a safety analysis report for nuclear power plants states:

"Estimate the probablesminimum flow rate. resulting from the most severe drought considered reasonably possible in the region as such conditions may affect the ability of the ultimate heat sink to perform adequately:";

March All States 4 1. 244 Standards -- most states have issued standards regarding the maximum permissible mineral concentration in surface water to be used for cooling. As is well known, this concentration is at a maximum at a low flow period because the flow consists of groundwater discharge which is normally more concentrated mineralogically than surface water. Additional concentration of the stream flow mineral content is brought about by transpiration which is also at a maximum during low flow periods; 11

Ecology -- maximum ecological impact on fresh 3. water biota can occur on some streams during low flow periods if the mineral concentration exceeds certain limits or if the flow is abruptly reduced by withdrawal at power plants. Furthermore, the withdrawal entails loss of biota by physical entrainment on the intake screens or by physical injury on passage through the water pumps; and

2.

4. Plant Operation -- the conditions described above may be such as to force the shutdown of the plant, with contingent costs and loss of revenue to plant operators and loss of service to consumers. While this may be considered an acceptable operational rule under exceptional circumstances, say once in 10 years, it becomes a serious problem of misdesign when recurring more often, say once every year.

Stankowski, Limerinos, and Euell [12] have examined the low water flow in the United States to provide information regarding potential sources of cooling

water. They have prepared a map which identifies those streams for which the average 7-day low flow with a recurrence interval of 10 years is at least 300 cubic feet per second (cfs). (The 7-day, 10-year low flow or 7010, is the average low flow that occurs over 7 consecutive days with a probable recurrence of 10 years.) Their map shows those stream reaches that: (1) have a 7010 of at least 300 cfs, or (2) could furnish a sustained flow of at least 300 cfs if storage were For their study, 300 cfs was selected as provided. the needed flow in the stream on the assumption that many states will not permit more than 10 percent of the dependable flow to be withdrawn for a consumption use. Ten percent of 300 cfs equals 30 cfs which is the amount of water that might be considered necessary to cool a 1,000 MWe nuclear power plant if cooling towers, sprays, or ponds are used. The requirement of 30 cfs for cooling is in agreement with the information produced by Giusti and Meyer [11]. The Stankowski, et al., map was digitized and used as a source map to show surface water availability.

To extend the utility of surface water information, the map file showing surface water availability was converted into a map showing surface water cost. First, an estimate was made of the dollar per mile pumping cost to move surface water. These costs were estimated for each of the four terrain types characterized for site preparation (Section 4.3.5). Both an initial capital cost and a 30-year operating and maintenance cost were estimated. In addition to the pumping cost, a penalty cost was added for those streams that required the use of reservoirs in order to sustain a 7010 of 300 cfs. Based on this information, a computer model was used to calculate, for each cell, the cost of obtaining surface water as a function of pumping costs over a variety of terrain and the potential use of a reservoir. The model determined the least of the cost alternatives for supplying surface water to a cell. The cost information was mapped and is shown in Figure F5, Appendix F. There are eight equal interval levels between zero and \$300 million. Costs above \$300 million were grouped together -- amounting to about 10 percent of the study area. This grouping at the high cost end allows regional differences in the more reasonable range of costs to be displayed.

4.3.6.2 Groundwater Availability

Groundwater is an important source of cooling water in many parts of the country. Characteristics of groundwater can vary quite dramatically within a small region. Despite this, an attempt was made to locate a source of information that would satisfy the broad scale requirements of this study. Using the USGS Water Supply Paper 1800 [13], and supplementing this with such maps as the Hydrologic Investigations Atlas [14], Tectonic Map of North America [15], and Shaded Relief of U.S. [16], major regions and subregions of the country were mapped as source data. Although variability exists within any one of the regions or sub-regions, regions do show differences regarding their characteristics of quality, quantity, depth to water, and required well field size.

Based on these characteristics, cost information was applied to the map data. Both capital costs and 30-year operating and maintenance costs were calculated for each of the delimited areas on the basis of dollars per well. To obtain the equivalent of 30 cfs from any of the generalized aquifers, it would be necessary to sink several wells. The required number of wells was calculated by dividing 30 cfs by the expected yield per well of the given aguifer. Multiplying this number of wells by the cost per well resulted in the cost associated with bringing 30 cfs to the surface from any of the generalized aquifers. It was observed that several of the generalized aquifer areas require well fields which are too large for practical use. For these areas, groundwater was considered to be unavailable in a prac-For reasonably sized well field areas, tical sense. the cost of collecting the water from numerous wells and bringing it to a single point was estimated. For each of the groundwater regions, the two costs -- that of bringing the water to the surface, and that of collecting the water from a well field, were added together. The cost data were then mapped as is shown in Figure F6, Appendix F.

4.3.6.3 Combined Water Costs

Using the cost information for both surface water and groundwater, a map file was created which indicated the cost of obtaining cooling water using the least expensive alternative. To do this, the two map files -- surface water costs and groundwater costs, were compared on a cell-by-cell basis. For every cell, the lowest cost value was saved and placed into another map file. This was called "combined water cost" and the map is shown in Figure F7, Appendix F.

4.4 Environmental Suitability Analysis

In order to evaluate the impact of demographic criteria on land availability it was necessary to first establish a base of available land. This base was constructed from the protected area and environmental consideration data bases. The environmental factors were combined by dividing utility functions for each factor, and then summing the utility values within each cell. The protected areas were then overlaid on this data.

4.4.1 Individual Site Availability Issue Assessments (Utility Functions)

1917 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 - 1919 -

To evaluate the suitability of each potential site area, each of the siting issues was first evaluated independently. This evaluation was accomplished by defining a utility function for each issue such that the characteristics of a specific site area could be translated into a value on a defined suitability scale. This was a numeric scale ranging from 1 to 9, where 1 was the lowest level of suitability and 9 was the highest.

4.4.1.1 Seismic Hardening Cost Utility Function

The issue of seismic hardening was assigned a utility function on the basis of additional hardening costs as discussed in Section 4.3.4. Table 4-1 shows the data categories of seismic hardening costs and their corresponding utility value.

A map of the seismic hardening utility function was produced and is shown in Figure F3, Appendix F. (This is the same map used to show the cost of seismic hardening.)

TABLE 4-1

SEISMIC HARDENING UTILITY FUNCTION

	Cost in Millions of 1980 Dollars	<u>Utility Value</u>
	0.0 to 6.1 6.1 to 12.1 12.1 to 18.2	8 (high suitability) 7 6
	18.2 to 24.1 24.1 to 30.3	
	30.3 to 36.4	4 and the second seco
	36.4 to 42.4	2 l (low suitability)
No	reasonable estimate	l (low suitability)

4.4.1.2 Site Preparation Utility Function

Actual dollar costs associated with site preparation could not be located as source data. However, discussions with authorities in the construction of nuclear power plants as to how the topographic character of the landscape might affect the site preparation costs have allowed for the assignment of the utility values to terrain classifications which were discussed in Section 4.3.5. These are shown in Table 4-2.

A map of the site preparation utility function was created and is shown in Figure F4, Appendix F. (This is the same map used to show the site preparation source data.)

TABLE 4-2

SITE PREPARATION UTILITY FUNCTION

Topographic Character (percent of area that	
is gently sloping*)	Utility Value
>80 percent	8 (high suitability)
50 to 80 percent 20 to 50 percent	2
<20 percent	l (low suitability)

*Gently sloping means 8 percent slope.

4.4.1.3 Water Availability Utility Function

Utility values have also been assigned to data representing the cost of obtaining cooling water. Based on this cost information (described in Section 4.3.6), costs in excess of \$300 million were grouped together and assigned the lowest utility value. For costs less than \$300 million utility values were assigned on the basis of 8 equal intervals as shown in Table 4-3.

TABLE 4-3

WATER AVAILABILITY UTILITY FUNCTION

Combined Water Cost

(in millions of 1980 dollars) U

<u>Utility Value</u>

0 to 37.5	9	(high suitability)
37.5 to 75.0	8	
75.0 to 112.5	. 7	
112.5 to 150.0	6	
150.0 to 187.5	5 - 15 - 15 - 5 -	
187.5 to 225.0	4	
225.0 to 262.5		
262.5 to 300.0	2	· · · · · · · · · · · · · · · · · · ·
>300.0	1	(low suitability)

A map was prepared showing the water availability utility function and is shown in Figure F7, Appendix F. (This is the same map used to show the combined water cost.)

4.4.2 Site Availability Issue Overlay

Using the utility functions, each issue map was translated into a partial suitability map where each potential site area was represented by a utility value. These individual suitability maps are represented in Figures F3, F4 and F7. They are considered partial suitability maps because each includes only one siting issue. They were combined into a composite suitability map by adding the individual map files together. It was felt that the reconnaissance nature of this study, as well as the broad scale representation of environmental data, did not justify a more sophisticated manipulation of the files. For this reason, the three maps were overlaid -- each with an equal importance weighting. The addition of the three utility value map files resulted in a map file with values ranging from 4 through 25 -- each value having a different frequency of occurrence. Maintaining the relationship that high values represented the most suitable land, the distribution of the composited utility values was divided into five intervals. The intervals were selected to include equal land areas. This resulted in five categories or levels of environmental suitability -- each level representing 20 percent of the data base. The restricted lands file was then added to the composite utility value file. A color-coded version of a map produced from this combined file was supplied to NRC.

4.4.3 Environmental Statistics

Analysis of the impact of various siting criteria on land availability was accomplished in two ways: creation of maps to visually show these impacts and production of statistics to quantify the impacts. The maps concerning environmental factors have been presented elsewhere in this section. To quantify the impacts of various siting criteria, tables were prepared which used the data files created during the visual or map analysis. Statistics regarding the amount of area in each data category were computed for each of the 48 states.

For each of the three environmental issues -seismic hardening costs, site preparation costs, and water availability costs -- a table was prepared that shows the amount of land in each of the categories that was represented by a utility value. Two additional tables were produced: one for surface water cost and one showing the five different levels of composite environmental suitability. These statistics are shown in Tables Fl.1 through Fl.5, Appendix F. The numbers in each column indicate the amount of land in the specified category. The area is shown in square miles as well as percent of the total state area.

4-23

4.5 Demographic Analysis

As discussed in Section 4.2, three issues were defined as relevant to population criteria - stand-off zones, population density, and angular distribution. Stand-off zones are restrictions on distances from urban centers to nuclear plant sites. Population density is a measure of the persons per square mile within a specified (circular) area surrounding a site. The population density calculations were mapped as single data files or in combination with other annular densities to produce composite population criteria maps. Angular distribution restrictions are limitations on the permissable population within one or more 22 1/2° sectors surrounding a site.

4.5.1 Stand-off Zones

To study the impact of restrictions imposed by distance from urban centers, stand-off zone maps were prepared. As discussed in Section 4.3.1, populations and locations were provided for urban centers of a variety of sizes. The location of these urban centers was indicated by a single latitude/longitude coordinate which was converted to a Y and X coordinate corresponding to grid cells on the Albers base map. Urban centers were grouped according to their size: greater than 25,000, 100,000, 200,000, 250,000, 500,000 and 1,000,000 people. For each grid cell in the study area, its distance from the nearest urban center of a particular size was computed. This resulted in six separate data files. These files were converted into maps by specifying a threshold distance at which a cell would be considered either suitable or unsuitable for siting a nuclear plant. Based on the above data, thirteen such stand-off maps were produced. The maps produced are indicated in Table 4-4 and presented in Figures F8.1 through F8.13, Appendix F. The maps illustrating stand-off zones from the three largest cities were created only for the northeastern U.S.

Maps of stand-off zones are quite self-explanatory. There is a direct relationship between the stand-off distance and the amount of area that is constrained by the specified criteria.

TABLE 4-4

STAND-OFF ZONES

Size of	Mapped
Urban	Stand-Off
Center	Distance (in miles)
25,000	5, 10
100,000	10, 15, 25
200,000	25, 30, 40, 50, 100
250,000	12.5
500,000	18
1,000,000	25

An example of these maps is shown in Figure 4-3.

4.5.2 Population Density

A wide variety of population distribution criteria based on density surrounding a prospective site were studied for their impact on land availability. Densities were calculated for both circular areas and annular areas. As described in Section 6.3.1, population source data was identified by a latitude and longitude coordinate system. These coordinates were converted into the Y and X coordinates compatible with the Albers grid base map. This raw data were then converted into a set of map files giving the population density of an area a given radius centered on each cell. Maps of varying thresholds were produced from these files. The matrix shown in Figure 4-4 indicates all of the map files that were produced regarding population density. An "X" in a box means that the map files were produced for both the total US and the northeastern window. An "NE" in a box means that the map file was produced only for the northeast. An example of these maps is shown in Figure 4-5. Maps representative of the variety of population densities are shown in Figures F9.1 through F9.26, Appendix F.

An understanding of the spatial relationships produced by various criteria can be gained by comparing some of the maps. Figure F9.5 shows the areas constrained by a density threshold of 100 people per square mile in the 0-5 mile circle. Figure F9.8, concerning the same circle employs a density threshold of 500 persons per square mile. It is obvious that

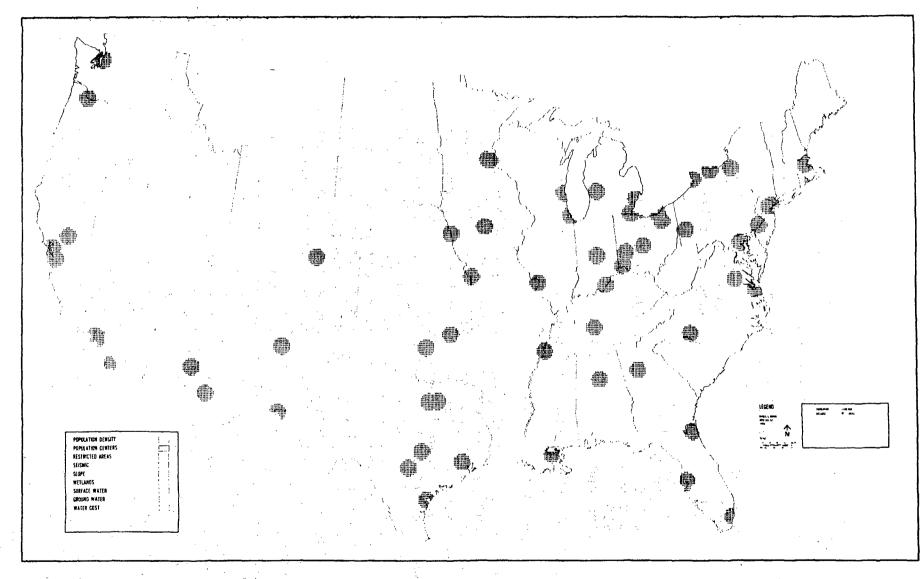


Figure 4-3. Example of Standoff Zone Maps.

4-26

· · ·

ANNU	LUS	DENSITY PEOPLE/SQUARE MILE										
RADI I	IN MILES	≥100	≥150	≥ 200	≥250	≥ 350.	≥400	≥500	≥750	≥800	≥1000	
	0-2	×			x			NE	NE			
	0-5	x		x		x		x				
	0-10	x		x		x		x				
	0-20			x					- X.			
	0-30							x			X	
	5-10		x			x		x	1			
	5-20									×		
	10-20						x	x			X	
·	20-30.							×			X	
	30-50					·		x			×	

Figure 4-4. Annular Population Density Data Files

4-27

. .

.

Figure 4-5. Example of Annular Population Density Data Maps.

4-28

every area constrained in Figure F9.8 is also constrained in Figure F9.5. If the size of the annulus remains constant, the area constrained using a higher density threshold is always completely contained within the area constrained by a lower threshold. In addition, the use of a lower density threshold as in Figure F9.5, constrains a much greater portion of the suburban and rural land areas.

Spatial differences are also noted through a comparison of circle size while maintaining a constant density threshold. For example, compare Figure F9.8, which shows the areas constrained by a 500 people per square mile density threshold within the 0-5 mile circle, with Figure F9.14 which applies the same threshold to the 0-30 mile circle. Use of the larger radius tends to constrain only the urban and some suburban areas of major cities. None of the rural or smaller urban areas are constrained and the impacts look similar to those which result from stand-off zone criteria.

÷.

Another interesting spatial effect of the demographic criteria can be seen on any of the maps in which the annulus is defined using an inner radius greater than zero. In these cases, the annulus surrounding a prospective site is shaped like a ring rather than a circle and the effect is that the shape of some of the constrained areas is also that of a ring. The occurrence of this type of pattern depends upon the specified density threshold in conjunction with the limits of the annulus and the population data itself. For example, Figure F9.23 indicates the amount of land constrained if a criterion of 500 people per square mile in the 20-30 mile annulus were applied. Note that in the St. Louis area the land surrounding the city would be constrained -but not the land comprising the city. St. Louis' land area is small enough so that a relatively small population is located between 20 and 30 miles of the city center, and yet the city population is large enough to cause the density threshold to be exceeded in the surrounding areas. Chicago, on the other hand, occupies an area large enough so that grid cells at the city center are within 20 to 30 miles of significant population and the pattern of constrained land is solid.

A comparison of the St. Louis area between Figure F9.23 and Figure F9.21, which employs the same density threshold within the 10 to 20 mile annulus indicates not only the absence of a ring structure but also a shrinking of the extent to which land is constrained using the smaller annulus. The pattern of the area constrained near Chicago remains solid in both figures; however, both the extent and amount of land increase with increasing annular radii. Thus, if the density threshold remains constant, the extent from the central city of the criterion's effect increases with increasing annular radius. However, the total amount of land constrained may not increase accordingly due to the possible elimination from constraint of the central city.

4.5.3 Composite Population Densities

When using a criterion of the form of less than 500 people per square mile from 2 to 30 miles, it is possible for a cell to satisfy that criterion, while it doesn't satisfy a 500 people per square mile criterion out to only 15 miles. This occurs when there is a dense population pocket surrounded by low density areas. In order to pinpoint areas for which this occurs, a new set of criteria were developed which restricted population to a given density for all radii from an inner radius to an outer radius. Thus, for the example of 500 people per square mile from 2 to 30 miles, the new criterion is satisfied only if the population density is less than 500 people per square mile from 2 to R miles, where R takes every value from 2 to 30.

Evaluating population density for every radius from the inner radius to the outer radius is impractical in practice, so an approximation is used.

Using the example of mapping any cells that exceed the 500 persons per square mile threshold for the 2-30 mile annulus, density calculations were made for 6 portions of the 2-30 mile annulus and were then composited. First, any cell that exceeded the 500 persons per square mile threshold within the 2-3 mile annulus was recorded. Next, unsuitable cells in the 2-4 mile annulus were recorded and unsuitable cells in the 2-5 mile annulus were recorded. This process was repeated for the 2-10 mile annulus, 2-20 mile annulus, and the large 2-30 mile annulus. These 6 individual files were then added together, creating a file in which a cell that was shown to be unsuitable in any of the 6 was also considered unsuitable for the 2-30 mile composite annulus. In this manner, data files were created for the 2-30 mile composite annulus for the following densities.

> 250 persons/square mile 500 persons/square mile 750 persons/square mile 1,000 persons/square mile 1,500 persons/square mile

Example maps for the northeast are shown in Figures F10.1 thru F10.4, Appendix F.

Besides creating a composite map file for a particular annulus (such as 2-30 miles) and a particular density (such as 500 persons per square mile), another type of composite was created. This consisted of two separate annuli -- each with its own given popu-lation density threshold. For example, as discussed above, 6 individual data files were added together to create the 2-30 mile composite annulus. Now, a different annulus with a different population density threshold was added to the 2-30 mile composite annulus. Two maps were created in this manner and are shown in Figures Fll and Fl2, Appendix F. Each map shows cells that are considered unsuitable for the 2-30 mile composite annulus (with density of 500 persons per square mile) as well as for the 0-2 mile annulus for population densities of either 100 persons per square mile or 250 persons per square mile. In addition to these two mapped data files, other complex composite files were created. Some of these were used for statistical analyses in combination with the environmental criteria. (These statistics are discussed in Section 4.6). The six complex composite data files which were created are indicated in Table 4-5. The numbers in the columns underneath the two annuli represent population density figures (persons/mile²).

TABLE 4-5

COMPLEX COMPOSITE POPULATION DENSITIES 2-30 Miles (Composite) 0-2 Miles 250 100 (1)(2)100 500 (3)250 500 (4) 250 750 (5)500 750 (6)500 1500

4.5.4 Sector Population Density

To this point in the chapter, any potential demographic criteria addressing population density were analyzed using what might be termed a uniform density distribution. Criteria were stated in terms of the number of persons that would be allowed in an area of a given size -- that is, population density -and the shape of the area was always circular. Using a circular area allowed relatively dense concentrations of population to exist provided that the total number of people within the circle did not exceed a stated limit.

Results of reactor accident consequence calculations indicate that certain risk characteristics depend strongly on the maximum number of persons within any given direction sector (see Section 2.7.4). Therefore, criteria regarding the maximum allowable population within sectors in addition to total population surrounding a site were considered. The impact on land availability was examined for alternative sector criteria and compared to the impact of uniform density criteria.

Sector criteria were stated in terms of allowing up to a fraction of the allowed number of people to be located in any sector of a particular width. For example, a sector criteria might be stated: no more than 1/6 of the people allowed by a uniform density of 500 persons per square mile can be located in any 45 degree sector at distances within 3 miles of a site. The impact of sector criteria was investigated with regard to several variables. The parameters were:

o Distance: Radii of 2, 5, 10, 20, and 30 miles

- o Sector width: 22.5, 45.0, 90.0 degrees, and 360 degrees (for uniform density)
- o Fraction: 1/16, 1/8, 1/4, 1/3, and 1/2 the population allowed by uniform density
- o Density: 250, 500, 750, and 1500 persons per square mile

Population counts were determined within 2, 5, 10, 20, and 30 miles of potential sites (grid cells) and within sector widths of 22.5, 45.0, and 90.0 degrees. The maximum number of persons found in a sector of a stated width and for a particular radius was recorded. For example, investigating a circle of radius 10 miles and using a sector width of 22.5 degrees, the circle was divided into 16 sectors. The number of people was determined within each sector and the maximum of the 16 counts was recorded. This procedure of determining the maximum count was undertaken 15 times -- once for every combination of sector width (3) and radius (5).

Alternative criteria were then applied to the count data on the basis of allowing a certain fraction of the total number of people allowed within the circle to be located in any sector. The total number of people allowed in a circle is dependent upon the radius (for area) and the density that is allowed. For this sector analysis, the previously established densities were analyzed -- 250, 500, 750, and 1500 persons per square mile and five radii were used -- 2, 5, 10, 20, and 30 miles. For 0-2 miles, only one density was used as a part of every criteria -- namely, 250 persons per square mile. To calculate the allowable population theshold out to 5, 10, 20, and 30 miles for each of the densities, the area from 2 miles to r miles (radius) was multiplied by the density and the product added to the threshold for 0-2 miles with its 250 persons per square mile density. For example, at 20 miles using density 750 persons per square mile, the threshold equals:

(Area of 0-2) x 250 + (Area of 2-20) x 750 = (12.57×250) + (Area of 2-20) x 750

= (3142 + 933075)

= 936,217 people

Using only one density (250 persons per square mile) for 0-2 miles and four densities for the other four distances resulted in 17 separate thresholds. These thresholds were used not only for uniform density criteria analyses but also for calculating the fractional thresholds applied to sector population distributions. Thus, if a criterion was stated that no more than 1/4 of the people allowed by a uniform density of 750 persons per square mile within 20 miles would be allowed in a sector, the threshold would be 936,217 x 1/4 = 234,054 people.

de News Being consistent with previously computed impacts, the impacts for sector criteria for any particular density or fraction were composited to 30 miles. That is, sites exceeding a threshold at 2 miles were recorded and saved into a map file. Sites exceeding a threshold at 5 miles were also recorded and stored into a map file, as were all sites for 10, 20, and 30 miles. Finally, all five map files were merged resulting in a file that showed sites constrained by any one or more of the thresholds. Spatially, it was found that any criteria at smaller radii tended to eliminate sites in rural areas as well as in cities but only out to their edge. Criteria applied at larger radii tended to eliminate cities and large areas around their edges (similar to a "standoff" criteria) but allow local population concentrations in rural areas. By compositing criteria for all five radii, both urban and rural population concentrations were evaluated for their impact on availability of potential nuclear sites. Additionally, it was found that the effects of sector criteria occurred in the same areas as affected by annular density criteria.

Sector criteria were of interest in regard to their impact on land availability above and beyond that already affected by uniform density criteria. To depict and quantify this information, tables were created to show the amount of land available for siting in each state if a particular sector criterion was established. The information is shown in Tables F2.1 through F2.24, Appendix F. Each table shows the impact of alternative fractional criteria along with the uniform density criteria on land availability. All of the fractional and uniform density criteria have been composited to 30 miles by adding the individual impacts of a criterion at 2, 5, 10, 20, and 30 miles.

Each table considers a unique combination of allowable annulus population density and sector width. The four population densities and three sector widths resulted in 12 combinations. Twenty-four tables were created as each of the 12 combinations was tabulated using two different formats. Tables F2.1 through F2.12 are formatted such that the numbers in the columns represent the amount of land that is uniquely constrained by the specified criteria.

The columns are arranged so that total magnitude of constrained land decreases from left to right. As an example, Table F2.1 indicates the impacts of alternative fractional criteria applied to 22.5 degree sectors using a density threshold of 250 people per square mile for both the 0-2 mile and 2-30 mile annulus. The leftmost column "Available Land," shows the amount of land available for siting if the criterion stated in the adjacent column is applied; that is, no more than 1/16 of the population allowed in the annulus at a density of 250 people per square mile can be located in any 22.5 degree sector of the annulus. The criterion stated in the second column of these 12 tables always represents the most constraining fractional criterion.

The rightmost column, "Restricted Lands," shows the amount of land that is constrained because it is either legally protected or a major wetland. No demographic criteria affect these numbers.

The numbers in each of the middle columns show the amount of land that is uniquely constrained by the specified criterion which is above the total amount previously constrained by the criteria in all of the columns to the right. In Table F2.1, for example, the column labeled "Uniform Density" shows for Alabama values of 5,703 square miles or 11.0 percent of the state area. This is the area that would be constrained

by applying a uniform (annular) density criterion and it is additional to the area already constrained by restricted lands (2,075 square miles or 4.0 percent). Thus, the application of this particular uniform density criterion in Alabama would constrain a total of 7,778 square miles or 15.0 percent of the state area if no sector criteria were applied. The next column to the left, "1/2 Allowable Pop.," would add another 2,355 square miles or 4.5 percent of constraint if a sector criterion were stated that no more than 1/2 of the total population allowed by a density threshold of 250 people per square mile in both the 0-2 mile and 2-30 mile annuli could be located in any 22.5 degree sector. Similarly, using a criterion of allowing up to 1/3 of the allowable uniform density population to be located in a single sector, would constrain an additional 6,388 square miles or 12.3 percent of the land area. The total constrained land in this case would be 16,521 square miles or 31.8 percent of the state area. Conversely, 68.2 percent (100 minus 31.8) of the land would be available for siting.

To more clearly summarize the information that shows the availability of land when specific sector criteria are applied, Tables F2.13 through F2.24 were created in a different format than the previous 12 tables. On these tables, the numbers in the columns show the amount of land available for siting if the specified criterion is applied. For example, Table F2.13 indicates that 68.2 percent of the land in Alabama would be available for siting if a criterion of allowing up to 1/3 of the population (allowed by a uniform density criteria using a density threshold of 250 people per square mile in both the 0-2 mile and 2-30 mile annuli) to be located in any 22.5 degree sector. This number agrees with the one produced in the above example regarding Table F2.1. The column labeled "Uniform Density" indicates land availability when no sector criteria are applied. The column "No Pop. Criteria" shows the amount of land available when only restricted lands are considered a constraint.

4.6 Impact Analysis

Analysis of the impact of various siting criteria on land availability was accomplished in two ways: creation of maps to visually show these impacts, and production of statistics to quantity the impacts. Many of the maps produced have already been reviewed in other sections of this chapter. All maps were produced on a transparent base enabling them to be overlaid. This capability allows creation of complex composite population criteria maps. In addition, these population criteria maps can be overlaid on the color-coded environmental suitability map.

To quantify the impacts of various siting criteria, tables were prepared which used the data files created during the visual or map analysis. For a particular subject, whether environmental or demographic, statistics regarding the amount of area impacted were computed for each of the 48 states. Fifteen tables were produced which were grouped into three different types: environmental criteria, environmental suitability levels versus selected population cases, and population criteria versus individual environmental suitability levels.

4.6.1 Environmental Statistics

and the second of the

For each of the three environmental issues -seismic hardening costs, site preparation costs, and water availability costs -- a table was prepared that showed the amount of land in each of the categories that was represented by a utility value (see Section 4.4). Two additional tables were produced: one for the surface water cost, and one showing the five different levels of composite environmental suitability. As discussed earlier, these statistics are shown in Tables Fl.1 through Fl.5, Appendix F.

4.6.2 Impact Comparisons

The overlay of transparent maps provided a quick look at potential land availability. A map containing five levels of environmental suitability along with a sixth level showing restricted lands, when overlaid with a variety of population criteria, produces numerous groupings of data. To present these data in statistical form, a method was devised to keep each table simple enough to be understood, while retaining a large amount of information.

First, five population cases were defined on the basis of complex composite criteria. These population cases are shown in Table 4-6. The numbers in the columns underneath the 0-2 and 2-30 mile annuli represent population density figures.

TABLE 4-6

Population Case	<u>0-2 Miles</u>	2-30 Miles (Composite)
Nameraan oo ay kalaa ay dhi. Ah ah ah ah ah ah ah 1 ah ah ah ah ah	100	250
2		500
3	250	7 50
	500	750
5	500	1500

Five tables were produced -- one for each population case -- which compared the environmental suitability levels to an individual population case. These statistics indicate the amount of land in each of the environmental suitability levels that is available for siting nuclear power plants if a given set of population criteria (a population case) is applied. These statistics are shown in Tables F3.1 to F3.5.

To illustrate the effect of applying different population criteria (the five population cases) on land availability in a particular environmental suitability class, five more tables were produced. In these tables, the statistics represent the amount of land available for siting nuclear power plants in a given environmental suitability class as well as the amount of land uniquely constrained by each of the five population cases. These statistics are shown in Tables F3.6 through F3.10. The columns representing population cases have been arranged such that in moving from left to right, the stringency decreases. The leftmost column of the table -- available land -- shows land that is available for the given environmental suitability class even if the most stringent population criterion (population case 1) is applied. The second column -- population case 1 -- represents an additional amount of land considered available if population case 1 were relaxed. The next column -- population case 2 -- represents the additional increment of available land if the criteria for population case 2 were also relaxed. It follows that if no population criteria were established, the amount of land available in a particular environmental suitability class would be equal to the total of the first six columns in the table; the only land considered constrained would be that by a restricted land designation.

4.7 Summary

The analytical methods used in this study were designed to explore the impact of various demographic siting criteria on the availability of land considered suitable for the siting of nuclear power plants. Maps were created so that impacts could be easily visualized and tabular statistics were prepared to allow a more rigorous analysis.

5 11 1

The determination of land considered suitable for siting was accomplished through a multi-objective environmental suitability analysis. The analysis was performed using factors generally related to engineering costs as well as conservation of specific resources. Because this investigation concerned the entire 48 contiguous United States and was not a site selection project, environmental factors were analyzed at a relatively general level of detail and were each considered to be of equal importance. The most suitable areas were characterized by an adequate water supply, low seismicity and gentle topography as well as an absence of protected resources. Although the map of environmental suitability (Figure F8) shows the eastern one-half of the country to be more suitable than the western, it is felt that there are numerous suitable sites available in the western portion.

Three types of population criteria were investigated: stand-off zones, annular density and sector density. The effects of stand-off zone criteria are straightforward. There is a direct relationship between the stand-off distance and the amount of land area constrained.

The analysis of annular density thresholds showed that the use of smaller radii to define the annulus resulted in constraints on sites near both large and small urban populations as well as sites near some locally dense rural areas. Larger radii tended to constrain a greater amount of area near suburban population but only around major cities; small urban and rural areas were not constrained.

Because results of reactor accident consequence calculations indicated (Section 2.7.4, Chapter 2) that certain risk characteristics depended strongly on the maximum number of persons within any given direction sector, sector population criteria were designed. Their impacts were investigated to determine the amount of land area that would be constrained additional to that affected by annular density criteria. It was found that sector criteria affected the same areas and those adjacent to the areas affected by annular densities. Also, the area of impact responded to changes in annular radius in the same manner as for annular density criteria.

Transparent overlay maps and tabular statistics were provided to NRC for use in establishing siting criteria which would be numerically based upon population density, distribution and exclusion distance. Tabular statistics were used to quantify the impacts on a stateby-state basis. The use of transparent overlays provides a means not only to see the impacts of the generated criteria but also to create and view the effects of complex criteria by overlaying any combination of maps. Maps showing demographic criteria were also overlain onto the map of environmental suitability to visualize the potentially available suitable land. Through both the overlay procedure and a comparison of statistics, it was found that the greatest impacts of demographic criteria occur in the areas of high environmental suitability (i.e., Northeast).

References for Chapter 4.0

1. Demographic Statistics Pertaining to Nuclear Power Reactor Sites, U. S. Nuclear Regulatory Commission, NUREG-0348, October 1979.

2. National Atlas of the United States of America, U.S. Geological Survey, compiled 1967, revised 1972-73.

sec:3. Federal Register, Volume 45, #226, November 20, sec:4.5. 1980; pages 76682-76684...

e e galater de secondo e mogellorito que e que e

- 4. 10 CFR, Part 100: Reactor Site Criteria.
- 5. 10 CFR, Part 100: Appendix A -- Seismic and Geologic Criteria for Nuclear Power Plants.
- 6. S. T. Algermissen and D. M. Perkins, "A Probabilistic Estimate of Maximum Acceleration in Rock in the Contiguous United States," U. S. Geological Survey Open File Report, 76-416, 1976.
- R. V. Whitman, N. C. Donovan, B. Boalt, and S. T. Algermissen, Effective Peak Velocity Related Acceleration Map, Applied Technology Council of Structural Engineers Association of California, 1977.
- G. A. Bolliner, "Reinterpretation of the Intensity Effect of the 1886 Charleston, South Carolina Earthquake," U. S. Geological Survey Professional Paper 1028, 1977.
- 9. J. D. Stevenson, "Evaluation of the Cost Effects on Nuclear Power Plant Construction Resulting From the Increase in Seismic Design Level," Office of Nuclear Reactor Regulation, NUREG/CR-1508, 1981.
- 10. E. H. Hammond, "Analysis of Properties in Land Form Geography: An Application to Broad-Scale Land Form Mapping," Annals of the Association of American Geographers, Volume 54, Number 1, 1964.
- 11. E. V. Giusti and E. L. Meyer, "Water Consumption by Nuclear Power Plants and Some Hydrological Implications," U. S. Geological Survey Circular 745, 1977.

- 12. S. J. Stankowski, J. T. Limerinos, S. E. Buell, Stream Reaches In The Conterminous United States Where Dependable Flows of 300 Cubic Feet per Second Are Available Or Could Be Provided, U. S. Geological Survey Open File Report 77-646, 1977.
- The Role of Groundwater in the National Water Situation, U. S. Geological Survey Water Supply Paper 1800, 1963.
- 14. C. L. McGuinness, Generalized Map Showing Annual Runoff and Productive Aquifers in the Conterminous U. S., U. S. Geological Survey Hydrologic Investigations Atlas HA-194, 1964.
- 15. P. E. King, Tectonic Map of North America, U. S. Geological Survey 1:500,000; 1969.

 $||z_{1}|| = |z_{2}| = |z_{1}| = |z_{2}| = |z_{1}| = |z$

16. R. E. Harrison, Shaded Relief of U. S., U. S. Geological Survey 1:7,500,000; 1969.

ال المانية مع ومعنى المانية من المعاملية المعاملية المعام المانية المعام المعام المعام المعام المعام المعام الم المعام المعام

.

4-42

5. Socioeconomic Impacts

5.1 Introduction

Because the construction and operation of a nuclear power plant can have social and economic impacts on nearby communities, the dependence of socioeconomic impacts on site location was examined by the Battelle Human Affairs Research Centers (Battelle-HARC) under contract to Sandia National Laboratories. The Battelle-HARC study (1) developed a classification scheme for the remoteness of light water reactor (LWR) site locations; (2) calculated average growth rates for several demographic and economic variables during the period of plant construction for two groups of LWR sites of differing remoteness, (3) examined the dependence of transmission line costs on site remoteness; and (4) discussed the significance of these results in the light of previous studies of the socioeconomic impacts of rural industrialization projects, boom towns, and nuclear power plants. This chapter presents a summary of the Battelle-HARC study. Full details are reported in the final report of that study [1].

5.2 Site Remoteness

Conceptually, the degree of remoteness of a nuclear power plant site depends upon both population density (the more sparse the population the more remote the site) and proximity to major population centers (nearby cities of significant size decrease remoteness). To capture this dual dependence, two measures were developed to define the degree of site remoteness, one of population sparseness and the other of proximity to urban centers.

Sparseness was defined in terms of total population and number of communities of population 25,000 or more within 20 miles of the site. Four sparseness categories were defined as follows:

5-1

Sparseness Measure

< 0

Category	Definition			
Most Sparse	 Less than 50,000 persons and no community with more than 25,000 persons within 20 miles. 			
	2. From 50,000 to 74,999 persons and no community with more than 25,000 persons within 20 miles.			
	with at least one community			
Least Sparse	 150,000 or more persons within 20 miles. 			

Proximity was defined in terms of total population and the presence of cities with population $\geq 100,000$ within 50 miles of the site. Four proximity categories were defined as follows:

Proximity Measure

Category		Definition
Not in Close Proximity		No city with more than 100,000 persons and less than 400,000 persons within 50 miles.
	2.	No city with more than 100,000 persons and between 400,000 and 1,499,999 persons within 50 miles.
		One or more large cities with more than 100,000 persons and less than 1,500,000 persons within 50 miles.
In Close Proximity	4.	l,500,000 or more persons within 50 miles.

The distance of 20 miles and a community size of 25,000 (sparseness measure) were chosen because the NRC Siting Policy Task Force [2] recommended that population densities around sites be limited out to a distance of 20 miles and because current siting practice requires that the nearest town of 25,000 persons be at least more distant than one and one-third times the distance to the outer boundary of the low population zone surrounding the plant site. The distance of 50 miles (proximity measure) was chosen because workforce commuting distances, which strongly affect the degree of population increase during construction periods and thus the magnitude of socioeconomic impacts, are usually limited to about a one-hour commute [3], or about 50 miles at current speed limits.

Table 5-1 presents the cross-classification by sparseness and proximity of 84 LWR sites in the U.S., where reactors are currently operating or under construction.

	in an		Proxi	nity		
	Category	1	2	3	4	Total
	1	11	1	3	0	15
Sparseness	2	3	1	4	² 2	10
	3	4	7	10	4	25
	. 4	0	0	11	23	34
	Total	18	9	28	29	84

Table 5-1. Site Remoteness Matrix

a she the second state of a second second

Within this matrix remoteness decreases as one moves from cell (1,1) to cell (4,4) and sites in cells with indices that sum to the same total [e.g., cells (3,1), (2,2), and (1,3)] should be similar in degree of remoteness. By

summing the numbers of sites having similar degrees of remoteness, the distribution of remoteness over the 84 sites is obtained. Table 5-2 displays this distribution.

Table 5-2. Distribution of Remoteness

Group	<u>Cell</u>	Number of Sites	
 Most Remote Sites A A A Construction Constre	(1,1) (2,1), (1,2) (3,1), (2,2), (1,3) (4,1), (3,2), (2,3), (1,4) (4,2), (3,3), (2,4) (4,3), (3,4) (4,4)	11 4 8 11 12 15 23 84	

Tables 5-1 and 5-2 show that, of the 84 sites, only 15 are not located within 20 miles of a town of 25,000 or within 50 miles of a city of 100,000. By contrast, 23 of the 84 sites have populations of 150,000 within 20 miles of the site and 1,500,000 within 50 miles. Thus, Tables 1 and 2 show that most current U.S. LWPRs are not remotely sited.

5.3 Growth Rates

如此,如此,如此不是不是有不多。""你们不能不是我的时候,你们们不能能够有什么?""你们就有什么?""你们就不是你的。""你们不是你的,你们就能能能够不能。""你们就是我们不能能能。""你们就是我们就是

The socioeconomic impacts of large industrial projects usually depend on the size of the project workforce. Since the peak construction workforce (≥ 2000) for a nuclear power plant is substantially larger than the plant's operational staff (~ 200), the socioeconomic impacts of nuclear power plants should be largest during the plant's construction phase. A measure of the magnitude of these impacts can be obtained by calculating average growth rates for population and economic activity in the areas surrounding nuclear power plants during their preconstruction (baseline) and construction periods. Variation of impacts with remoteness can be examined by performing these calculations for two groups of sites, a non-remote group and a remote group, and comparing the results.

Time series data for population, employment (total, retail trade, and construction), payroll (total, retail

trade, and construction), and government revenues (property tax per capita) and expenditures (total, education, highway, health, and welfare) were obtained for the preconstruction and construction periods at 21 nuclear power plant sites. Cross-classification of the 21 sites, according to the sparseness and proximity measures previously defined, yields Table 5-3. Table 5-3 shows that 7 of the sites are relatively remote and the other 14 are nonremote.

		-	Proxi	imity		
	Category	1	2	3	4	Total
	1	4	2. 		-	4
Sparseness	2	1		-	-	1
	3	2		2	1	5
	4	-	-	5	6	11
	Total	7	0	7	7	21

Table 5-3. Cross-classification Remoteness Matrix for 7 Remote and 14 Non-Remote Sites.

Population data were available in census publications [4] for the years 1960, 1966, and 1970 through 1978. Employment and payroll data were obtained for the years 1959, 1962, and 1964 through 1978 from <u>County</u> <u>Business Patterns</u> [5]. Government revenue and expenditure data were collected from the <u>County and City</u> <u>Data Book</u> [6] for 1962, 1967, and 1972, and from the Census of Governments [7] for 1977.

Average yearly values of government revenues and expenditures for the preconstruction (baseline) and construction periods for the non-remote group of 14 sites and the remote group of 7 sites are presented in Table 5-4. Table 5-4 also presents the percentage

		Remote	· · · · · ·		Non-Remote	
Variable	Baseline Period	Construction Period	Percentage Increase†	Baseline Períod	Construction Period	Percentage Increaset
Property Tax Per Capita	71	88	24	112	139	24
Total Government Expenditures	7,658	12,567	64	78,582	115,478	47
Education Expenditures	3,852	6,566	70	30,274	57,159	89
Highway Expenditures	684	909	33	5,677	6,383	12
Health Expenditures	792	1,687	113	3,626	5,657	56
Public Welfare Expenditures	174	200	15	5,275	9,787	85

Table 5-4. Average Yearly Government Revenue and Expenditures for Remote and Non-Remote Groups*

*Property tax per capita in dollars, expenditures in thousands of dollars. t[(Construction Period Value/Baseline Period Value)-1]100.

5-6

increase of each variable for the construction period relative to the baseline period. Table 5-4 shows that the percentage increases in total government, highway, and health expenditures were greater at remote than nonremote sites, that the converse is true for education and welfare expenditures, and that the increase in per capita property tax was the same for both site groups. Therefore, because these data showed no consistent variation and because the amount of data was scant (data were available for only 4 years), average yearly growth rates were not calculated for these government variables.

The exponential growth of the variable X at a rate k per year over the time period t is given by

$$x_{t} = x_{to}^{kt}$$
(1)

Average growth rates for a group of sites can be obtained by linear regression analysis after recasting equation 1 as follows, where k is the yearly average growth rate of the variable X for the site group, i is a site index, and weww; is a site specific difference term.

$$\ln X_{i,t} = \ln X_{i,t} + \overline{kt} + \varepsilon_i$$
 (2)

Average growth rates were calculated for both site groups for the preconstruction (baseline) and construction periods for 7 variables (population, and total, retail, and construction employment and payroll). Table 5-5 presents the results of these linear regression analyses.

Examination of Table 5-5 reveals a consistent pattern. For each of the 7 variables and for both periods (baseline and construction), growth rates are higher for the remote site group than for the non-remote group. On the average, during the baseline period growth rates at remote sites exceed those at non-remote sites by about 50 percent. During the construction period growth rates at remote sites are 2 to 3 times larger than are growth rates at non-remote sites. As would be expected, growth rates are largest for construction payroll and employment. In addition, because of the increased demand for labor, the average number of hours worked also increases and therefore payroll growth exceeds employment growth.

n de la companya de Esta de la companya d	Ave	erage Yearly	Growth Rate	s (%)a			Impact	
	Preconstruction		Construction		Construction Impacts (%) ^b		Differences (%) ^C	
	Remote	Non-Remote	Remote	Non-Remote	Remote	Non-Remote		
Population	1.7 <u>+</u> 0.2	1.4+0.2	6.1 <u>+</u> 0.8	1.6 <u>+</u> 0.6	4.3 <u>+</u> 1.0 ^đ	0.2 <u>+</u> 1.4	4.1 <u>+</u> 2.4 ^d	
Total Employment	5.7 <u>+</u> 0.4	3.9+0.2	12.8+1.5	4.4+0.9	7.1 <u>+1.9</u> đ	0.5+1.1	6.5 <u>+</u> 3.0 ^d	
Total Payroll	8.4+0.3	5.7 <u>+</u> 0.3	18.9 <u>+</u> 2.4	7. <u>3+</u> 1.5	10.5 <u>+</u> 2.7ª	1.6+1.8	8.9 <u>+</u> 4.5 ^d	
Retail Employment	5.5 <u>+</u> 0.3	3.8+0.3	8.8 <u>+</u> 1.0	4.3+0.6	3.4 <u>+</u> 1.3 ^d	0.5+0.9	2.8 <u>+</u> 2.2 ^d	
Retail Payroll	8.1 <u>+</u> 0.2	5.0+0.3	9.9 <u>+</u> 1.0	4.5+0.6	1.7 <u>+</u> 1.2	-0.5 <u>+</u> 0.9	2.2 <u>+</u> 2.1 ^e	
Construction Employment	8.3 <u>+</u> 0.8	3.9 <u>+</u> 0.5	33.3 <u>+</u> 3.5	11.8 <u>+</u> 2.2	24.9 <u>+</u> 4.3 ^d	7.9 <u>+</u> 2.7ª	17.1 <u>+</u> 7.0 ^đ	
Construction Payroll	10.8 <u>+</u> 1.0	7.2+0.6	45.9 <u>+</u> 5.0	17.2 <u>+</u> 3.1	35.1 <u>+</u> 6.0 ^d	10.0 <u>+</u> 3.7ª	25.1 <u>+</u> 9.7 ^d	

.

Table 5-5. Average Growth Rates for Population, Employment, and Payroll at Remote and Non-Remote Sites.

a. All values are significant at the 0.01 level by f-test b. (Construction Growth Rate) - (Preconstruction Growth Rate)

c. (Remote Impact) - (Non-Remote Impact)
d. Significant at the 0.01 level by t-test

e. Significant at the 0.05 level by t-test

տ ò

By subtracting baseline period growth rates from construction period growth rates, estimates of the growth rates due only to nuclear power plant construction (construction impact) are obtained. Table 5-5 shows that for the non-remote group of sites, construction impacts were significant only for construction payroll and employment. However, for the remote group of sites, impacts were signifificant for all variables, being largest for construction payroll (35%) and employment (25%) and substantial for total payroll (10%). Finally, the last column of Table 5-5 shows that, for all variables except retail payroll, impact differences (remote site construction impact minus non-remote site construction impact) are all statistically significant at the 0.01 level. (15)の16(1)の15-5、1+10(1)で作品(10)で行いないだけの。

5.4 Transmission Line Costs

Transmission line costs are comprised of installation and operating costs. Installation costs depend on (1) the length of the right-of-way along which the lines will be strung in order to connect the power plant to the existing national power grid; (2) right-of-way acquisition costs; (3) the number and size (conductor rating) of the lines installed; and (4) installation labor costs (right-of-way preparation, construction of line towers and substations, stringing of lines). Operating costs consist principally of the cost of line losses during transmission and maintenance costs.

Transmission losses are less for shorter line lengths and larger conductors. Larger conductors cost more than smaller conductors, require a wider right-of-way (125 ft wide for 230 kV cable; 200 ft for 500 kV [8]), and are more costly to install. Despite these higher costs, EPRI projections [9] predict an increasing use of higher rated (larger) conductors through the year 2000. This agrees with the findings by Power Transmission, Inc. [10] that utilities currently prefer to minimize future transmission losses by installation of larger conductors.

Unit costs for labor (hourly wages) in suburban areas were found by an EPRI study [11] to exceed those in rural areas by about 25%. Unit costs for the acquisition of land for right-of-way are also likely to be lower in rural areas than in suburban areas. In contrast to this, total costs due to acquisition of right-of-way, purchase of materials and equipment, payment of labor, and transmission line losses all increase with increasing line length. Therefore, since remote siting would seem to require longer transmission lines, remote siting would appear to entail higher transmission line installation and operating costs. This is not always the case, however.

Maps of the existing national transmission grid show that, except for the more remote regions of the Rocky Mountains, grid transmission lines pass through all regions (both remote and non-remote) of the U.S. [12]. Although consideration of environmental, social, and asthetic issues as required by NEPA has tended to somewhat lengthen line right-of-ways, the factor that dominates the length of new transmission lines is the gross distance of the power plant site from the nearest leg of the national transmission grid. Because this grid runs through both remote and non-remote areas, remote siting does not necessarily mean a lengthy transmission line. Table 5-6 presents data in support of this conclusion.

Table 5-6 presents data on the conductor rating, length, and acreage of the transmission lines which connect 29 power plant sites (those with all facilities operating as of 1978) of varying remoteness to the national power grid. Examination of the right-of-way lengths, which were drawn from DOE maps [12], shows that for existing sites right-of-way lengths do not correlate with remoteness. Some remote sites are closer to the national grid than are some less remote sites. Thus, it is distance from the national transmission grid and not distance from major population centers (remoteness) that principally determines the costs of transmission line installation and operation.

5.5 Discussion

Major construction projects have large workforce requirements. In rural settings, when workforce requirements can not be met locally or by commuting from nearby cities, in-migration of workers occurs. If this in-migration is substantial, "boomtown" conditions may result and the host area may experience significant socioeconomic impacts. This scenario has been the subject of considerable study. Rural industrial development studies [13,14] have examined the impacts of industrial projects upon small, rural communities. Boomtown studies [15-18] have examined the local impacts of rapid, largescale energy development projects, located primarily in remote farming and ranching areas of the Rocky Mountains. The impacts of nuclear power plant construction have also been examined by several previous studies [19-21].

• . •

Table 5-6. Power Transmission Line Data for 29 Operating Nuclear Sites

Remoteness Index	Total Miles of Right-of-Way	Estimated Acres of Right-of-Way	Average Kilovolts Per Mile of Line
1-1	230	4,182	345
$\bar{2}-\bar{1}$	266	4,030	230
2-1	38	800	399
3-2	52	661	156
3-2	230	4,061	301
3-2	102	1,855	345
3-2	179	2,670	206
2-4		545	345
2-4 2-4	30 151	2,655	309
3-3	118	2,675	418
3-3	85	1,370	267
3-3	5	91	345
3-3	95	1,803	316
3-3	84	1,273	230
3-3	123	2,236	337
	· · · · · · · · · · · · · · · · · · ·	200	Э.4 г
3-4	17	309	345
3-4 3-4	124 24	2,255 291	345 115
4-3	170	3,576	423
4-3	85	1,455	304
4-3	25	358	198
4-3	67	1,218	345
A	400		1 4 7
4-4	409 60	8,291	147
4 - 4 4 - 4	4	758 61	134 230
4-4	104	2,545	485
4-4	90	1,636	345
4-4	217	4,561	378
4-4	29	527	345
		·	

Significant in-migration to a construction project's host area occurs only if workforce requirements can not be met locally or by commuting from nearby population centers (generally, those located within about a one-hour commute of the site [3]). Even when substantial in-migration does occur, a boomtown can be avoided, if the resulting population growth is spread over several nearby communities [22]. In general, adverse socioeconomic impacts are not observed until the rate of population growth of a single community exceeds 10 to 15 percent per year [23,24]. Under these conditions institutional breakdowns may occur in the labor and housing markets and in the provision of government services (education, health care, recreational facilities, police and fire protection) [23].

The small sizes, undiversified economies, small tax bases, homogeneous populations, and traditional life styles of rural communities tend to increase their susceptibility to socioeconomic impacts resulting from rapid population growth. Mortgage investors tend to find small, economically undiversified, rural communities unattractive investment locales. Lack of mortgage money combined with shortages of building materials and housing construction workers can produce a serious housing shortage. Because of their limited tax bases and because the project under construction generally yields little tax revenue until nearly completed, rural communities are often unable to finance the increased load of government services needed to accommodate rapid population growth. Finally, rural communities having a homogeneous population and life style may be less willing or able to welcome newcomers having different ideas, ways of doing business, and life styles and to accept the changes in personal, social, business, and institutional interactions that incorporation of the newcomers into their communities would entail [16-18,25].

The willingness of rural communities to accept change depends upon community perception of the benefits (and risks) that will accompany the changes, and upon the degree of community involvement in the decisions which determine the nature and rate of the changes. Because the construction of a large industrial or energy facility promises increased tax revenues, new jobs, more retail trade, and therefore improved government services, an end to out-migration of children and friends [14,15], and a higher standard of living [21], many rural communities welcome these projects (at least initially). However, community resistance may develop, if the economic benefits are unevenly distributed (e.g., business men and land owners profit while the poor, the elderly, and minorities suffer), if the project is perceived to benefit principally distant cites (e.g., electric generating stations [19,25]), if project decisions affecting the community are made without community involvement, and if there are concerns about the safety of the facility (e.g., nuclear power plants [21]).

. . . .

The degree to which the socioeconomic impacts, characteristic of rural industrialization and boomtowns, have occurred as the result of nuclear power plant siting was examined by gathering data about peak construction employment, number of in-migrants, and socioeconomic impacts at 12 remote nuclear power plant sites. The data, which were extracted from Environmental Impact Statements and post-licensing case studies (where available), are presented in Table 5-7. For the 12 sites listed in Table 5-7, peak construction employment was approximately 2200 (+700), or 5 percent of the surrounding population to 20 miles. For the 9 sites where in-migration data were available, peak construction in-migration (workers plus families) on an average represented only 3 percent of the surrounding population to 20 miles. Examination of the last column in Table 5-7 shows that with scattered exceptions (crowded classrooms, Yellow Creek; stressed government services, Hatch; wage inflation, St. Lucie; safety controversy, Diablo Canyon) the socioeconomic impacts at the 12 sites were largely beneficial (significantly increased tax revenues, increased retail trade). Given the modest increases in total population in the regions surrounding the sites, it is not surprising that detrimental impacts were minimal, while economic impacts were favorable.

Since socioeconomic impacts depend principally on the rate of population growth, which scales with construction workforce growth, additional data on construction workforce growth were developed for 19 non-remote construction projects including 15 nuclear power plants and for 28 remote construction projects including one nuclear power plant. The data are presented in Table 5-8, which shows that an average remote site experiences twice as much in-migration as a non-remote site. Table 5-7. Socioeconomic Impacts at Selected Remote Sites

Æ

,**ه**. ا

.

. . .

ŗ

Site (Projected Year of Completion for Each Reactor at a Site) ¹	Utility (Total Megawatts at Site)	Remoteness Index ²	Estimated Peak Construction Employment (Workers)	Total Popula- tion Within 20 Miles (1980) Projected, provided by Dames & Moore)	Estimated Number of Inmigrants at Peak of <u>Construction</u>	Overall Assessment Social and Economic Impacts
YELLOW CREEK ³ 1985, 1988 (Luka, MS)	TVA 2570 MWe	(1,1) Most Sparse Least Proximate	2,600	55,430	780 Workers (470 with families, 310 without fami- lies)	Increase in students will require seventeen classrooms and teachers; classroom space is currently scarce.
GRAND GULF ⁴ 1982, 1986 (Port Gibson, MS)	Mississippi Power & Light 2,500 MWe	(1,1)	Up to 2,600	27,592	Not provided	 More electrical power available. Dramatically increases the tax base. Significant direct and indirect increases in employment and income. 4(p. 8-16)
SOUTH TEXAS ⁵ PROJECT 1984, 1986 (Palacios, TX)	Houston Lighting and Power Company 2,500 MWe	(1,1)	2,100	32, 307	2.000 persons	Similar to Grand Gulf.
НАТСН6,7 1975, 1979 (Baxley, GA)	Georgia Power Company 1,572 MNe	(1,1)	2, 300	49,808	920 to 1,150 Workers	Some growth impacts on schools, housing, and public services but not serious. No unmanageable strains on community intrastructure. Plant's economic benefits (reduced tax rate, growth and employment) were viewed very positively by host area.
VOGTLE ⁸ 1985, 1988 (Waynesboro, GA)	Georgia Powar Company 2,200 NWe	(1,2)	3,800	26,170	815 workers	Construction of the proposed nuclear plant will slow, but not halt, the current trend in population migration from this rural area. For the effects of construction to be most beneficial, efforts to attract new and related commercial activity should continue. (P. 27)
CLINTON ⁹ 1982 (Clinton, IL)	lllincis Power Company 1,900 MWe	(2,2)	1,200	47,792	418 persons (191 workers, 121 adults, 106 children)	Minimal impacts anticipated due to close proximity (approximately 60 miles) of large urban areas.
ARKANSAS ¹⁰ 1973,1976 (Russelville, AK)	Arkansas Power and Light Company 1,748 MWe	(1,1)	973	59, 322	200 persons	 Stablilize area's construction workers. Increases in direct and indirect employment and income. Expansion of electric power provisions to the service area.
ST. LUCIEll				· · · ·	· · · · · ·	4. Increase in property tax payments which aided in reversal of school overcrowding and financial difficulties.
1976, 1983 (Hutchison Island, FL)	Florida Power and Light Company 1,554 MWe	(3,1)	1,847	121,542	Not provided	 Increased tax base by approximately 35%. Public construction projects in the county had to be delayed or cancelled due to inflated wage rates resulting from construction of the plant.
CRYSTAL ¹² RIVER 1977 (Crystal River, PL)	Florida Power Corporation 825 MWe	(1,1)	1,790	38,705	Not provided	 Increased tax base. 508 (85) of operating workforce relocated to Crystal River. Retail sales in area increased due to relocation of non-local construction workforce.
DIABLO ¹³ CANYON 1981, 1981 (Avila Beach, CA)	Pacific Gas and Electric 2,190 MWs	(2,1)	2,470	101,151	3,308 persons17	 Divisiveness of entire Diablo Canyon issue among community residents (not necessarily due to workforce in-migration). Operation of facilities held up due to environmentalists' concerns regarding geologic fault at eite.
FARLEY14 1977, 1980 (Dothan, AL)	Alabama Power Company 1,720 MWe	(3,1)	2,25018	93, 185	1.057 workers19	 Increase in direct and indirect employment and income.
SURREY15 1972, 1973 (Gravel Neck, VA)	Virginia Electric and Power Company 1,550 MWe	(4,4) ²⁰	1,934	284,669	102 persong16	 Increase in tax base. Increased employment, business income, tourism, traffic and land cost during construction in Surrey and Tale of Wight Counties.

.

Table 5-7. Footnotes

l"Commercial Nuclear Power Stations in the United States--Operable, Under Construction or Ordered--August 1, 1980, Wallchart, published by Nuclear News, La Grange Park, Illinois.

2The remoteness index as defined by sparseness and proximity measures (see text).

³Tennessee Valley Authority, <u>Final Environmental Statement</u>, <u>Yellow Creek Nuclear Plant Units 1 and 2</u>, Vol. 1, Vol. 2., January 1978.

⁴Mississippi Power & Light Company, <u>Final Environmental Statement Related to Construction of Grand Gulf Nuclear</u> Stations Units 1 and 2, Sec. 8.2, August 1973.

⁵Houston Lighting & Power Company, "Benefits and Costs" Chapter 8 and "Summary Benefit-Cost Analysis" Chapter 11 of South Texas Project-Environmental Report, Vol. 1, amended June 1975.

⁶Altameda Area Planning and Development Commission, <u>Impact of the Georgia Power</u> Company Nuclear Plant on Community Facilities in the Toomb--Appling BiCounty Area, Georgia Institute of Technology, Winter 1969.

⁷Shields, M. A., et al., <u>Socioeconomic Impacts of Nuclear Power Plants: A Paired Comparison of Operating Facil-</u> ities, NUREG/CR-0916, Oak Ridge, TN: Oak Ridge National Laboratory, July 1979.

⁸Central Savannah Area Planning and Development Commission, <u>Impact of the Georgia Power Company Vogtle Nuclear</u> Power Plant on the Central Savannah River Area, Appendix A, Georgia Institute of Technology, Spring 1972.

⁹Illinois Power Company, "Economic and Social Effects of Plant Construction and Operation," Chapter 8 of Environment Report--Construction Permit Stage for the Clinton Power Station, September 1974.

¹⁰Pijawka, D., <u>Arkansas Nuclear One, Preliminary Site Report</u>, Washington: U.S. Nuclear Regulatory Commission, February 1979.

11 Pijawka, D., <u>St. Lucie</u>, <u>Units 1 and 2</u>, <u>Preliminary Site Visit Report</u>, Washington: U.S. Nuclear Regulatory Commission, February 1979.

¹²Pijawka, D., <u>Crystal River, Unit 3, Preliminary Site Visit Report</u>, Washington: U.S. Nuclear Regulatory Commission, February 1979.

¹³York, M. N., <u>Diablo Canyon, Units 1 and 2, Preliminary Site Visit Report</u>, Washington: U.S. Nuclear Regulatory Commission, February 1979.

14Alabama Power Company, <u>Final Environmental Statement Related to Operation of Joseph M. Farley Nuclear Plant</u>, Units 1 and 2, December 1974.

¹⁵Flynn, J., <u>Surrey Nuclear Plant</u>, <u>Units 1 and 2</u>, <u>Preliminary Site Visit Report</u>, Washington: U.S. Nuclear Regulatory Commission, February 1979.

¹⁶Flynn J., <u>Socioeconomic Impacts of Nuclear Generating Stations, Surry Case Study</u>, Washington: U.S. Nuclear Regulatory Commission, November 1980.

¹⁷Pijawka, D., and Yoquinto, G., <u>Socioeconomic Impacts of Nuclear Generating Stations, Diablo Canyon Case Study</u>, Washington: U.S. Nuclear Regulatory Commission, December 1980.

18Alabama Power Company, Estimate, February 1979.

сī

¹⁹Based on percentages from a survey at Joseph M. Farley #2. Malhotra, S., Manninen, D., <u>Migration and Residen-</u> <u>tial Location of Workers at Nuclear Power Plant Construction Sites, Vol. 11, Profile Analysis of Worker Survey, Final</u> <u>Report</u>. BHARC-100/80/030, Seattle, WA: Battelle Human Affairs Research Centers, September 1980.

²⁰Based on population size within 20 and 50 miles of the site, Surrey is classified as non-remote. However when natural barriers are taken into consideration the population of the area within 20 miles of the site which has easy access to the site is considerably less. The figure for 50 miles is still appropriate as a representation of the population within commuting distance of the site.

Table 5-8. Variation in Migrant Proportion by Location

ł

	and the second second	1
	Migrant	
	Proportion	(%)
:	Construction W	
	20 20	

Location*	Number of Sites	Average	Range
Remote			
Bureau of Reclamation Water Development Projects ^{1,2}	10	59	40-89
Old West Regional Commission Study, Coal-fired Power Plants ³	14	60	21-97
North Dakota State University Leland Olds and Square Butte ⁴ Coal Creek ⁵	2 1	50 39	**
NRC Labor Migration Study ^{6,7}	1	47	· · ·
Non-remote	N = 28	Weighted Average = 58	· · · ·
NRC Labor Migration Study ^{6,7} (excluding TVA)	8	29	15-49
TVA Sites ⁸ Nuclear ⁹ Non-nuclear ⁹	······································	26 34	11-40 29-47
Bureau of Reclamation Water Development Projects ²	2	17	12-22
	N = 19	 Weighted Average = 27	

*Remoteness assignments were made using the sparseness and proximity measures described in the text.

**Migrant proportions were not provided separately for these sites in the reference document.

Table 5-8. Footnotes

¹J. A. Chalmers, <u>Bureau of Reclamation Construc-</u> tion Worker Survey, Bureau of Reclamation, Engineering and Research Center, October 1977.

²In general the Bureau of Reclamation Water Development Projects were constructed in sparsely settled regions of the western United States. Two sites, however, were located in the Phoenix area and are included in the nonremote group.

³Mountain West Research, Inc., <u>Construction Worker</u> <u>Profile, Final Report</u>, prepared for the Old West Regional Commission, 1975.

⁴A. G. Leholm, F. L. Leistritz and J. S. Wieland, <u>Profile of Electric Power Plant Construction Work</u> <u>Force</u>, Agricultural Economics Statistical Series, Issue No. 22, Department of Agricultural Economics, North Dakota State University, July 1976.

⁵J. S. Wieland and F. L. Leistritz, <u>Profile of the</u> <u>Coal Creek Project Construction Work Force</u>. Agricultural Economics Miscellaneous Report No. 33, Department of Agricultural Economics, North Dakota State University, February 1978.

⁶S. Malhotra and D. Manninen, <u>Migration and Resi</u>-<u>dential Location of Workers at Nuclear Power Plant</u> <u>Construction Sites, Vol. II Profile Analysis of Worker</u> <u>Surveys</u>, Battelle Human Affairs Research Centers, September 1980.

⁷The NRC labor migration study included only one remote site.

⁸TVA has published numerous reports containing the results of construction worker surveys conducted at TVA sites. For example see Tennessee Valley Authority, Hartsville Nuclear Plants Socioeconomic Monitoring and <u>Mitigation Report, March 31, 1978</u>, Knoxville, Tennessee, Tennessee Valley Authority, 1978.

⁹Multiple surveys were conducted at the TVA sites. The average and range of migrant proportions shown are for 35 surveys conducted at the nine TVA sites.

5.6 Conclusions

Classification of current nuclear power plant sites according to remoteness shows that most sites are nonremote, while few are truly remotely sited. In fact, although half of the current sites are located in nonmetropolitan counties, a majority are within 60 miles of [19] and few are more than 100 miles from a major metropolitan area.

The data on growth rates (Table 5-5) and construction workforce in-migration proportions (Table 5-8) show that population and economic growth rates are higher at more remote as opposed to less remote Impacts do increase with site remoteness. sites. However, although the differences in growth rates between more and less remote sites presented in Table 5-5 are all statistically significant, the 6 percent growth rate in total population observed for the more remote sites is significantly below the rate of 10 to 15 percent needed to produce boomtown conditions and thus adverse socioeconomic impacts. This conclusion is supported by the data presented in Table 5-7, which showed that 12 somewhat remotely sited nuclear power plants produced principally favorable socioeconomic impacts (much increased tax revenues, increased retail trade, some strains on government services, stabilization of population) on nearby communities.

Finally, it seems clear (1) that should future nuclear power plants be sited no more remotely than are current plants, then they will have few if any adverse socioeconomic impacts and (2) should they be sited in truly remote locations, then the potential for adverse impacts on nearby small rural communities can be substantially reduced by advance planning.

5-18

References for Chapter 5

- C. Cluett, S. Malhotra, and D. Manninen, <u>Socio</u> <u>economic Impacts of Remote Nuclear Power Plant</u> <u>Siting</u>, BHAPC-400/81/002, Battelle Human Affairs Research Centers, Seattle, Washington, May 1981.
- 2. U.S. Nuclear Regulatory Commission, <u>Report of the</u> Siting Policy Task Force, NUREG-0625, August 1979.
- 3. W. R. Freudenburg, "The Social Impact of Energy Boom Development on Rural Communities: A Review of Literatures and Some Predictions," Department of Sociology, Yale University, August 1976.
- U.S. Bureau of the Census, <u>Current Population</u> <u>Reports, Series P-25 and P-26</u>, Washington: <u>Government Printing Office</u>, 1966 and 1971-1978.
- 5. U.S. Bureau of the Census, <u>County Business Patterns</u> (for individual states), Washington: Government Printing Office, 1959 and 1962 and 1964-1978.
- 6. U.S. Bureau of the Census, <u>County and City Data</u> <u>Book</u>, Washington: Government Printing Office, 1967 and 1972 and 1977.
 - 7. U.S. Bureau of the Census, <u>Census of Governments</u>, Washington: Government Printing Office, 1977.

 EPRI Planning and Evaluation Staff, "Technical Assessment Guide," EPRI Rept. No. PS 1201-SR, July 1979, Exhibit 9-1, p. 9-2.

9. Ibid, p. 2-3.

- 10. I. S. Grant and V. J. Longo, "Economic Incentives for Larger Transmission Conductors," Power Transmission, Inc., Schenectady, NY, p. 1.
- 11. Commonwealth Associates, Inc., "Cost Components of High Capacity Transmission Options," EPRI Rept. No. EL-1065, Vol. 1, May 1979, p. 2-35.
- Principal Electric Facilities (Map Series), Department of Energy, Energy Information Administration, 1979.

- 13. Frankena, F., <u>Community Impacts of Rapid Growth</u> <u>in Nonmetropolitan Areas</u>, East Lansing, MI: <u>Michigan State University</u>, Department of Sociology, June 1980.
- 14. Summers, G. F., et al., <u>Industrial Invasion of</u> <u>Nonmetropolitan America: A Quarter Century of</u> <u>Experience</u>, New York, NY, Praeger Publishers, 1976.
- 15. Freudenburg, W. R., "The Social Impact of Energy Boom Development on Rural Communities: A Review of Literatures and Some Predictions," Department of Sociology, Yale University, August 1976.
- 16. C. F. Cortese and B. Jones, "The Sociological Analysis of Boom Towns," <u>Western Sociological Review</u>, 8:76-90, 1977.
- 17. C. F. Cortese, "The Social Impacts of Energy Development in the West: An Introduction," <u>The Social</u> <u>Science Journal</u>, 16:1-7, April 1979.
- C. F. Cortese, "Rapid Growth and Social Change in Western Communities," <u>Social Impact Assessment</u>, No. 40/41, April-May 1979.

- U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Socioeconomic Impacts: Nuclear Power Station Siting, NUREG-0150, June 1977.
- 20. E. Peelle, "Social Effects of Nuclear Power Plants," in C. P. Wolf, ed., <u>2: Social Impact Assessment</u>, Milwaukee, WI: Environmental Design Research Association, Inc., 1974, p. 114.
- 21. M. A. Shields et al., <u>Socioeconomic Impacts of</u> <u>Nuclear Power Plants: A Paired Comparison of</u> <u>Operating Facilities</u>, <u>NUREG/CR-0916</u>, Oak Ridge, <u>TN: Oak Ridge National Laboratory</u>, July 1979.
- 22. Conversation with John Gilmore and Dean Coddington, Denver Research Institute, November 26, 1980. Case studies reviewed by DRI suggest that communities with a population of less than 1,000 are likely to be by-passed by in-migrants looking for housing, shopping facilities, and schools.

- 23. J. S. Gilmore, "Boom Towns May Hinder Energy Resource Development," <u>Science</u>, 191:535-540, February 13, 1976.
- 24. U.S. Department of Housing and Urban Development, Office of Community Planning and Development, <u>Rapid Growth From Energy Projects: Ideas for</u> <u>State and Local Action, a Program Guide</u>, 1976, p. 2.
- 25. U.S. Congress, Senate, Statement of S. H. Murdock in Hearing Before the Subcommittee on Rural Development, Committee on Agriculture, Nutrition, and Forestry, <u>The Socioeconomic Effects of a</u> <u>Nuclear Waste Storage Site on Rural Areas and</u> <u>Small Communities</u>, 96th Cong., 2d Sess., 1980, p. 67.

Appendix A: Site Data

A large body of site-related data was collected for use in performing the consequence calculations discussed in Chapter 2 of this report. These data are summarized in the following sections of this appendix as listed below.

Section	•	Data Description
A.1	•	General Site and Reactor Data
A.2		Site Population Data
A.3		Weather Data
A.4	•	Site Wind Pose Data
A.5		Economic Data

A.1 General Site and Reactor Data

Calculations were performed for 91 sites where reactors are currently operating, are under construction, or have been assigned a construction permit. Table A.1-1 lists the site locations (county/state) and the power level (MWe), type, supplier, and date of startup (actual or expected) for the reactors located at these sites. Table A.1-2 gives the latitude and longitude of each site,* as well as the meteorological station and sheltering region assigned for performing site consequence calculations. The meteorological data used in this study are further described in Section A.3. The sheltering region is based on housing types and is used to determine external exposure shielding factors when population sheltering is assumed to be an emergency protective measure. The important housing characteristics and assumed shielding factors for the seven regions used in this study are described in Table A.1-3. For further information on sheltering regions and shielding factors, see reference [2].

*Latitudes and longitudes were taken from reference [1].

如此"你们的你们的你们,我们就是你的现在?"

Table A.1-1 General Site and Reactor Data

Plant	Location (County/State)	Power Level (MWe)	Type	Reactor Supplier	Expected Date of Startup
		2 × C.O.T			
llens Creek	Austin, TX	1200	BWR	GE	. , /87
rkansas 1,2	Pope, AR	836	PWR	B≨₩	12/74
		912	PWR	C-E	3/80
ailly	Porter, IN	6,45	BWR	GE	6/87
eaver Valley 1,2	Beaver, PA	833 -	PWR	W	4/77
		833	PWR	N N	5/86
ellefonte 1,2	Jackson, AL	1213	PWR	B&W	9/83
•		1213	PWR	B&W	6/84
g Rock Pt.	Charlevoix, MI	63	BWR	GE a	12/62
ack Fox 1,2	Rogers, OK	1150	BWR	GE	7/85
		1150	BWR	GE	7/88
aidwood 1,2	Will, IL, Star	1120	PWR	W	10/85
410#000 172		1120	PWR	W	
owns Ferry 1,2,3	Limestone, AL	1067	BWR	GE	10/86
owns relly 1,2,5	Linestone, AL				8/74
		1067	BWR	GE	8/75
		1067	BWR	GE	3/77
runswick 1;2	Brunswick, NC	790	BWR	GE	3/77
		790	BWR	GE	11/75
ron 1,2	Ogle, IL	1120	PWR	W	10/83
		1120	PWR	W	10/84
allaway 1,2	Callaway, MO	1150	PWR	W	10/82
-	The second second	1150	PWR	W	4/87
alvert Cliffs 1,2	Calvert, MD	850	PWR	C-E	5/75
		850	PWR	C-E	5/77
tawba 1,2	York, SC	1145	PWR	พี	7/83
	10147 20	1145	PWR	. W	
arakaa 1 2 3	Charakan SC				1/85
nerokee 1,2,3	Cherokee, SC	1280	PWR	C-E	1/90
		1280	PWR	C-E	1/92
a service a service of the service o	in the second second	1280	PWR	C-E	Indef.
inton 1,2	Dewitt, IL	950	BWR	GE	12/82
		950	BWR	GE	Indef.
manche Peak 1,2	Somervell, TX	1150	PWR	W	/81
경험에 도망한 이 것이 같아. 이 이 나는 것이 없다.	고 말에는 물질 것 같아요. 나는	1150	PWR	W	/83
oper (Nemaha, NB	778	BWR	GE	7/74
ystal River 3	Citris, FL	825	PWR	B&W	3/77
vis-Besse	Ottawa, OH	906	PWR	Baw	11/77
ablo Canyon 1,2	San Luis Obispo, CA		PWR	W	/81
abio califoli 1/2	oun aurs obrapo, ch	1106	PWR	Ŵ	
	Dame in Mar				/81
onald C. Cook 1,2	Berrien, MI	1054	PWR	W	8/75
	alte fanser in	1094	PWR	W State	6/78
esden 1,2,3	Grundy, IL	200	BWR	GE	8/60
	이번 같은 이 관계에서 가지?	800	BWR	GE	8/70
المحجا المراجع والمحجور		. 800,	BWR	GE	10/71
ane Arnold	Linn, IA	545	BWR	GE	5/74
rmi 2	Monroe, MI	1100	BWR	GE	3/82
tzpatrick*	Oswego, NY	821	BWR	GE	7/75
rked River **	Ocean, NJ	1120	PWR	С-Е	5/86
• Calhoun	Washington, NB	457	PWR	Č-E	9/73
. St. Vrain	Weld, CO	330	HTGR	GA	1/79
	Wayne, NY	490	PWR -	W	
and Gulf 1,2					3/70
	Clairborne, MS	1250	BWR	GE	4/82
		1250	BWR	GÉ	9/86
ddem Neck	Middlesey, CT		PWR S	e) e v tget	1/68
rtsville Al,A2,	Troysdale & Smith,	TN 1233	BWR	GE	:7/86
	and a second	1233	BWR	GE	7/87
B1,B2					
81,82		1233	BWR	GE SA	Indef.

*Same site as Nine Mile Point **Same site as Oyster Creek

A-2

14.11

and the second

Table A.1-1 General Site and Reactor Data (cont)

Plant	Location (County/State)	Power Level (MWe)	Туре	Reactor Supplier	Actual or Expected Date of Startup
		·			
Hatch 1,2	Appling, GA	786	BWR	GE	. 12/75
	0.1	786	BWR	GE	8/79
Hope Creek 1,2*	Salem, NJ	1070	BWR	GE	12/86
- 1		1070	BWR	GE	12/89
Indian Point 2,3	Westchester, NY	873	PWR	W	7/74
Town N. Dowlow 1	i i i i i i i i i i i i i i i i i i i	965	PWR	W	8/76
Joseph M. Farley 1,2	Houston, AL	860	PWR	W	12/77
Kaupunga	Volumente MT	860	PWR	W	11/80
Kewaunee LaCross	Kewaunee, WI	535 50	PWR	W Allis	6/74
	Monroe, WI		BWR		11/69
LaSalle 1,2	LaSalle, IL		BWR	GE GE	6/81
timoriak 1 0	Montgomory DA	1078	BWR	GE	6/82
Limerick 1,2	Montgomery, PA	1055	BWR	GE GE	4/85
Maine Yankee		1055	BWR		4/87
	Lincoln, ME	790	PWR	C-E	12/72
Marble Hill 1,2	Jefferson, IN	1130	PWR	W .	/86
Nacuira 1 2	Necklophene NC	1130	PWR	W .	/87
McGuire 1,2	Mecklenberg, NC	1180	PWR		8/80
Millord 1 0	Hidland MT	1180	PWR	W,	4/82
Midland 1,2	Midland, MI	530	PWR	B&W B&W	7/84
Willstone 1 2 2	Nous London CT	805	PWR		12/83
Millstone 1,2,3	New: London , CT	660	BWR	GE	12/70
•	Red Holes	870	PWR	С-Е	12/75
Monticello	· · · · · · · · · · · · · · · · · · ·	1150	PWR	W GE	5/86
	Wright, MN	536	BWR		7/71
Nine Mile Pt. 1,2**	Oswego, NY	610	BWR.	GE GE	12/69
Newth Anna 1 2 2 4		1080	BWR		10/86
North Anna 1,2,3,4	Louisa, VA	850	PWR	W	6/78
			PWR	W	8/80
		934	PWR	B&W	4/87
Ocence 1 2 3	Oconee, SC	934	PWR PWR	B&W	4/88
Oconee 1,2,3	-	860 860		B&W B&W	7/73
		860	PWR	Bew	12/74
Oyster Creek ***	Ocean, NJ		BWR	GE	12/69
Palisades	VanBuren, MI	620 740	PWR	C-E	12/09
Palo Verde 1,2,3	Manicopa, AZ		PWR	C-E C-E	5/83
Paro verde 1,2,5	Manicopa, Az	1270	PWR	C-E	5/84
		1270	PWR	C-E C-E	5/86
Peach Bottom 2,3	York, PA	1065	BWR	GE	7/74
reach Bortom 2,5					
Pebble Springs 1,2	Gilliam, OR	1065 1260	BWR . PWR	GE B&W	12/74 9/88
People Springs 1,2 -	GIIIIam, OK	1260	PWR	B&W	9/90
Perkins 1,2,3	Davie, NC	1280	PWR	C-E	Indef.
retrina 1,2,5	Davie, No	1280	PWR	C-E C-E	Indef.
		1280	PWR	C-E	Indef.
Perry 1,2	Lako Ol			GE	5/84
Perty 1,2	Lake, OH	1205 · ····· 1205	BWR BWR	GE	5/84
Phipps Bend 1,2	Hawkins, TN		BWR	GE	Indef.
LUTADA DEILO 115	HAMPINS' IN	1233 1233	BWR	GE	Indef.
Pilgrim 1,2	Plymouth, MA	670	BWR	GE	12/72
F11,9410 194 /	Liymouthy ris		PWR	C-E	Indef.
Pt. Beach 1,2	Manitowoc, WI	1150 497	PWR	W	12/70
rt. Death 1/2	Hanii Cowoc, wi	47/	- FWR	n	12/10
					·

*Same site as Salem **Same site as Fitzpatrick ***Same site as Forked River

Table A.1-1 General Site and Reactor Data (cont)

Plant	Location (County/State)	Power Level (MWe) Type	Reactor Supplier	Actual or Expected Date of Startup
	Goodhue, MN	520 PWR		12/73
Prairie Island 1,2	soodinge, hiv	520 PWR	Ŵ	12/74
Quad Cities 1,2	Rock Island, IL	800 BWR	GE	8/72
Quan cicles 1,2	Nock Initial In	800 BWR	GE	10/72
Rancho Seco	Sacramento, CA	913 PWR	BSW	4/75
River Bend 1,2	West Feliciani, LA	940 BWR	GE	4/84
River bend 1,2	webe reference, an	940 BWR	GE	Indef
Robinson 2	Darlington, SC	665 PWR	Ŵ	3/71
	St. Lucie, FL	777 PWR	. C-E	12/76
St. Lucie 1,2	Det Ducie, ib	777 PWR	C-E	5/83
C-1 1 3#	Salem, NJ	1090 PWR	Ŵ	6/77
Salem 1,2*	Salemy NO	1115 PWR	W	1/81
C 0 6 1 2 2	San Diego, CA	436 PWR	Ŵ	1/68
San Onofre 1,2,3	Sall Diego, CA	1100 PWR	C-E	12/81
		1100 PWR	C-E	2/83
		1150 PWR	w	12/83
Seabrook 1,2	Rockingham, NH		Ŵ	/85
			Ŵ	/80
Seguoyah 1,2	Hamilton, TN	1148 PWR	. W	6/81
		1148 PWR		3/85
Shearon Harris 1,2,	Wake & Chatham, NC	900 CARACTER PWR	W	
3,4		900 PWR	••	3/88
		900 PWR	W	3/94
		900 PWR	W	3/92
Shoreham	Suffolk, NY	820 BWR	GE	3/83
Skagit 1,2	Skagit, WA	1288 BWR	GE	Indef
		1288 BWR	GE	Indef
South Texas 1,2	Matagorda, TX	1250 PWR	W	4/84
No. 1997 (2017)	# 1.1	1250 PWR	W	4/86
Surry 1,2	Surry, VA	775 PWR	W	12/72
		775 PWR	W	5/73
Susquehanna 1,2	Luzerne, PA	1050 BWR	GE	1/82
		1050 BWR	GE	1/83
Three Mile Island 1,2	Dauphin, PA	792 PWR	GE	9/74
		880 PWR	W	12/78
Trojan	Columbia, OR	1130 PWR	W	5/76
Turkey Pt. 3,4	Dade, FL	666 PWR	W	12/72
		666 PWR	W	9/73
Vermont Yankee	Windham, VT	514 BWR	GE	11/72
Virgil Summer	Fairfield, SC	900 PWR	W	6/81
Vogtle 1,2	Burke, GA	1100 PWR	W	/85 :
	and the second	1100 PWR	W	/88
WPPSS 1,2,4	Benton, WA	1250 PWR	B&W	6/85
		1100 BWR	GE	1/83
19 a	$\gamma = D^{1}$ (1)	1250 PWR	B&W	6/86
WPPSS 3,5	Grays Harbor, WA	1240 PWR	C-E	6/86
		1240 PWR	C-E	6/87
Waterford 3	St. Charles, LA	1165 PWR	C∽E	/82
Watts Bar 1,2	Rhea, TN	1177 PWR	W	9/81
	incuy in	1177 PWR	W	6/82
Wolf Creek	Coffey, KS	1150 PWR	W	4/83
Yankee Rowe	Franklin, MA	175 PWR	W	6/61
Yellow Creek 1,2	Tishomingo, MS	1285 PWR	C-E	11/85
TEITOM CLEEN 114	restouringoy no	1285 PWR	C-E	4/88
7.	Clermont, OH	810 BWR	GE	/81
Zimmer	Lake, IL	1100 PWR	W	6/73
Zion 1,2				

*Same site as Hope Creek

:

Table A.1-2 General Site Data

Allens Creek129-40-4396-06-15Port Worth (14)3TXBaillys341-38-3067-07-30Chicago (9)7ARBailys341-38-3067-07-30Chicago (9)7ARBeaver Valley440-37-1880-26-66Washington, DC (29)1PLmellefonte534-42-3285-55-36Nahwille(21)7ALBig Rock Point645-21-3285-13-45Milwauke(21)30KBraidwood811-44-7788-13-44Moline (22)41LBraidwood811-42-1388-13-44Moline (22)41LBrunswick1033-57-3276-01-15Cape Mathemas (6)6NCBrunswick1132-04-3081-64-52Columbia (10)4MOCalvest Cliffs1339-25-3976-25-35Washington, DC (29)6MDCalvest Cliffs1339-25-2976-25-35Washington, DC (29)6MD <tr< th=""><th>Plant</th><th>Number Site</th><th>Latitude</th><th>Longitude</th><th>Meteorological Station</th><th>Sheltering Region</th><th>State</th></tr<>	Plant	Number Site	Latitude	Longitude	Meteorological Station	Sheltering Region	State
Arkansas2 $35-18-42$ $93-13-15$ Columbia (10)7AR PBailly3 $41-38-30$ $87-07-30$ Chicago (9)2INBeaver Valley4 $40-37-18$ $80-26-06$ Washington, DC (29)1PABellefonte5 $34-42-32$ $85-53-36$ Mashville (23)7ALBig Rock Point6 $45-21-32$ $85-11-45$ Milwakee (21)2MIBig Rock Point6 $45-21-32$ $85-11-45$ Columbia (10)3OKBranswick10 $33-57-32$ $78-01-15$ Caputation (23)7ALBrunswick10 $33-57-32$ $78-01-15$ Caputation (23)4ILCaluart Cliffs13 $36-25-39$ $76-25-55$ Mashville (23)6SCCaluart Cliffs13 $36-25-39$ $76-25-55$ Washington, DC (29)6MDCatavba14 $35-03-05$ $81-04-10$ Mashville (23)6SCClinton16 $40-10-19$ $81-36-43$ Mashville (23)6SCClinton16 $40-10-19$ $97-47-07$ Ft. Worth (14)3TXCooper19 $20-21-44$ $97-47-07$ Ft. Worth (14)3TXCoper19 $40-21-41$ $97-47-07$ Ft. Worth (14)3TXDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2OHDavis-Besse21 $41-35-44$ $85-34-35$ Chicago (9)2<	Allens Creek	- 1 -	29-40-43	96-06-15	Fort Worth (14)	3	ጥአ
Baily3 $41-36-30$ $67-07-50$ Chicago (9)2TNBeaver Valley4 $40-37-18$ $80-26-06$ Washington, DC (29)1PABelefonte5 $34-42-32$ $85-55-36$ Nashville (23)7ALBig Rock Point6 $45-21-32$ $85-55-36$ Nashville (21)2MIBlack Fox7 $36-07-01$ $95-32-54$ Columbia (10)3OKBraidwood8 $41-4-37$ $88-33-44$ Moline (22)4ILBrunswick10 $33-57-32$ $76-01-15$ Cape Hatteras (6)6NCByron11 $42-04-30$ $89-16-55$ Moline (22)4ILCaluert Cliffs13 $38-25-39$ $76-25-35$ Washington, DC (29)6MDCatawba14 $35-03-05$ $81-04-10$ Nashville (23)6SCClinton16 $40-10-19$ $88-50-03$ Moline (22)4ILCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBDiablo Canyon22 $35-12-41$ $120-51-06$ Santa Maria (27)5CADonald C. Cook18 $41-35-42$ $81-05-10$ Moline (22)4ILDuane Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4ILDuane A	Arkansas	2	, ·				
Beaver Valley4 $40-37-18$ $80-26-06$ Washington, DC (29)1PABellefonte5 $34-42-32$ $85-53-36$ Nashville (23)7ALBig Rock Point6 $45-21-32$ $85-11-45$ Milwakee (21)2MIBiack Pox7 $36-07-01$ $95-32-54$ Columbia (10)3OKBraidwood8 $41-14-37$ $88-13-44$ Moline (22)4ILBrowns Perry9 $34-42-13$ $87-07-16$ Nashville (23)7ALBrunswick10 $33-57-32$ $78-01-15$ Cape Hateras (6)6NCCalvert Cliffs13 $38-25-39$ $76-25-35$ Mashville (23)6SCCalvert Cliffs13 $38-25-39$ $76-25-35$ Mashville (23)6SCConche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $120-51-08$ Santaria (27)5CADavis-Besse21 $41-35-42$ $89-60-17$ Mainta (25)4ILDavis-Besse23 $41-25-23$ $86-16-17$ Moline (22)4ILDavis-Besse23 $41-25-23$ $86-16-17$ Moline (22)4ILDavis-Besse23 $41-25-23$ $86-16-17$ Moline (22)4I						2	
Bellefonte5 $34-42-32$ $85-55-36$ Nashville (23)7ALBig Rock Point6 $45-21-32$ $85-11-45$ Milwaukee (21)2MIBlack Pox7 $36-07-01$ $95-32-54$ Columbia (10)3OKBrowns Perry9 $34-42-13$ $87-07-16$ Nashville (23)7ALBrowns Verk10 $33-57-32$ $76-01-15$ Cape Hatteras (6)6NCByron11 $42-04-30$ $89-16-55$ Moline (22)4ILCallaway12 $38-45-39$ $76-25-35$ Washington, DC (29)6MDCatawba14 $35-03-05$ $81-04-10$ Nashville (23)6SCCherokee15 $35-02-12$ $81-30-43$ Nashville (23)6SCClinton16 $40-10-19$ $89-50-03$ Moline (22)4ILCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCotysts-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2CHDiablo Canyon22 $35-12-41$ $120-51-08$ Santa Maria (27)5CADonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIPitzpatrick*27 $43-31-9$ $97-47-07$ Moline (22)4ILDuane Arnold24 $42-95-54$ $91-46-21$ Omaha (25)4IL<		4				ī	
Big Rock Point6 $45-21-32$ $85-11-45$ Milwakee (21)2NTBlack Pox7 $36-07-01$ $95-32-54$ Columbia (10)30KBraidwood8 $41-14-37$ $88-13-44$ Moline (22)41LBrowns Perry9 $34-42-13$ $87-07-16$ Nashville (23)7ALBrunswick10 $33-57-32$ $78-01-15$ Cape Hatteras (6)6NCByron11 $42-04-30$ $89-16-55$ Moline (22)4ILCallway12 $38+45-42$ $91+46-52$ Columbia (10)4MOCatavba14 $35-03-05$ $81-04-10$ Nashville (23)6SCCherokee15 $35-02-12$ $81-30-43$ Nashville (23)6SCComanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River20 $28-57-26$ $82-41-56$ Apalcohicola (2)7FLDavis-Deesse21 $41-23-23$ $88-16-17$ Moline (22)4ILDonald C. Cook18 $41-23-23$ $88-16-17$ Moline (21)1NYPresden23 $41-23-23$ $88-16-17$ Moline (22)4ILDuana Arnold24 $42-05-44$ $97-43-25-44$ Milwakee (21)1NYPresden23 $41-23-23$ $88-16-17$ Moline (22)4IL	Bellefonte		34-42-32			7	
Black Fox7 $36-07-01$ $95-32-54$ Columbia (10)3 3 OR Braidwood8 $41-14-37$ $88-13-44$ Moline (22)4ILBrunswick10 $33-57-32$ $78-01-15$ $Cape$ Hatteras (6)6NCByron11 $42-04-30$ $89-16-55$ Moline (22)4ILCallaway12 $38-45-42$ $91-46-55$ Columbia (10)4MOCalvert Cliffs13 $38-25-39$ $76-25-35$ Washington, DC (29)6MDCatavba14 $35-03-05$ $81-04-10$ Nashville (23)6SCCherokee15 $35-03-05$ $81-04-10$ Nashville (23)6SCComanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River20 $28-57-26$ $82-41-56$ Apalochicala (2)7FLDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2OHDavis-Besse21 $41-23-23$ $88-16-17$ Moline (22)4ILDonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIPrexade23 $41-23-23$ $88-16-17$ Moline (22)4ILDonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIPrexade23 $41-23-23$ $88-16-17$ Moline (22)4IL<	Big Rock Point	6	45-21-32			2	
Browns Perry9 $34-42-13$ $87-07-16$ Nashville (23)7ALBrunswick10 $33-57-32$ $78-01-15$ Cape Hattersa(6)6NCByron11 $42-04-30$ $89+16-55$ Moline (22)4ILCalvert Cliffs13 $38-25-39$ $76-25-35$ Washington, DC (29)6MDCatvert Cliffs13 $38-25-39$ $76-25-35$ Washington, DC (29)6MDCatavba14 $35-03-05$ $81-04-10$ Nashville (23)6SCCherokee15 $35-02-12$ $81-30-43$ Nashville (23)6SCComanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River2028-57-26 $82-41-56$ Apalochicola (2)7FLDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2CHDavis-Besse21 $41-35-42$ $83-05-12$ Chicago (9)2MIDresden23 $41-23-23$ $88-16-17$ Moline (22)4ILDuane Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4IAFermi26 $41-58-41$ $83-15-34$ Chicago (9)2MIPitzpatrick*27 $43-11-12$ $96-04-50$ Omaha (25)4IAFermi30 $40-14-40$ $104-52-27$ Dodge City (11)1NY	Black Fox		36-07-01			. 3	
Browns Ferry9 $34+42-13$ $87-07-16$ Nashville (23)7ALBrunswick10 $33-57-32$ $78-01-15$ Cape Hatteras (6)6NCByron11 $42-04-30$ $89-16-55$ Moline (22)4ILCalvert Cliffs13 $38-45-42$ $91+46-52$ Columbia (10)4MOCalvert Cliffs13 $38-25-39$ $76-25-35$ Washington, DC (29)6MDCatavba14 $35-03-05$ $81-04-10$ Nashville (23)6SCCherokee15 $35-02-12$ $81-30-43$ Nashville (23)6SCComanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River20 $2857-26$ $82-41-56$ Apalochicola (2)7FLDavis-Besse21 $41-35-42$ $(83-05-11)$ Chicago (9)2OHDiablo Canyon22 $35-12-41$ $120-51-08$ Santa Maria (27)5CADonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIPritzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NYForked River**28 $9-48-36$ $74-12-36$ New York (24)1NJPrt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFitzpatrick*27 $43-31-19$ $77-18-30$ Milwaukee (2	Braidwood	8	41-14-37	88-13-44	Moline (22)	4	11.
Brunswick10 $33-57-32$ 78-01-15Cape Hatteras (6)6NCByron11 $42-04-30$ $89-16-55$ Moline (22)4ILCallaway12 $38-45-42$ $91-46-52$ Columbia (10)4MOCalvert Cliffs13 $38-25-39$ $76-25-35$ Washington, DC (29)6MDCatawba14 $35-03-05$ $81-04-10$ Mashville (23)6SCCherokee15 $35-02-12$ $81-30-43$ Mashville (23)6SCComanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River20 $28-57-26$ $82-41-56$ Apalochicola (2)7FLDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2MIDiablo Canyon22 $35-12-41$ $120-51-06$ Santa Maria (27)5CADonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIDresden23 $41-23-23$ $88-16-17$ Moline (22)4ILDuane Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4MIPitzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NYForked River**28 $39-48-36$ $74-12-36$ Omaha (25)4MBFt. St. Vrain30 $40-14+40$ $104+52-27$ Dodge City (11)4 <td>Browns Ferry</td> <td>9.</td> <td>34-42-13</td> <td>87-07-16</td> <td>Nashville (23)</td> <td>. 7</td> <td></td>	Browns Ferry	9.	34-42-13	87-07-16	Nashville (23)	. 7	
Byron 11 42-04-30 B9-16-55 Moline (22) 4 IL Callaway 12 38-45-42 91-46-52 Columbia (10) 4 MO Calvert Cliffs 13 38-25-39 76-25-35 Washington, DC (29) 6 MD Catawba 14 35-03-05 81-04-10 Mashville (23) 6 SC Cherokee 15 35-02-12 81-30-43 Nashville (23) 4 SC Comanche Peak 17 32-17-49 97-47-07 Ft. Worth (14) 3 TX Cooper 19 40-21-41 95-38-17 Omaha (25) 4 NB Crystal River 20 28-57-26 82-41-56 Apalochicola (2) 7 FL Davis-Besse 21 41-35-42 83-05-11 Chicago (9) 2 MI Dresden 23 41-23-23 88-16-17 Moline (22) 4 IL Duane Arnold 24 42-05-54 91-46-21 Omaha (25) 4	Brunswick		33-57-32	78-01-15	Cape Hatteras (6)	6 .	
Calvert Cliffs13 $38-25-39$ $76-25-35$ Washington, bC (29)6HDCatawba14 $35-03-05$ $81-04-10$ Nashville (23)6SCCherokee15 $35-02-12$ $81-30-43$ Nashville (23)6SCClinton16 $40-10-19$ $88-50-03$ Moline (22)4ILComanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River20 $28-57-26$ $82-41-56$ Apalochicola (2)7FLDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2OHDiablo Canyon22 $35-12-41$ $20-51-06$ Santa Maria (27)5CADonald C. Cook18 $41-23-23$ $88-16-17$ Moline (22)4ILPerseden23 $41-23-23$ $88-16-17$ Moline (22)4ILPauea Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4IAFitzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NJFt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NJFt. Calhoun29 $41-31-12$ $96-04-50$ Malwaukee (21)1NJFt. St. Vrain30 $40-14+40$ $104-52-77$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1<	Byron		42-04-30	89-16-55	Moline (22)	4	
Calvert Cliffs13 $38-25-39$ $76-25-35$ Washington, DC (29)6MDCatawba14 $35-03-05$ $81-04-10$ Nashville (23)6SCCherokee15 $35-02-12$ $81-30-43$ Nashville (23)6SCClinton16 $40-10-19$ $88-50-03$ Moline (22)4ILComanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River20 $28-57-26$ $82-41-56$ Apalochicola (2)7FLDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2OHDablo Canyon22 $35-12-41$ $120-51-08$ Santa Maria (27)5CADonaid C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIDresden23 $41-23-23$ $88-16-17$ Moline (22)4ILDuane Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4IAFermi26 $41-58-41$ $83-15-34$ Chicago (9)2MIFitzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NyFt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFt. St. Vrain30 $40-14-40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NY	Callaway	12	38-45-42	91-46-52	Columbia (10)	4	MO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Calvert Cliffs	13	38-25-39	76-25-35	Washington, DC (29)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Catawba	14	35-03-05	81-04-10		6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cherokee	15	35-02-12	81-30-43	Nashville (23)	6	
Comanche Peak17 $32-17-49$ $97-47-07$ Ft. Worth (14)3TXCooper19 $40-21-41$ $95-38-17$ Omaha (25)4NBCrystal River20 $28-57-26$ $82-41-56$ Apalochicola (2)7FLDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2OHDiablo Canyon22 $35-12-41$ $120-51-08$ Santa Maria (27)5CADonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIDresden23 $41-23-23$ $88-16-17$ Moline (22)4ILDuane Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4IAFermi26 $41-58-41$ $83-15-34$ Chicago (9)2MIFitzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NJFt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFt. St. Vrain30 $40-14+40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NYGrand Gulf32 $32-00-27$ $91-02-53$ Lake Charles (17)7MSHaddem Neck33 $41-28-56$ $72-29-57$ New York (24)1NYJoseph M. Farley25 $31-66-05$ $82-20-40$ Charleston (8)6CAHope Creek***92 $39-27-66$ $75-32-08$ Washington, DC (29)<	Clinton	16	40-10-19	88~50-03	Moline (22)	4	
Crystal River20 $28-57-26$ $82-41-56$ Apalochicola (2)7FLDavis-Besse21 $41-35-42$ $83-05-11$ Chicago (9)2OHDiablo Canyon22 $35-12-41$ $120-51-06$ Santa Maria (27)5CADonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIDresden23 $41-23-23$ $88-16-17$ Moline (22)4ILDuane Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4IAFermi26 $41-58-41$ $83-15-34$ Chicago (9)2MIFitzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NYForked River**28 $39-48-36$ $74-12-36$ New York (24)1NYFt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFt. St. Vrain30 $40-14-40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NYGrand Gulf32 $32-00-27$ $91-02-53$ Lake Charles (17)7MSHaddem Neck33 $41-28-56$ $72-29-57$ New York (24)1CTHatch35 $31-56-05$ $82-20-40$ Charleston (8)6CAHope Creek***92 $39-27-46$ $73-32-08$ Washington, DC (29)1NJJoseph M. Farley25 $31-13-21$ $85-06-42$ Lake Charles (17)	Comanche Peak	.17	32-17-49	97-47-07		3	
Davis-Besse 21 41-35-42 83-05-11 Chicago (9) 2 OH Diablo Canyon 22 35-12-41 120-51-08 Santa Maria (27) 5 CA Donald C. Cook 18 41-58-44 86-33-43 Chicago (9) 2 MI Dresden 23 41-23-23 88-16-17 Moline (22) 4 IL Duane Arnold 24 42-05-54 91-46-21 Omaha (25) 4 IA Fermi 26 41-58-41 83-15-34 Chicago (9) 2 MI Fitzpatrick* 27 43-31-19 76-23-54 Milwaukee (21) 1 NY Forked River** 28 39-48-36 74-12-36 New York (24) 1 NJ Ft. St. Vrain 30 40-14-40 104-52-27 Dodge City (11) 4 CO Ginna 31 43-16-39 77-18-30 Milwaukee (21) 1 NY Garad Gulf 32 32-00-27 91-02-53 Lake Charles (17) 7 MS Hartsville 34 36-21-15 86-05-10	Cooper	19	40-21-41	95-38-17	Omaha (25)	4	NB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crystal River	20	28-57-26	82-41-56	Apalochicola (2)	7	FL
Diablo Canyon22 $35-12-41$ $120-51-08$ Santa Maria (27)5CADonald C. Cook18 $41-58-44$ $86-33-43$ Chicago (9)2MIDresden23 $41-23-23$ $88-16-17$ Moline (22)4ILDuane Arnold24 $42-05-54$ $91-46-21$ Omaha (25)4IAFermi26 $41-58-41$ $83-15-34$ Chicago (9)2MIForked River**28 $39-48-36$ $74-12-36$ New York (24)1NJFt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFt. St. Vrain30 $40-14-40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NYGrand Gulf32 $32-00-27$ $91-02-53$ Lake Charles (17)7MSHatch35 $31-56-05$ $82-20-40$ Charleston (8)6CAHope Creek***92 $39-27-46$ $75-32-08$ Washington, DC (29)1NJJoseph M. Farley25 $31-13-21$ $85-06-42$ Lake Charles (17)7ALJoseph M. Farley25 $31-13-21$ $85-06-42$ Lake Charles (17)7ALLacrosse39 $43-33-36$ $91-13-42$ Malison (18)2WILaSalle38 $41-14-24$ $88-40-12$ Moline (22)4ILMarine Yankee42 $43-57-02$ $69-41-48$ Caribou (7) <t< td=""><td>Davis-Besse</td><td>21</td><td>41-35-42</td><td>83-05-11</td><td>Chicago (9)</td><td>2</td><td>он</td></t<>	Davis-Besse	21	41-35-42	83-05-11	Chicago (9)	2	он
Donald C. Cook1841-58-4486-33-43Chicago (9)2MIDresden2341-23-2388-16-17Moline (22)4ILDuane Arnold2442-05-5491-46-21Omaha (25)4IAFermi2641-58-4183-15-34Chicago (9)2MIFitzpatrick*2743-31-1976-23-54Milwaukee (21)1NYForked River**2839-48-3674-12-36New York (24)1NJFt. Calhoun2941-31-1296-04-50Omaha (25)4NBFt. St. Vrain3040-14+40104-52-27Dodge City (11)4COGinna3143-16-3977-18-30Milwaukee (21)1NYGrand Gulf3232-00-2791-02-53Lake Charles (17)7MSHaddem Neck3341-28-5672-29-57New York (24)1CTHartsville3436-21-1586-05-10Nashville (23)7TNHatch3531-56-0582-20-40Charleston (8)6CAHope Creek***9239-27-4675-32-08Washington, DC (29)1NJIndian Point3641-15-5773-56-06New York (24)1NYJoseph M. Farley2531-13-2185-06-42Lake Charles (17)7ALKewaunee3744-19-3487-31-27Milwaukee (21)2WILaforsse3943-33-36 <td>Diablo Canyon</td> <td>22</td> <td>35-12-41</td> <td>120-51-08</td> <td>Santa Maria (27)</td> <td>5.</td> <td></td>	Diablo Canyon	22	35-12-41	120-51-08	Santa Maria (27)	5.	
Dresden 23 41-23-23 88-16-17 Moline (22) 4 IL Duane Arnold 24 42-05-54 91-46-21 Omaha (25) 4 IA Fermi 26 41-58-41 83-15-34 Chicago (9) 2 MI Fitzpatrick* 27 43-31-19 76-23-54 Milwaukee (21) 1 NJ Forked River** 28 39-48-36 74-12-36 New York (24) 1 NJ Ft. Calhoun 29 41-31-12 96-04-50 Omaha (25) 4 NB Ft. St. Vrain 30 40-14-40 104-52-27 Dodge City (11) 4 CO Ginna 31 43-16-39 77-18-30 Milwaukee (21) 1 NY Grand Gulf 32 32-00-27 91-02-53 Lake Charles (17) 7 MS Haddem Neck 33 41-28-56 72-29-57 New York (24) 1 CT Hartsville 34 36-21-15 86-05-10 Nashrigton, DC (29) 1 NJ Joseph M. Farley 25 31-13-21 85-06-42 <td>Donald C. Cook</td> <td>18</td> <td>41-58-44</td> <td>86-33-43</td> <td>Chicago (9)</td> <td>2</td> <td></td>	Donald C. Cook	18	41-58-44	86-33-43	Chicago (9)	2	
Duane Arnold2442-05-5491-46-21Omaha (25)4IAFermi2641-58-4183-15-34Chicago (9)2MIFitzpatrick*2743-31-1976-23-54Milwaukee (21)1NYForked River**2839-48-3674-12-36New York (24)1NJFt. Calhoun2941-31-1296-04-50Omaha (25)4NBFt. St. Vrain3040-14-40104-52-27Dodge City (11)4COGinna3143-16-3977-18-30Milwaukee (21)1NYGrand Gulf3232-00-2791-02-53Lake Charles (17)7MSHaddem Neck3341-28-5672-29-57New York (24)1CTHatch3531-56-0582-20-40Charleston (8)6CAHope Creek***9239-27-4675-32-08Washington, DC (29)1NJIndian Point3641-15-5773-56-06New York (24)1NYJoseph M. Farley2531-13-2185-06-42Lake Charles (17)7ALKewaunee3744-19-3487-31-27Milwaukee (21)2WILaCrosse3943-33-3691-13-42Modison (18)2WILaSalle3841-14-2488-40-12Molison (18)2WILaSalle3841-14-2488-40-12Molison (18)2WILasine Yankee4243-57-02 <td< td=""><td>Dresden</td><td>23</td><td>41-23-23</td><td>88-16-17</td><td></td><td>4</td><td></td></td<>	Dresden	23	41-23-23	88-16-17		4	
Fermi26 $41-58-41$ $83-15-34$ Chicago (9)2MIFitzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NYForked River**28 $39-48-36$ $74-12-36$ New York (24)1NJFt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFt. St. Vrain30 $40-14-40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NYGrand Gulf32 $32-00-27$ $91-02-53$ Lake Charles (17)7MSHaddem Neck33 $41-28-56$ $72-29-57$ New York (24)1CTHartsville34 $36-21-15$ $86-05-10$ Nashville (23)7TNHatch35 $31-56-05$ $82-20-40$ Charleston (8)6CAHope Creek***92 $39-27-46$ $75-32-08$ Washington, DC (29)1NJJoseph M. Farley25 $31-13-21$ $85+06-42$ Lake Charles (17)7ALKewaunee37 $44-19-34$ $87-31-27$ Milwaukee (21)2WILaSalle38 $41-424$ $88-40-12$ Moline (22)4ILLimerick40 $40-13-12$ $75-35-24$ Washington, DC (29)1PAMaine Yankee42 $43-57-02$ $69-41-48$ Caribou (7)1MEMaine Yankee43 $35-25-9$ $80-56-55$ Nashville (23)	Duane Arnold	24	42-05-54	91-46-21	Omaha (25)	4	IA
Fitzpatrick*27 $43-31-19$ $76-23-54$ Milwaukee (21)1NYForked River**28 $39-48-36$ $74-12-36$ New York (24)1NJForked River**28 $39-48-36$ $74-12-36$ New York (24)1NJFt. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFt. St. Vrain30 $40-14-40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NYGrand Gulf32 $32-00-27$ $91-02-53$ Lake Charles (17)7MSHaddem Neck33 $41-28-56$ $72-29-57$ New York (24)1CTHartsville34 $36-21-15$ $86-05-10$ Nashville (23)7TNHatch35 $31-56-05$ $82-20-40$ Charleston (8)6CAHope Creek***92 $39-27-46$ $75-32-08$ Washington, DC (29)1NJJoseph M. Farley25 $31-13-21$ $85-06-42$ Lake Charles (17)7ALKewaunee37 $44-19-34$ $87-31-27$ Milwaukee (21)2WILaCrosse39 $43-33-36$ $91-13-42$ Madison (18)2WILaSalle38 $41-14-24$ $88-40-12$ Moline (22)4ILLimerick40 $40-13-12$ $75-35-24$ Washington, DC (29)1PAMaine Yankee43 $35-25-98$ $80-56-55$ Nashville (2	Fermi	26	41-58-41	83-15-34	Chicago (9)	2	MI
Ft. Calhoun29 $41-31-12$ $96-04-50$ Omaha (25)4NBFt. St. Vrain30 $40-14-40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NYGrand Gulf32 $32-00-27$ $91-02-53$ Lake Charles (17)7MSHaddem Neck33 $41-28-56$ $72-29-57$ New York (24)1CTHartsville34 $36-21-15$ $86-05-10$ Nashville (23)7TNHatch35 $31-56-05$ $82-20-40$ Charleston (8)6CAHope Creek***92 $39-27-46$ $75-32-08$ Washington, DC (29)1NJIndian Point36 $41-15-57$ $73-56-06$ New York (24)1NYJoseph M. Farley25 $31-13-21$ $85-06-42$ Lake Charles (17)7ALKewaunee37 $44-19-34$ $87-31-27$ Milwaukee (21)2WILaCrosse39 $43-33-6$ $91-13-42$ Madison (18)2WILaSalle38 $41-14-24$ $88-40-12$ Moline (22)4ILLimerick40 $40-13-12$ $75-35-24$ Washington, DC (29)1PAMaine Yankee42 $43-57-02$ $69-41-48$ Caribou (7)1MEMarble Hill41 $38-26-00$ $85-26-53$ Moline (22)2INMcGuire43 $35-25-98$ $80-56-55$ Nashville (23)6 <td>Fitzpatrick*</td> <td>27</td> <td>43-31-19</td> <td>76-23-54</td> <td></td> <td>1</td> <td></td>	Fitzpatrick*	27	43-31-19	76-23-54		1	
Ft. St. Vrain30 $40-14-40$ $104-52-27$ Dodge City (11)4COGinna31 $43-16-39$ $77-18-30$ Milwaukee (21)1NYGrand Gulf32 $32-00-27$ $91-02-53$ Lake Charles (17)7MSHaddem Neck33 $41-28-56$ $72-29-57$ New York (24)1CTHartsville34 $36-21-15$ $86-05-10$ Nashville (23)7TNHatch35 $31-56-05$ $82-20-40$ Charleston (8)6CAHope Creek***92 $39-27-46$ $75-32-08$ Washington, DC (29)1NJJoseph M. Farley25 $31-13-21$ $85-06-42$ Lake Charles (17)7ALKewaunee37 $44-19-34$ $87-31-27$ Milwaukee (21)2WILaCrosse39 $43-33-36$ $91-13-42$ Madison (18)2WILaSalle38 $41-14-24$ $88-40-12$ Moline (22)4ILLimerick40 $40-13-12$ $75-35-24$ Washington, DC (29)1PAMaine Yankee42 $43-57-02$ $69-41-48$ Caribou (7)1MEMarble Hill41 $38-26-00$ $85-26-53$ Moline (22)2INMcGuire43 $35-25-9$ $80-56-55$ Nashville (23)6NC	Forked River**		39-48-36	74-12-36	New York (24)	1	NJ
Ginna3143-16-3977-18-30Milwaukee (21)1NYGrand Gulf3232-00-2791-02-53Lake Charles (17)7MSHaddem Neck3341-28-5672-29-57New York (24)1CTHartsville3436-21-1586-05-10Nashville (23)7TNHatch3531-56-0582-20-40Charleston (8)6CAHope Creek***9239-27-4675-32-08Washington, DC (29)1NJIndian Point3641-15-5773-56-06New York (24)1NYJoseph M. Farley2531-13-2185-06-42Lake Charles (17)7ALKewaunee3744-19-3487-31-27Milwaukee (21)2WILaCrosse3943-33-3691-13-42Madison (18)2WILaSalle3841-14-2488-40-12Moline (22)4ILLimerick4040-13-1275-35-24Washington, DC (29)1PAMaine Yankee4243-57-0269-41-48Caribou (7)1MEMacDe Hill4138-26-0085-26-53Moline (22)2INMcGuire4335-25-5980-56-55Nashville (23)6NC	Ft. Calhoun	29	41-31-12	96-04-50	Omaha (25)	4	NB
Grand Gulf 32 32-00-27 91-02-53 Lake Charles (17) 7 MS Haddem Neck 33 41-28-56 72-29-57 New York (24) 1 CT Hartsville 34 36-21-15 86-05-10 Nashville (23) 7 TN Hatch 35 31-56-05 82-20-40 Charleston (8) 6 CA Hope Creek*** 92 39-27-46 75-32-08 Washington, DC (29) 1 NJ Indian Point 36 41-15-57 73-56-06 New York (24) 1 NY Joseph M. Farley 25 31-13-21 85-06-42 Lake Charles (17) 7 AL Kewaunee 37 44-19-34 87-31-27 Milwaukee (21) 2 WI LaCrosse 39 43-33-6 91-31-42 Modison (18) 2 WI LaSalle 38 41-14-24 88-40-12 Moline (22) 4 IL Limerick 40 40-13-12 75-35-24 Washington, DC (29) 1 PA Maine Yankee 42 43-57-02 69-			40-14-40	104-52-27	Dodge City (11)	4	со
Haddem Neck 33 41-28-56 72-29-57 New York (24) 1 CT Hartsville 34 36-21-15 86-05-10 Nashville (23) 7 TN Hartsville 34 36-21-15 86-05-10 Nashville (23) 7 TN Hartsville 34 31-56-05 82-20-40 Charleston (8) 6 CA Hope Creek*** 92 39-27-46 75-32-08 Washington, DC (29) 1 NJ Indian Point 36 41-15-57 73-56-06 New York (24) 1 NY Joseph M. Farley 25 31-13-21 85-06-42 Lake Charles (17) 7 AL Kewaunee 37 44-19-34 87-31-27 Milwaukee (21) 2 WI LaCrosse 39 43-33-6 91-13-42 Madison (18) 2 WI LaSalle 38 41-14-24 88-40-12 Moline (22) 4 IL Limerick 40 40-13-12 75-35-24 Washington, DC (29) 1 PA Maine Yankee 42 43-57-02 6	Ginna	31	43-16-39	77-18-30	Milwaukee (21)	1	NY
Hartsville 34 $36-21-15$ $86-05-10$ Nashville (23)7 TN Hatch 35 $31-56-05$ $82-20-40$ Charleston (8)6CAHope Creek*** 92 $39-27-46$ $75-32-08$ Washington, DC (29)1NJIndian Point 36 $41-15-57$ $73-56-06$ New York (24)1NYJoseph M. Farley 25 $31-13-21$ $85-06-42$ Lake Charles (17)7ALKewaunee 37 $44-19-34$ $87-31-27$ Milwaukee (21)2WILaCrosse 39 $43-33-36$ $91-13-42$ Madison (18)2WILaSalle 38 $41-424$ $88-40-12$ Moline (22)4ILLimerick 40 $40-13-12$ $75-35-24$ Washington, DC (29)1PAMaine Yankee 42 $43-57-02$ $69-41-48$ Caribou (7)1MEMarble Hill 41 $38-26-00$ $85-26-53$ Moline (22)2INMcGuire 43 $35-25-9$ $80-56-55$ Nashville (23)6NC	Grand Gulf	32		91-02-53	Lake Charles (17)	7	MS
Hatch3531-56-0582-20-40Charleston (8)6CAHope Creek***9239-27-4675-32-08Washington, DC (29)1NJIndian Point3641-15-5773-56-06New York (24)1NYJoseph M. Farley2531-13-2185-06-42Lake Charles (17)7ALLaCrosse3943-33-3691-13-42Madison (18)2WILaSalle3841-14-2488-40-12Moline (22)4ILLimerick4040-13-1275-35-24Washington, DC (29)1PAMaine Yankee4243-57-0269-41-48Caribou (7)1MEMarDle Hill4138-26-0085-26-53Moline (22)2INMcGuire4335-25-5980-56-55Nashville (23)6NC	Haddem Neck	33	41-28-56	72-29-57	New York (24)	1	Ст
Hope Creek***9239-27-4675-32-08Washington, DC (29)1NJIndian Point3641-15-5773-56-06New York (24)1NYJoseph M. Farley2531-13-2185-06-42Lake Charles (17)7ALKewaunee3744-19-3487-31-27Milwaukee (21)2WILaCrosse3943-33-691-13-42Madison (18)2WILaSalle3841-14-2488-40-12Moline (22)4ILLimerick4040-13-1275-35-24Washington, DC (29)1PAMaine Yankee4243-57-0269-41-48Caribou (7)1MEMarDle Hill4138-26-0085-26-53Moline (22)2INMcGuire4335-25-5980-56-55Nashville (23)6NC	Hartsville		36-21-15	86-05-10	Nashville (23)	. 7	TN
Indian Point 36 41-15-57 73-56-06 New York (24) 1 NY Joseph M. Farley 25 31-13-21 85-06-42 Lake Charles (17) 7 AL Kewaunee 37 44-19-34 87-31-27 Milwaukee (21) 2 WI LaCrosse 39 43-33-6 91-13-42 Madison (18) 2 WI LaSalle 38 41-14-24 88-40-12 Moline (22) 4 IL Limerick 40 40-13-12 75-35-24 Washington, DC (29) 1 PA Maine Yankee 42 43-57-02 69-41-48 Caribou (7) 1 ME Marble Hill 41 38-26-00 85-26-53 Moline (22) 2 IN McGuire 43 35-25-99 80-56-55 Nashville (23) 6 NC		35 .	31-56-05	82-20-40	Charleston (8)	6	CA
Joseph M. Farley2531-13-2185-06-42Lake Charles (17)7ALKewaunee3744-19-3487-31-27Milwaukee (21)2WILaCrosse3943-33-3691-13-42Madison (18)2WILaSalle3841-14-2488-40-12Moline (22)4ILLimerick4040-13-1275-35-24Washington, DC (29)1PAMaine Yankee4243-57-0269-41-48Caribou (7)1MEMarble Hill4138-26-0085-26-53Moline (22)2INMcGuire4335-25-5980-56-55Nashville (23)6NC	Hope Creek***	92	39-27-46	75-32-08	Washington, DC (29)	1	NJ
Kewaunee 37 44-19-34 87-31-27 Milwaukee (21) 2 WI LaCrosse 39 43-33-36 91-13-42 Madison (18) 2 WI LaSalle 38 41-14-24 88-40-12 Moline (22) 4 IL Limerick 40 40-13-12 75-35-24 Washington, DC (29) 1 PA Maine Yankee 42 43-57-02 69-41-48 Caribou (7) 1 ME Marble Hill 41 38-26-00 85-26-55 Moline (22) 2 IN McGuire 43 35-25-59 80-56-55 Nashville (23) 6 NC			41-15-57	73-56-06	New York (24)		NY
LaCrosse 39 43-33-36 91-13-42 Madison (18) 2 WI LaSalle 38 41-14-24 88-40-12 Moline (22) 4 IL Limerick 40 40-13-12 75-35-24 Washington, DC (29) 1 PA Maine Yankee 42 43-57-02 69-41-48 Caribou (7) 1 ME Marble Hill 41 38-26-00 85-26-53 Moline (22) 2 IN McGuire 43 35-25-59 80-56-55 Nashville (23) 6 NC	Joseph M. Farley		31-13-21	85-06-42	Lake Charles (17)	7,	AL
LaSalle 38 41-14-24 88-40-12 Moline (22) 4 IL Limerick 40 40-13-12 75-35-24 Washington, DC (29) 1 PA Maine Yankee 42 43-57-02 69-41-48 Caribou (7) 1 ME Marble Hill 41 38-26-00 85-26-53 Moline (22) 2 IN McGuire 43 35-25-59 80-56-55 Nashville (23) 6 NC	Kewaunee		44-19-34	87-31-27	Milwaukee (21)	2	WI
Limerick 40 40-13-12 75-35-24 Washington, DC (29) 1 PA Maine Yankee 42 43-57-02 69-41-48 Caribou (7) 1 ME Marble Hill 41 38-26-00 85-26-53 Moline (22) 2 IN McGuire 43 35-25-59 80-56-55 Nashville (23) 6 NC		39	43-33-36	91-13-42	Madison (18)	2	WI
Maine Yankee 42 43-57-02 69-41-48 Caribou (7) 1 ME Marble Hill 41 38-26-00 85-26-53 Moline (22) 2 IN McGuire 43 35-25-59 80-56-55 Nashville (23) 6 NC				88-40-12	Moline (22)	4	IL
Marble Hill 41 38-26-00 85-26-53 Moline (22) 2 IN McGuire 43 35-25-59 80-56-55 Nashville (23) 6 NC				75-35-24	Washington, DC (29)	. 1	PA
McGuire 43 35-25-59 80-56-55 Nashville (23) 6 NC			43-57-02	69-41-48	Caribou (7)		ME
			38-26-00	85-26-53	Moline (22)		IN
Midland 44 43-35-10 84-13-08 Milwaukee (21) 2 MI			35-25-59	80~56-55			NC
	Midland	44	43-35-10	84-13-08	Milwaukee (21)	2	MI

*Same site as Nine Mile Point **Same site as Oyster Creek ***Same site as Salem

「ない」をしていた。「ない」のない。

Table A.1-2 General Site Data (cont)

		·	· · · ·	:	Sheltering	
Plant	Number Site	Latitude	Longitude	Meteorological Station	Region	<u>State</u>
Millstone	45	41-18-32	72-10-04	Boston (4)	. 1	СТ
Monticello	46	45-20-03	93-50-55	Madison (18)	2	MN
Nine Mile Point*	47	43-31-19	76-23-54	Milwaukee (21)	1	NY
North Anna	48	38-03-48	77-47-13	Washington, DC (29)	6	VA
Oconee	49	34-47-40	82-53-55	Nashville (23)	6 20 191	SC 🕨
Oyster Creek**	50	39-48-50	74-12-41	New York (24)	1	NJ
Palisades	51	42-19-24	86-18-52	Chicago (9)	2	MI
Palo Verde	52	33-23-25	112-51-45	Phoenix (26)	3	AZ
Peach Bottom	53	39-45-33	76-16-08	Washington, DC (29)	1 and 1 and	PA
Pebble Springs	54	45-42-05	120-08-17	Medford (19)	5	OR
Perkins	55	35-50-53	80-27-10	Nashville (23)	6	NC
Perry	56	41-48-03	81-08-36	Chicago (9)	2	OH
Phipps Bend	57	36-27-47	82-48-32	Nashville (23)	7 2000	TN
Pilgrim	58	41-56-40		Boston (4)	1	MA
Point Beach	59 [:]	44-16-35	87-31-08	Milwaukee (21)	2	WI
Prairie Island	60	44-37-25	92-38-04	Madison (18)	2	MN
Quad Cities	61	41-43-38	90-20-30	Moline (22)	4 - 49 - 51	IL
Rancho Seco	62	38-21-00	121-07-12	Fresno (15)	5 a thread a	ĊĀ
River Bend	63	30-45-26	91-19-54	Lake Chalres (17)	7 . 47 . 47 .2	LA
Robinson	64	34-24-12	80-09-30	Nashville (23)	6	SC
St. Lucie	65	27-20-55	80-14-47	Miami (20)	7	FL
Salem t	66	39-27-46	75-32-08	Washington, DC (29)	1.1	NJ
San Onofre	67	33-2-53	117-31-17	Santa Maria (27)	5	CA
Seabrook	68	42-53-53	70-51-05	Boston (4)	1	NH
Sequoyah	69	35-13-31	85-05-13	Nashville (23)	7	TN
Shearon Harris	70	35-38-00	78-57-22	Nashville (23)	6	NC
Shoreham	72	40-57-30	72-52-00	New York (24)	1.	NY
Skagit	71	48-32-00	122-07-26	Seattle (28)	5	WA
South Texas	73	28-47-42		Brownsville (5)	3	тх
Surry	75	37-10-00	76-41-50	Washington, DC (29)	6	VA
Susquehanna	76	41-06-00	76-09-00	Washington, DC (29)	i ·	PA
Three Mile Island	77	40-09-12	76-43-37	Washington, DC (29)	ī	PA
Trojan		46-02-24	122-52-06	Medford (19)	5	OR
Turkey Point	79	25-26-02	80-19-54	Miami (20)	7	FL
Vermont Yankee	80	42-46-49	72-30-57	Caribou (7)	i	vT
Virgil Summer	74	34-17-54	81-18-55	Nashville (23)	6 4	SC
Vogtle	81	33-08-31	81-45-53	Charleston (8)	6 ' '	CA
WPPSS 1,2,4++	84	46-28-03	119-18-51	Medford (19)	Š ·	WA
WPPSS 3.5	85	46-57-11	123-28-11	Medford (19)	5 .54	WA
Waterford	82	30-00-00	90-28-12	Lake Charles (17)	7	LA
Watts Bar	83	35-36-10	84-47-25	Nashville (23)	7	TN
Wolf Creek	87	38-14-20	95-41-20	Omaha (25)	4	KN
Yankee Rowe	88	42-43-41	72-55-29	New York (24)	· · ·	MA
Yellow Creek	89	34-57-24	88-12-57	Nashville (23)	7 ·	MS
Zimmer	90	38-51-55	84-13-45	Nashville (23)	2	ОН
Zion	91 ³	42-27-34	87-48-23	Chicago (9)	4	IL
			J, 10 13	childrege (2)	•	

*Same site as Fitzpatrick **Same site as Forked river †Same site as Hope Creek †*Same site as Skagit

Region		% Brick	% Homes With	Shielding Factor*
Number	Location	Housing Units	Basements	Cloud Ground
1	Northeast	47	87	0.5 0.08
2	Great Lakes	36	77	0.6 0.1
3	Southwest	40	13	0.7 0.3
4	Midwest	35	71	0.5 0.09
5	Pacific Coast	27	23	0.7 0.3
6	Atlantic Coast	45	51	0.6 0.2
7	Southeast	59	16	0.7 0.2

Table A.1-3 Sheltering Regions

*The ratio of dose received when sheltered to the dose that would be received if outdoors. Cloud refers to gamma exposure from radionuclides dispersed in the atmosphere. Ground refers to gamma exposure from ground-deposited radionuclides.

A.2 Population Data

CRAC2 requires a description of the population distribution surrounding the reactor site being eval-Distributions are input as population counts uated. for individual spatial elements. These elements are the cells in a polar grid consisting of up to 34 annuli and 16 sectors (each 22 1/2° in width). This study used 34 annuli, with radii of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8.5, 10, 12.5, 15, 17.5, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 85, 100, 150, 200, 350, and 500 miles. The population distribution for each site was derived from 1970 census data using a program called SECPOP which was developed by the Office of Radiation Programs, Environmental Protection Agency.* SECPOP constructs a polar grid from user-specified annular radii and number of sectors. This grid is centered on a location specified by latitude and longitude. data file containing census data is then scanned to determine which enumeration district centroids fall into each spatial element. The population of each enumeration district is considered to be wholly within the spatial element in which its centroid falls. While this is an approximation, especially in sparsely populated areas for which the centroids are widely dispersed, it has an accuracy comparable to much of the other data used as input to CRAC2. In addition, the nature of the inaccuracy is such that it should have a very limited impact on conclusions drawn from exercising the model. The latitudes and longitudes for the 91 sites are provided in Table A.1-2. Summary population statistics for each site are provided in Chapter 3 and Appendix E.

*Technical Memorandum 73-146, U.S. Department of Commerce, Office of Telecommunications.

A.3 Weather Data

CRAC2 requires an input file containing 8760 hourly weather observations (one year). The hourly observations consist of wind speed, wind direction, stability class, and precipitation. These data are used in the dispersion/ deposition submodel to determine the rate at which the radioactive plume travels, disperses, and is depleted.

<u>, `-</u>

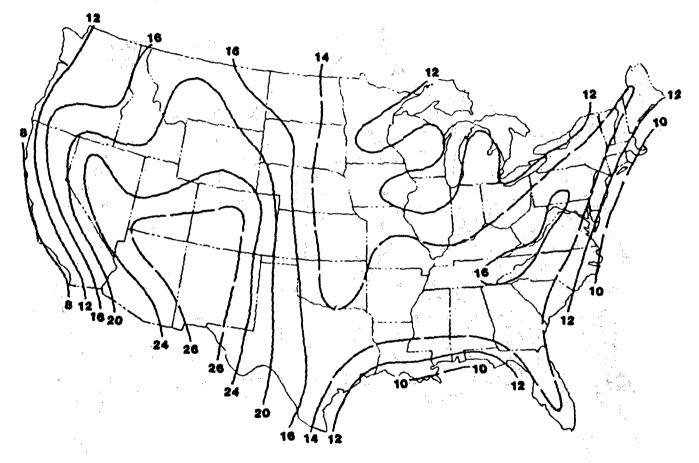
나는 사람이 나는 사람이 많이 많이 가지 않는 것이다.

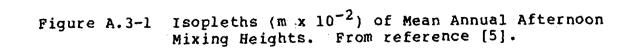
Past studies have typically employed data gathered by a licensee over a one-year period at a proposed site, usually as part of the license application. For this study we have selected 29 National Weather Service (NWS) stations as the sources of meteorological data. NWS data are available for a large number of sites, cover long periods of time, are generally of higher quality, and are more detailed than actual reactor site Each of the NWS stations selected has approxidata. mately 25 years of available data. Therefore, rather than select a single year at random, a Typical Meteorological Year (TMY) [3] was used to represent the longterm average behavior of the weather at a station. The technique used to determine a TMY involves comparing the distribution of certain weather characteristics for a given month over the entire period of record. Using statistical techniques described in reference [3], the one month "most typical" of the period is selected as part of the TMY. This procedure was performed for each of the twelve calendar months to obtain the TMY. In addition, a small amount of smoothing is performed at the boundaries between months to avoid abrupt changes in weather conditions.

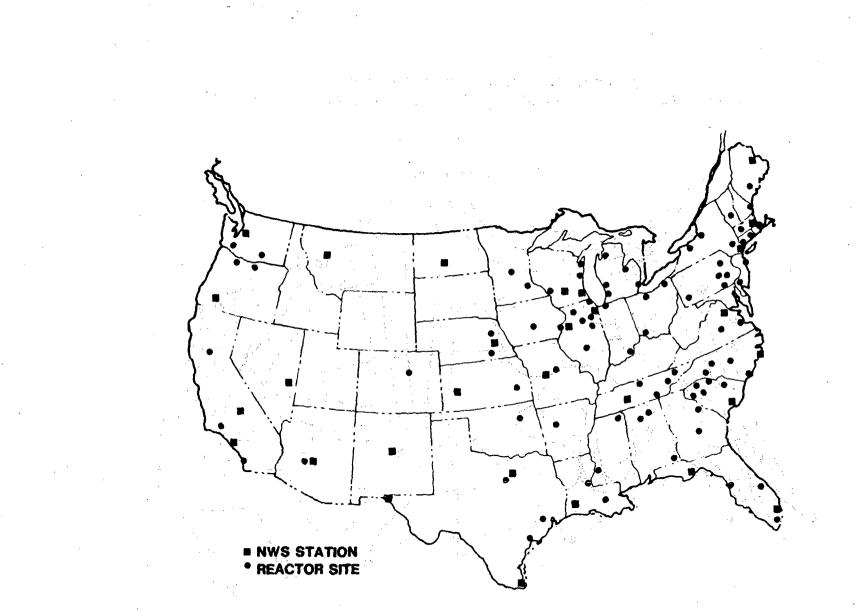
The criteria used to generate the TMYs were selected based on their relevance to solar heating simulations and include temperature, wind speed, and insolation. Since these parameters are correlated to the data required for the CRAC2 input, the TMYs are considered to be reasonably representative years to use as input to the consequence model. These data are probably better than the single year weather data used in the past which are of uncertain quality and are subject to the anomalies of a single year's weather.

The TMYs are available from the National Climatic Center (NCC), Asheville, NC. The data tapes supplied by the NCC are not compatible with CRAC2 requirements. In addition, these tapes do not contain a classification of stability class. A conversion program, METDAT, was developed by Science Applications, Inc. (SAI) under contract to Sandia. This program uses CRSTER [4], developed by the National Oceanic and Atmospheric Administration (NOAA), to generate the stability class using the insolation and wind speed data available in the TMY tapes.

CRAC2 requires rainfall intensity data for each hourly observation. Like atmospheric stability, rainfall data are not available on the TMY tapes. Therefore, rainfall statistics were gathered from other NWS data and were merged with the TMY information using the METDAT program.


1. 1. 1. 1.


The diffusion model used in CRAC2 also takes into account mixing height during dispersion calculations. The mixing height can affect the vertical diffusion of the radionuclide plume because mixing is essentially terminated at these levels. The mixing heights used for the 29 NWS stations were determined from the Holzworth isopleths of mean annual afternoon mixing height [5] (see Figure A.3-1). Table A.3-1 lists the 29 NWS stations with the assigned mixing heights. Figure A.3-2 shows the location of these stations in addition to the locations of the 91 reactor sites.


The meteorological data used for each of these 29 stations are summarized in Table A.3-2 in terms of the weather bin categories described in Appendix F. Additional rainfall data for the 29 stations are included in Table A.3-3.

化化学学校 化化学医疗法

"你们都是你们,你们都是你们,你们不可能是我们都是你的你,你们就是你们都是你的?""你们,你们就是你们不是你们的吗?" "你们我们,你们你们我们们?""你们,你们你们们我们就是你们的你?""你们,你们们就是你们的你?""你们,你们们不是你们的吗?""你们,你们们不是你们的吗?""你

ere de la participación de la productiva de la compañía de la compañía de la participación de la participación

4 × .

s Regge Marine States States

1			;			
No.	Station	Mixing Height (m)	No.	Station	Mixing Height (m)	
					121 	
·· · 1	Albuquerque, NM	2600	~ 16	Great Falls, MT	2000	
2 ·	Apalachicola, FL	1200	17	Lake Charles, LA	1100	
3	Bismarck, ND	1500	18	Madison, WI	1200	м. на н
4	Boston, MA	1100	^{``} 19	Medford, OR	1600	1 - B. J.
5	Brownsville, TX	1300	20	Miami, FL	1200	
6	Cape Hatteras, NC	1000	21	Milwaukee, WI	1200	
7	Caribou, ME	1300	22	Moline, IL	1200	, ,
8	Charleston, SC	1300	23	Nashville, TN	1600	
9	Chicago, IL	1200	² 24	New York, NY	1200	/ .
10	Columbia, MO	1200	25	Omaha, NB	1300	·
11	Dodge City, KS	1600	26	Phoenix, AZ	2400	
12	El Paso, TX	2600	: 27 .	Santa Maria, CA	800	
13	Ely, NV	2400	28	Seattle, WA	1200	
14	Fort Worth, TX	1500	29	Washington, DC	1500	
15	Fresno, CA	1600	÷ ·			. ,

Table A.3-1 NWS Station Locations and Mixing Heights

.....

. .

t

..

 \mathbb{C}^{\ast}

Table A.3-2 Meteorological Data for 29 NWS Stations Summarized Using Weather Bin Categories

Weather Bin Definitions

2

i.c.

R - Rain starting within indicated interval (miles).

S - Slowdown occurring within indicated interval (miles).

A-C D E F - Stability categories

1(0-1), 2(1-2), 3(2-3), 4(3-5), 5(GT 5) - Wind speed intervals (m/s).

Percent of Weather Sequences

Weather Bin	Albuquerque (1)	Apalachicola (2)	Bismarck (3)	Boston (4)	Brownsville (5)	Cape Hatteras (6)	Caribou (7)	Charleston (8)	Chicago (9)	Columbia (10)	Dodge City (11)	El Paso (12)
1 R (0)	1.46	4.50	3.94		2.25	6.69		E 07				·· ·
2 R (0-5)	0.09	0.70					10.14	5.87		6.26	3.69	1.30
3 R (5-10)			0.15	0.17	0.06	0.11	0.38	0.29	0.15	0.11	0.11	0.06
4 R (10-15)	0.31 0.55	1.14 1.34	0.40 0.67		0.39	0.75	1.26	0.88	0.68	0.75	0.27	0.26
5 R (15-20)				1.24	•	1.12	1.60	1.32	1.21	0.91	0.58	0.51
	0.33	1.11	0.76	0.82	0.54	1.02	1.28	0.81	0.87	0.91	0.37	0.34
6 R (20-25) 7 R (25-30)	0,33	0.99	0.55	0.90	0.53	0.83	1.12	0.87	0.68	0.76	0.55	0.32
8 S (0-10)	0.40;	0.96	0.66	0.94	0.42	0.83	1.29	0.99	0.86	0.76	0.50	0.34
•	2.00	1.36	1.02	0.55	0.34	0.14	0.53	0.51	0.51	0.53	0.24	0.98
9 S (10-15) 10 S (15-20)	2.01	1.02	0.90	0.43	0.27	80.0	0.42	0.43	0:41	0.42	0.25	0.96
	1.78	1.04	0.63	0.50	0.27	0.09	0.40	0.33	0.35	0.39	0.14	0.91
11 S (20-25)	1.55	1.02	0.73	0.37	0.21	0.07	0.29	0.39	0.38	0.32	0.15	0.71
12 S (25-30)	1.62	1.19	0.88	0.45		0.14	0.33	0.39	0.28	0.45	0.18	0.89
13 A-C 1,2,3	12.97	6.44	4.22	1.51	1.18	1.66	4.29	3.05	2.66	3.32	2.48	11.08
14 A-C 4,5	11.08	15.70	7.11	7.52	11.46	12.48	5.48	13.11	10.98	13.53		14.74
15 D 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16 D 2	1.51	2.19	1.71	0.74	0.59	0.21	1.82	1.06	1.02	0.92	0.43	1.31
17 D 3	3.07	2.81	3.18	1.77		1.67	-4.49	3.41	3.62		1.61	2.91
18 D 4	4.81	7.72	8.56	9.63	7.33	8.50	10.92	12.45	11.90	11.18	7.39	5.89
19 D 5	19.29	12.31	35.99	45.75	43.07	38.66	31.10	19.92	32.15	27.92	49.13	20,50
20 E 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
21 E 2	1.26	1.85	1.11	0.23	0.54	0.26	0.53	0.83	0.48	0.50	0.09	1.53
22 E 3	3.15	2.48	1.91	0.79	2.44	1.23	2.43	4.01	2.20	2.00	0.67	3.15
23 E 4	7.87	5.34	6.21	6.36	7.28	9.68	6.71	7.57	7.25	9.06	7.6B	6.45
24 E 5	2.35	1.85	1.67	3.13	2.69	3.01	2.09	1.80	2.84	2.23	3.74	2.51
25 F 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
26 F 2	6.94	14.51	7.71	1.13	3.69	1.56	3.11	8.17	2.75	2.32	0.72	9.59
27 F 3	7.50	6.46	5.48	1.80	6.40	4.20	4.75	6.92	4.93	4.73	2.24	8.32
28 F 4	5.78	4.01	3.85	3.58	5.30	5.00	3.28	4.61	4.60	6.74	3.74	4.42
29 F 5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

7

Ċ

Table A.3-2 Meteorological Data for 29 NWS Stations Summarized Using Weather Bin Categories (cont)

Weather Bin Definitions

-

- R Rain starting within indicated interval (miles).
- S Slowdown occurring within indicated interval (miles).

A-C D E F - Stability categories

1(0-1), 2(1-2), 3(2-3), 4(3-5), 5(GT 5) - Wind speed intervals (m/s).

Percent of Weather Sequences

Weather_Bin	Ely (13)	Fort Worth (14)	Fresno (15)	Great Falls (16)	Lake Charles (17)	Madison (18)	ledford	Miami (20)	Milwaukee (21)	Moline (22)	Nashville (23)	New York (24)
					•.		• .					
1 R (0)	3.06	3.97	2.09		3.73	6.08	4.61	4.37	6.12	5.84	6.60	7.96
2 R (0-5)	0.36	0.10	0.11		0.32	0.24	1.37	0.32	0.18	0.11	0.18	0.14
3 R (5-10)	0.65	0.47	0.56		1.00	0.98	1.56	1,14	0.66	0.79	0,79	0.71
4 R (10-15)	0.65	0.66	0.49		0.98	1.28	1.59	1.34	1.20	1.03	1.04	1.16
5 R (15-20)	0.66	0.45	0.32		0.68	1.03	1.13	1.15	0.84	0.83	0.90	0.86
6 R (20-25)	0.57	0.45	0.40		0.76	0.84	1.13	1.02	0.71	0.66	0.01	0.76
7 R (25-30)	0.51	0.48	0.39		0.66	0.98	1.19	1.31	0.88	0.80	0.73	0.70
8 S (0-10)	0.86	0.49	0.90		0.51	0.94	1.47	0.62	0.59	0.47	0.73	0.27
9 S (10-15)	0.32	0.33	0.81	0.39	0.43	0.73	1.37	0.50	0.40	0.32	0.66	0.18
10 S (15-20)	0.73	0.25	0.70	0.40	0.35	0.75	1.30	0.49	0.34	0.35	0.65	0.21
11 S (20-25)	0.28	0.33	0.62		0.38	0.58	1.27	0.41	0.32	0.41	0.68	0.16
12 S (25-30)	0.64	0.33	0.78	0.33	0.42	0.68	1.29	0.53	0.43	0.35	0.70	0.21
13 A-C 1,2,3	9.60	4.12	16.69	4.49	3.97	3.38	15.49	3.46	2.25	3.50	4.40	1.92
14 A-C 4,5	13.70	14.92	7.45	8.12	11.58	8.64	6.06	15.70	9.68	10.73	11.18	10.18
15 D 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0. 00
16 D 2	1.54	0.67	4.65	1.36	1.35	2.40	10.54	0.95	1.26	1.71	2.23	0.70
17 D 3	3.12	2.35	5.91	2.92	4.87	3.90	7.31	2.39	2.53	4.68	3.86	2.58
18 D 4	8.57	9.57	4.94	8.64	13.79	11.86	4.50	8.89	10.61	10.82	9.66	10.82
19 D 5	25.41	31.63	7.21	42.24	19.93	29.43	5.27	17.64	36.80	29.33	19.65	37.96
20 E 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21 E 2	0.59	0.43	2.40	0.55	0.75	1.26	2.93	1.16	0.78	1.63	1.36	0.31
22 E 3	1.78	2.10	3.85	2.34	3.89	1.97	3.26	3.73	0.70	2.56	3.36	1.91
23 E 4	10.75	8.80	6.37	6.28	6.29	5.40	2.11	8.20	6.90	5.74	6.06	7.79
24 E 5	3.78	2.88	2.39	2.79	0.99	1.24	0,45	1.97	2.11	1.47	1.07	3.08
25 F 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0 0	0.00	0.0 0
26 F 2	2.82	2.90	13.63	2.32	6.95	8.12	13.89	8.06	5.22	8.24	7.25	1.32
27 F 3	4.29	5.14	11.28	3.09	9.62	4.32	7.65	8.54	3.78	5.32	8.26	3.54
28 F 4	4.81	6.18	5.07	2.64	5.75	2.96	1.26	6.12	3.71	3.49	4.41	4.59
29 F 5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table A.3-2Meteorological Data for 29 NWS Stations SummarizedUsing Weather Bin Categories (cont)

Weather Bin Definitions

5,000

. . .

. . .

.

· · .

R - Rain starting within indicated interval (miles).

- S Slowdown occurring within indicated interval (miles).
- A-C D E F Stability categories
- 1(0-1), 2(1-2), 3(2-3), 4(3-5), 5(GT 5) Wind speed intervals (m/s).

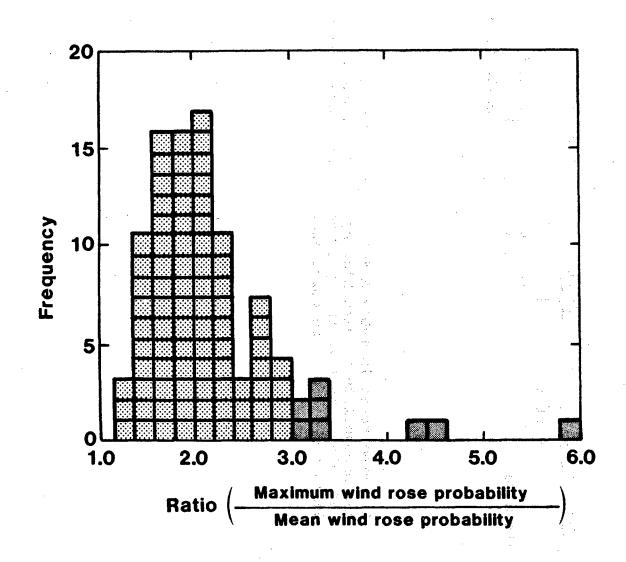
Percent of Weather Sequences

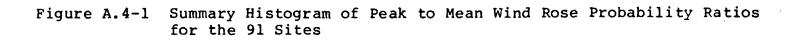
	Weather Bin	Omaha (25)	Phoenix (26)	Santa Maria (27)	Seattle (28)	Washington (29)
	1 R (0)	5.43	1.00	2.24	8.72	5.79
	2 R (0-5)	0.13	0.08	0.19	0.42	0.39
	3 R (5-10)	0.62	0.31	0.40	1.87	1.28
	4 R (10-15)	0.89	0.25	0.62	2.12	1.14
	5 R (15-20)	0.70	0.23	0.41	1.90	0.88
	6 R (20-25)	0.51	0.24	0.32	1.53	0.87
	7 R (25-30)	0.59	0.22	0.43	1.77	0.86
	8 S (0-10)	1.16	1.27	2.41	1.36	0.71
	9 S (10-15)	0.90	1.21	1.84	1.44	0.67
	10 S (15-20)	0.75	1.20	1.63	1.02	0.48
	11 S (20-25)	0.67	0.91	1.45	0.98	0.63
	12 S (25-30)	0.86	1.13	1.77	1.21	0.63
	13 A-C 1,2,3	3.79	16.02	7.96	5.15	7.33
	14 A-C 4,5	12.36	15.92	12.53	6.87	11.30
	15 D 1	0.00	0.00	0.00	0.00	0.00
	16 D 2	1.26	1.52	11.16	2.95	2.98
	17 D 3	3.23	3.18	8.66	6.55	6.08
	18 D 4	8.87	6.69	6.97	16.12	10.64
	19 D 5	30.39	6.30	13.40	19.46	16.20
	20 E 1	0.00	0.00	0.00	0.00	0.00
	21 E 2	0.99	1.96	2.44	0.72	1.85
	22 E 3	2.24	3.57	2.41	2.07	3.52
	23 E 4	6.53	6.35	2.42	4.82	5.27
	24 E 5	1.77	0.92	0.81	1.02	1.23
· · ·	25 F 1	0.00	0.00	0.00	0.00	0.00
	26 F 2	7.63	11.20	11.16	3.46	9.81
	27 F 3	4.17	12.09	4.81	3.80	6.38
÷ .	28 F 4	3.56	6.22	1.54	2.68	3.09
	29 F 5	0.00	0.00	0.00	0.00	0.00

e sint

Station	Hours of Observed <u>Rainfall</u>	Annual Rain <u>(inches)</u>
Albuquerque (1) Apalachicola (2) Bismarck (3) Boston (4) Brownsville (5) Cape Hatteras (6) Caribou (7) Charleston (8) Chicago (9) Columbia (10) Dodge City (11) El Paso (12) Ely (13) Fort Worth (14) Fresno (15) Great Falls (16) Lake Charles (17) Madison (18) Medford (19) Miami (20) Milwaukee (21) Moline (22) Nashville (23) New York (24) Omaha (25) Phoenix (26)	128 394 345 779 197 586 888 514 542 548 323 114 268 348 183 487 327 533 404 383 536 512 578 697 476 88	$ \begin{array}{c} 7\\ 65\\ 16\\ 49\\ 31\\ 52\\ 37\\ 37\\ 26\\ 6\\ 10\\ 33\\ 7\\ 16\\ 41\\ 29\\ 17\\ 53\\ 27\\ 37\\ 49\\ 49\\ 49\\ 30\\ 4 \end{array} $
Santa Maria (27) Seattle (28) Washington (29)	196 764 507	10 40 32

Table A.3-3 Summary of Rainfall Data for 29 NWS Station TMYs

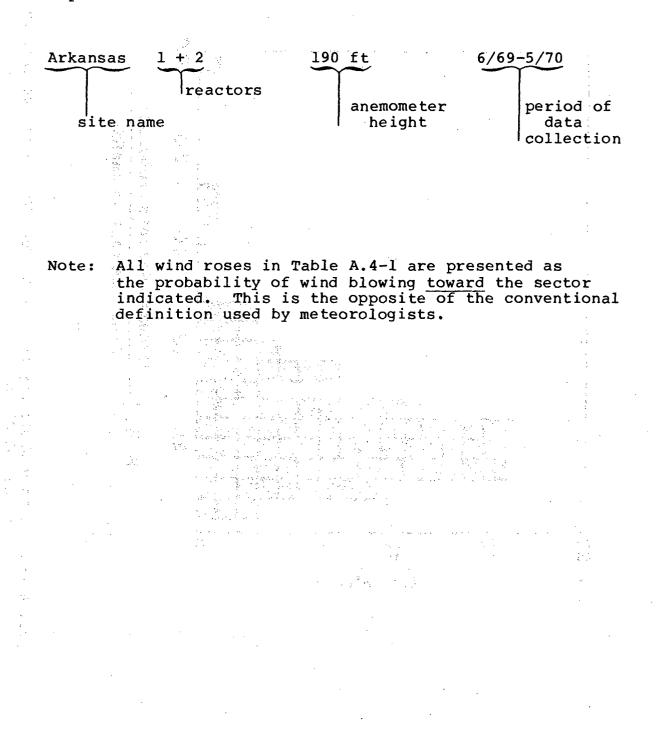

 (α,β,β)


 $\frac{1}{2}$, β

A.4 Site Wind Rose Data

CRAC2 uses a straight-line trajectory model for plume movement, employing the wind speeds in the weather sequence to determine the rate of travel. To calculate the effects of the accident in different directions, CRAC2 uses the wind rose as an empirical distribution for the probability that the plume trajectory will be in a given direction. All consequences are calculated assuming that the plume follows each of the 16 directions, and the results are weighted by the frequency of wind travel in that direction.

The wind rose data for the 91 sites were taken from either the Environmental Reports or the Preliminary or Final Safety Analysis Reports submitted to the Nuclear Regulatory Commission. The site wind roses used in this study are presented in Table A.4-1. A summary histogram of peak to mean wind rose probability ratios for the 91 sites is presented in Figure A.4-1. This histogram illustrates the importance of wind rose probabilities to reactor accident consequence calculations. (The mean wind rose probability is 1/16.)



A-19

Table A.4-1

Site Wind Rose Data

Explanation of Titles:

.

	N 	NNE	NE BW	ENE WSW	E ·	ESE WNW	SE NW	SSE
Allens Creek		<u>10 m</u>	4	-	8/1/1	972 - 7/	<u>'31/1973</u>	
a ga an	.121 .107	.073	.043	.024	.022	.021 .055	.027 .101	.069 .104
Arkansas 1, 2		190 ft			6	/69 - 5/	70	
n de la companya de l La companya de la comp	.103	.074	.052	.074	.126	.087 .077	.053 .057	.021 .042
Bailly		230 ft	20.		12/	/51 - 12	/3/57	
	.064	.105	.095	.086	.069	.056 .028	.040	.038
Beaver Valley 1, 2	·:) <u>150 ft</u>			<u>9/15</u>	/69 - 9/	5/70	
	.087	.078	.051	.041	.083	.137	.123	.050
Bellefonte 1		54 ft				1971		
	.064	.075	.092	.082	.071	.067	.060	.076
Big Rock Point		250 ft				/61 - 2/		
n in an	.112	.075	.071	.081	.099	.058	.057	.065
Black Fox		_33 ft		e Terres	12	/73 - 11	/74	
	.180	.055	.026	.026	.022	.030	.051	.059
Braidwood 1		30 ft.				/73 - 10		
	.105	.113	.077 .048	.065	.061	.070	.065	.045
Browns Ferry 1, 2, 3		300 ft	ŝ	, .		/67 - 12	/31/68	
n in the second s	.072	.066	.058	.058	.052	.067 .072	.055	.054
Brunswick 1, 2	· .	350 ft				/70 - 1/		
	.055	.077	.145	.088	.053	.037	.036	.041 .038
Byron 1		_30 ft				/73 - 5/		
- 	.097	.089	.081	.065	.075	.063	.076	.057
	.053	.037	.048	.058	.049	.044	.039	.069
Callaway	.126	<u>10 m</u>	.074	.043	.058	<u>/73 - 5/</u> .070	.058	.050
	.051	.040	.026	.028	.036	.046	.083	.116
Calvert Cliff 1, 2		<u>33 ft</u>						
	.116 .084	.089 058	.070 .038	.045	.064 .035	.061 .028	.103	.078 .082
Catawba 1	:	<u>30 ft</u>	· .		6/30	/71 ~ 6/	30/72	
· · ·	.023	.056 .079	.207 .179	.087 .060	.043 .033	.024	.026	.026 .017
Cherokee		<u>30 ft</u>			9/11	/73 - 9/	11/74	
	.036	.048 .059	.124	.104	.094 .029	.081 .022	.114 .036	.059
		10 m	•		5	/72 - 6/	73	
Clinton	•							
Clinton	.104	.093	.086 .071	.054	.042 .054	.041 .038	.042	.052
Clinton Commanche Peak	.104 .070	.093		.054 .056	.054	.041 .038 /72 - 5/	.049	

Proba	DILITY OF	WING 8.	towing it	wards 50	ector		
N 	NNE SSW	NE SW	ENE WSN	E N	ESE WNW	SE NW	SSE NNW
	200 ft				1967		,
.091	.105	.055	.045	.056	.069	.057	.062 .073
	318 ft						
.116	.117			.030	.041	.060	.100
2							
.043	.048	.051	.048	.082	.057	.043	.030
. 462			•121	•			.034
.064			.102				.037
.030	.039	.058	.057	.077	.041	.038	.039
	<u>250 ft</u>	•					
.031	.012	.014	.015 .017	.026	.045	.363	.128
÷ ,	300 ft			•			
.088	.090	.096	.067	.101	.085	.080	.056
			••		<u>1971</u>		
.129	.073			.051	.062	.083	.095
				.039			
.073	.070	.064	.044	.044	.045	.067	.090
.097	.083	.086	.062				.056
041	088		- 102				.047
.026		.059	.063	.069	.050	.058	.058
	200 ft		*		963 - 19		
.087	.059 .047	.102	.132	.115 .018	.056 .037	.053 .101	.035
	400 ft	• :	Ì	2	/66 - 2/	67	
.075	.096	.087	.068	.087	.093	.075	.063
			· · · · · ·				
.093	.059	.034		.042	.079	.113	.098
.071	•*	.017	.022				.126
.063		.076	.057	-		· .	.039
.164	.085	.076	.064	.058	.043	.051	.049
				-			.044
.030	.081		.038	.045	.036	.030	.052
	· · · ·			1	951 - 19	60	•
.101	.074	.062 .061	.043	.036	.043	.070 .080	.064
	129 ft				1963		
.048	.046		.038	.070	.160	.265	.052
	<u>33 ft</u>						
.045	.058			.051	.034	:044	.025
.045	.113	,175	.063	.050	.074	.069	.051
	N .091 .078 .116 .094 .043 .062 .064 .030 .031 .059 .088 .049 .059 .088 .049 .075 .073 .097 .041 .026 .087 .040 .075 .044 .093 .071 .063 .164 .090 .059 .063 .164	N NNE 200 ft .091 .105 .076 .042 .116 .117 .094 .061 .043 .048 .062 .047 .33 ft .039 .059 .029 .064 .116 .030 .039 .059 .029 .000 ft .031 .059 .029 .005 .031 .059 .031 .059 .031 .059 .031 .057 .040 .037 .043 .041 .088 .025 .200 ft .087 .059 .041 .088 .025 .200 ft .041 .037 .040 .047 .040 .047 .059 .040 .059 .059 .041 .032 .059 <t< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>5 55W 5W MSN N M MNN 200 ft .042 .042 .055 .045 .056 .063 .011 .011 .012 .042 .037 .030 .041 .094 .061 .027 .037 .030 .041 .094 .061 .027 .031 .027 .034 .043 .048 .051 .048 .082 .057 .062 .047 .098 .121 .111 .064 .35 ft $B/4/74 - B_r$.064 .012 .014 .015 .059 .021 .014 .015 .026 .045 .031 .059 .021 .014 .015 .026 .045 .033 .051 .022 .031 .036 .031 .036 .033 .040 .031 .036 .067 .101 .085 .041 .088 .090</td><td>N NE NE EN E ESE SE SE 200 ft .042 .055 .045 .056 .069 .057 .091 .105 .055 .045 .056 .069 .057 .043 .042 .055 .045 .056 .069 .057 .041 .061 .025 .031 .027 .034 .058 .043 .048 .051 .048 .062 .057 .043 .043 .048 .051 .048 .052 .057 .043 .064 .116 .130 .102 .081 .039 .053 .059 .027 .041 .018 .030 .038 .051 .046 .041 .045 .045 .059 .027 .041 .038 .030 .033 .033 .033 .033 .033 .041 .045 .067 .031 .012 .011 <td< td=""></td<></td></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 55W 5W MSN N M MNN 200 ft .042 .042 .055 .045 .056 .063 .011 .011 .012 .042 .037 .030 .041 .094 .061 .027 .037 .030 .041 .094 .061 .027 .031 .027 .034 .043 .048 .051 .048 .082 .057 .062 .047 .098 .121 .111 .064 .35 ft $B/4/74 - B_r$.064 .012 .014 .015 .059 .021 .014 .015 .026 .045 .031 .059 .021 .014 .015 .026 .045 .033 .051 .022 .031 .036 .031 .036 .033 .040 .031 .036 .067 .101 .085 .041 .088 .090	N NE NE EN E ESE SE SE 200 ft .042 .055 .045 .056 .069 .057 .091 .105 .055 .045 .056 .069 .057 .043 .042 .055 .045 .056 .069 .057 .041 .061 .025 .031 .027 .034 .058 .043 .048 .051 .048 .062 .057 .043 .043 .048 .051 .048 .052 .057 .043 .064 .116 .130 .102 .081 .039 .053 .059 .027 .041 .018 .030 .038 .051 .046 .041 .045 .045 .059 .027 .041 .038 .030 .033 .033 .033 .033 .033 .041 .045 .067 .031 .012 .011 <td< td=""></td<>

	Probat	Dility of	W170 B.	lowing it	WATOS SE	ctor		
Station	N 5	NNE SSW	NE SW	ENE WSW	EW	ESE WNW	SE NW	SSE NNW
Hatch, E.I. 1, 2		150 ft			6/1	/70 - 8/	/31/74	
	.055	.069	.082	.073	.075 .081	.077	.072	.049
Indian Point 2, 3		<u>100 ft</u>	· ·	K.	. <u>1/1</u>	/71 - 12	2/31/71	
	.076	.055	.038	.039	.053	.079	.077 .041	.070
Rewaunee		180 ft			6/31	/68 - 3/	25/70	
	.082	.090	.064	.075	.094	.117	.082	.080
LaSalle 1, 2		<u>300 ft</u>						
•	.088	.090 .031	.096	.067	.101	.085	.080	.056
La Crosse		350 ft				968 - 19		
	.194	.139	.084	.018	.051	.026	.076	.062
Limerick l		270 ft				/72 - 12		
	.071	.068	.052	.051	.090	.150	.109	.059
Marble Hill	.034	.035 33 ft	.035		· ·	/74 - 12		
	.058	.141	.124	.074	.062 .047	.060	.044	.037
Me Yankee	.045	.044 149 ft	.063	.060		.030		.041
~	.118	.124	.082	.041	.041	.055	.088	.089
McGuire 1, 2	.075	.068 130 ft	.064	.030	.024	.027 /70 - 10	.031	.044
	.070	.090	.122	.062	.054	.042	.042	.040
Midland 2	.057	.068	.113	.078	.056	.037 962 - 19	.038	.030
MIGIGNU Z	.060	.082	.123	.106	.124	.066	.064	.051
N231-4 3 2	.045	.046	.061	.043	.045	.024	.028	.032
Millstone 1, 2	.038	<u>152 ft</u> .060	.076	.170	.078	/65 - 9/ .070	.078	.073
	.066	.060	.036	.035	.058	.035	.025	.041
Monticello		140 ft				/67 - 2/		
	.089	.091 .041	.063	.055	.030	.089	.104	.119
Nine M. Pt. 1, 2		204 ft			1	963 - 19		
	.062	.060 .048	.104	.131	.110	.059	.054	.037
North Anna 1, 2, 3		<u>150 ft</u>			<u>9/16</u>	/71 - 9/	15/72	
	.141	.095 .048	.058 .044	.047	.055	.047	.074 .042	.084 .054
Oconee 1, 2, 3					6/19	/68 - 6/	19/69	
· ·	.021	.036 . .084	.075	.051 .058	.062	.043	.061 .036	.081 .019
Oyster Creek		400 ft			. 2	/66 - 2/	67	
• ·	.075	.096 .037	.087	.068	.087	.093	.075 .047	.063
Palisade		55 ft			. <u>9</u>	/67 - 8/	68	
	.204	.113	.027	.030	.058	.046 .038	.072	.081 .093

1 14.61

Station	N 5	NNE SSW	NE SW	ENE	E W	ESE WNW	SE NW	SSE NNW
Palo Verde 1		200 ft		.t.	8/1	3/73 - 8	/13/74	
·	.055	.073 .059	.144	.082	.068	.047	.052	.035
Peach Bottom 2, 3	.:** .	<u>320_ft</u>				B/67 - 7	/69	
· · ·	.085	.064	.046	.052	.069	.095	.115	.109
Pebble Springs		<u>30 ft</u>				1/74 - 1		•
	.017 .012	.039	.075	.201	.313	.094	.021	.009
Perkins		30 ft				2/73 - 10		
·	.036	.067	.125	.066	.058	.047	.064	.053
Perry 1		200 ft				/72 - 4/		.034
4	.105	.095	.092	.084	.081	.054	.057	.042
Phipps Bend	.045	.030 33 ft		.045	.048	.037 /74 - 1/	.054 /31/75	.073
	.037	.054	.107	.106	.053	.071	.053	.120
Pilgrim 1		. <u>72_ft</u>	.112	.045	.020	.018	.021	.019
· ·	.051	.185	.118	.085	. 094	.060	.053	.046
Point Beach 1, 2	.051	.038	.042	.035	.048	.031 /67 - 4/	.033	.030
	.088	.122	.087	.048	.081	.097	.075	.056
Prairie 1, 2	.096	.070	.055	.022	.020	.018	.031	.036
raille 1, 2	.065	<u>140 ft</u> .031	.025	.031	.073	<u>/71 - 5/</u> .102	.125	.065
	.046	.023	.019	.019	.055	.108	.134	.080
Quad Cities 1, 2	.072	400 ft .128	.090	.049	.045	<u>/68 - 9/</u> .069	.083	.067
	.068	.051	.042	.028	.037	.033	.075	.063
Rancho Seco		<u>50 ft</u>			, -	967 - 19		
	.066 .049	.073	.069 .029	.107	.114	.078	.100 .057	.074 .052
Riverbend 1		- <u>135 ft</u>				/72 - 9/	/30/73	
	.057	.058	.048	.048	.054	.048	-061 -072	.066 .067
i. B. Robinson 2		<u>120 ft</u>	• .		4/14	/67 - 4/	19/68	
	.045 .141	.074	.072	.081	.071 .040	.037 .035	.036	.043 .029
Saint Lucie 1	· .	50 ft			. <u>11/1</u>	/72 - 12	/31/72	
	.062 .045	.056	.063	.046	.030	.041	.053	.029
Salem 1, 2		<u>300 ft</u>				/69 - 5/		
·	.067	.062	.060	.056	.073	.095	.132	.094
an Onofre		<u>10 m</u>				 /73 - 1/		
	.066	.061	.054	.065	.088	.109	.060	.031
Seabrook 1		<u>.30 ft</u>				.022 /71 - 10		
	.030	.040	-069	.089	.110	.167	.145	.049
	.030 .039	.040 .024	.069 .033	.089 .046	.110 .038	.167 .041	.145 .043	

A-24

Station	N 5	NNE SSW	NE SW	ENE WSW	E	ESE	SE NW	SSE NNW
Sequoyah 1, 2		<u>33 ft</u>	•		4/21	/71 - 3/	31/72	
	.066	.151 .169	.161	.48	.024	.024	.035 .013	.070 .019
Shearon Harris		<u>10 m</u>			1	/76 - 12	/76	
	.079	.107	.098	.079 .047	.053	.054	.057 .035	.062
Skagit		10 m						
	.014 .037	.011	.021	.037	.128	.109 .058	.085	.062
Shoreham		<u>150 ft</u>		:	<u>10/1</u>	/73 - 9/	30/74	
	.060	.129	.095	.050	.079	.103	.094 .036 ₈	.066
South Texas		<u>33 ft</u>	•	2		73 - 7/	20/74	
	.148	.046	.029	.010	.015	.014	.020	.037
Virgin C. Summer		<u>202 ft</u>	:			<u>1975</u>		
	.068	.090	.118	.087	.064	.046 .041	.055	.043
Surry St 1, 2		<u>150 ft</u>			<u>11</u>	/67 - 12	/69	
	.064	.082	.082	.062	.059	.061	.087	.081 .043
Susquehanna 1					ī	956 - 19	60	
	.037	.070	.125	.126	.044	.059	.100	.090
Three Mile Island		100 ft			4	/71 - 3/	72	
•	.054	.045	.054	.059	-091 .085	.092	.091	.070
Trojan		<u>30 ft</u>			. 9/1	/71 - 8/	31/72	
	.203	.070	.026	.013	.022	.037	.070	.132
Turkey Point 1, 2		<u>30 ft</u>				<u>1969</u>		
	.038	.041	.047	.027	.027	.047	.051	.077
Vermont Yankee 1		140 ft			<u>8</u>	/67 - 7/	68	
	.072	.027	.018	.023 .019	.069	.086	.117	.196
Vogtle		<u> 30 ft</u>			12	/73 - 12	/74	
	.064	.062	.074	.079	.084	.075	.056	.031
Waterford 3		<u>30 ft</u>			5	/72 - 4/	73	
	.042	.053	.045	.047	.049	.056	.064	.072 .077
Watts Bar 1, 2		<u>300 ft</u>			7/1	/73 - 6/	30/75	
	.033	.109	.183 .132	.089	.04D .041	.031	.035	.037 .019
WPPS 1, 4		33 ft			4	/74 - 3/	75	
	.100	.082	.063	.052	.061	.099	.107	.085
WPPS 2		<u> 33 ft</u>				/74 - 3/		
	.100 .164	.082	.063	.052	.061	.099	.107	.085
	• •						,	

WPPS 3, 5 60 m $5/73 - 4/74$.011 .019 .062 .074 .047 .052 .050 Wolf Creek 10 m $6/1/73 - 5/31/75$.050 .051 .015 .080 .100 .040 .024 .030 .041 .066 Yankee Rowe 30 ft $10/71 - 9/72$.016 .062 .037 .039 .041 .072 .010 .060 .052 .037 .039 .041 .072 .0080 .064 .065 .063 .047 .036 .052 Yankee Rowe 33 ft 7/1/74 - 6/30/75 .142 .097 .049 .039 .040 .050 .057 .037 .070 .049 .039 .040 .050 .057 .037 .070 .049 .039 .040 .050 .057 .037 .037 .023 .030 .054 .127 .046 .066 .068 .056 .051 .059 .047 .046 .055 .037 <th>Station</th> <th>·. ·</th> <th>. N 5</th> <th>NNE SSW</th> <th>NE SW</th> <th>ENE</th> <th>E </th> <th>ESE WNW.</th> <th>SE NW</th> <th>SSE NNW</th>	Station	·. ·	. N 5	NNE SSW	NE SW	ENE	E 	ESE WNW.	SE NW	SSE NNW
.014 .019 .062 .074 .047 .052 .050 Wolf Creek 10 m $6/1/73 - 5/31/75$.080 .100 .040 .024 .030 .041 .064 Yankee Rowe 30 ft 10/71 - 9/72 .036 .061 .062 .037 .039 .041 .064 Yellow Creek 33 ft .047 .036 .052 .037 .039 .041 .072 .086 .064 .065 .063 .047 .036 .052 Yellow Creek 33 ft .7/1/74 - 6/30/75 .142 .097 .049 .039 .046 .060 Zimmer 1 30 ft .017 .049 .039 .046 .060 .062 .031 .027 .023 .030 .054 .127 Zion .35 ft .1970 .039 .035 .035 .035 .060	5	.*		<u>60 m</u>		÷ 1	1	5/73 - 4,	/74	5. M.S. 1
.080 $.100$ $.040$ $.024$ $.030$ $.041$ $.064$ Yankee Rowe 30 ft $10/71 - 9/72$ $.101$ $.080$ $.052$ $.037$ $.039$ $.041$ $.072$ Yellow Creek 33 ft $7/1/74 - 6/30/75$ $.142$ $.097$ $.049$ $.039$ $.040$ $.050$ $.057$ Zimmer 1 30 ft $3/1/72 - 2/28/74$ $.062$ $.031$ $.027$ $.023$ $.030$ $.054$ $.127$ Zion 35 ft 1970 $.035$ $.035$ $.035$ $.035$ $.046$		2				-170 -074				.010 .027
164 .058 .039 .035 .039 .046 .061 Yankee Rowe 30 ft $10/71 - 9/72$.101 .086 .065 .037 .039 .041 .072 .086 .064 .065 .063 .047 .036 .052 Yellow Creek 33 ft $7/1/74 - 6/30/75$.142 .097 .049 .039 .046 .060 2immer 1 .030 ft .046 .068 .056 .051 .059 .046 .060 2inmer 1 .0062 .068 .056 .051 .059 .047 .062 .031 .027 .023 .030 .054 .127 2ion .35 ft .1970 .039 .046 .046 .046 .046 .059 .037 .039 .035 .035 .035 .060	ek	•		<u>10 m</u>			6/1	/73 - 5/	/31/75	e
Yankee Rowe 30 ft $10/71 - 9/72$.101 .080 .052 .037 .039 .041 .072 .086 .064 .065 .063 .047 .036 .052 Yellow Creek 33 ft $7/1/74 - 6/30/75$.142 .097 .049 .039 .040 .050 .057 .037 .049 .039 .040 .050 .057 .046 .060 2immer 1 30 ft $3/1/72 - 2/28/74$.062 .051 .059 .047 .023 2ion .35 ft 1970 .023 .030 .054 .127 2ion .35 ft 1970 .035 .035 .035 .046	. *									.069
101 080 052 037 039 041 072 086 065 063 047 036 052 Yellow Creek 33 ft $7/1/74 - 6/30/75$ $.037$ $.097$ $.049$ $.039$ 0.40 $.050$ $.037$ $.077$ $.049$ $.039$ $.040$ $.050$ $2immer 1$ 30 ft $3/1/72 - 2/28/74$ $.062$ $.031$ $.027$ $.023$ $.030$ $.054$ $.062$ $.031$ $.027$ $.023$ $.030$ $.054$ $.127$ 2ion 35 ft 1970 $.046$ $.059$ $.037$ $.035$ $.035$ $.035$ $.060$	owe									
.142 .097 .049 .039 .040 .050 .057 .037 .070 .049 .019 .021 .046 .060 2immer 1 30 ft 3/1/72 - 2/28/74 .062 .031 .027 .023 .030 .054 .127 Zion 35 ft 1970 .071 .078 .079 .113 .069 .035 .035 .046		2.5				.037				.086 .081
.037 .070 .049 .019 .021 .046 .060 Zimmer 1 30 ft 3/1/72 - 2/28/74 .108 .066 .068 .056 .051 .059 .047 .062 .031 .027 .023 .030 .054 .127 Zion 35 ft 1970 .071 .078 .079 .113 .0669 .046 .046 .059 .037 .039 .035 .046	reek	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1		_ <u>33 ft</u>	÷.,		7/1	/74 - 6,	/30/75	· · · ·
108 .066 .056 .051 .059 .047 .062 .031 .027 .023 .030 .054 .127 Zion 35 ft 1970 .071 .078 .079 .113 .069 .076 .046 .046 .059 .037 .039 .035 .035 .060		· ·			.049	.039				.087
Zion <u>35 ft</u> <u>1970</u> .071 .078 .079 .113 .069 .076 .046 .046 .059 .037 .039 .035 .035 .060			ъ.	<u>30 ft</u>		• .	3/1	/72 - 2/	28/74	•
.071 .078 .079 .113 .069 .076 .046 .046 .059 .037 .039 .035 .035 .060				.066	.068	-056				.062
.046 .059 .037 .039 .035 .035 .060				<u>35 ft</u>		·.		<u>1970</u>	·	414
		-12								.071 .096
		· · · ·				ч. Г				
							, i			
										· .
		х.		a Net						
				· .	:					
										· ·
		1 · · ·	- 		3			•		
										۰.
				•						
		.*		•						
									1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	5

A.5 Economic Data

The input data to the economic model in CRAC2 can be divided into two groups: those which are national in character and those which are applicable to individual states. Appendix VI of WASH-1400 [6] contains a detailed discussion of these parameters.

The national data can be further divided into data which measure costs on a per capita basis, and data which measure costs on a per acre basis. Decontamination costs for business, residential, and public areas, relocation costs, consumed dairy products, and consumed nondairy products, are all measured in dollars per person. The decontamination cost for farm land is measured in dollars per acre. Table A.5-1 lists current figures for these cost parameters and in addition compares these costs with those contained in Appendix VI of WASH-1400.

WASH-1400 Appendix VI describes some of the decontamination techniques considered when the original costs estimates were made. It does not, however, give a detailed breakdown of costs. As an approximation, the decontamination costs were broken down into labor, energy, and durable goods (equipment) components. The breakdown of costs was assumed to be 40% labor, 50% energy, and 10% durable goods for farmland decontamination and 60%, 30%, and 10% for decontamination of public areas. Using data contained in the Statistical Abstract of the US [7], the change in the Consumer Price Index (CPI) from 1972 to 1979 was calculated for each of these These factors are 1.69 for labor, 2.66 for areas. energy, and 1.55 for durable goods. The updated decontamination costs were obtained by multiplying the original WASH-1400 cost figures by the appropriately weighted combinations of these CPI factors.

Relocation costs were calculated in Appendix VI as a combination of lost income, both individual and corporate, and moving costs. These costs, which were calculated on a per capita basis, are \$1,100 for lost individual income, \$940 for lost corporate income, and \$1,300 for transportation expenses. Based on data from the Statistical Abstract, the employee compensation rate has increased by a factor of 1.44 between 1973 and 1978. The nonfarm business gross national product (GNP) has increased by a factor of 1.54 and transportation services by a factor of 1.53 in the same period. The updated relocation cost was obtained by summing the products of each of the three costs and the appropriate factor. The revised per capita value of residential, business, and public areas, and annual per capita dairy and nondairy consumption costs were derived from data contained in the Statistical Abstract of the U.S. The net value of residential, business, and public assets, less farm assets, was divided by the US population to obtain the updated per capita value of nonfarm assets. The updated agricultural consumption figures were obtained by dividing the total annual market value of these commodities by the US population. Per capita agricultural consumption figures are used by CRAC2 to determine radiation exposure through dairy and nondairy product ingestion.

The data, which are supplied on a state-by-state basis, all relate to farm costs and values. The input parameters are fraction of state area devoted to farming, average annual sale of farm products in dollars per acre, the fraction of farm sales resulting from dairy products, the average value of farmland in dollars per acre, and the major farming season. Table A.5-2 lists the values for all of these fields. The Statistical Abstract of the United States is the source for farmland value and farmland fraction. Farm sales and dairy share are found in reference [8]. The farming seasons are the same as the WASH-1400 figures.

Description	WASH-1400 Data	<u>Current Data</u>
Decontamination cost for farmland (\$/acre)	230	500*
Decontamination cost for residential, business, and public property (\$/person)	1,700	4,400*
Value of residential, business, and public property (\$/person)	17,000	32,000*
Depreciation rate for improvements (yr ⁻¹)	0.2	0.2
Relocation cost (\$/person)	2,900	4,300**
Annual cost of dairy product consumption (\$/person)	· · · · · · · · · · · · · · · · · · ·	135**
Annual cost of non-dairy product consumption (\$/person)		690**

Table A.5-1 National Economics Data

*Represents 1979 statistics **Represents 1978 statistics

State	Fraction of State Used as Farm Land*,**	Average Annual Sale of Farm Products† {\$/acre-year)	Average Share of Dairy Products† (\$ dairy/\$ products)	Average Value of Farmland† (\$/acre)	Major Farming Season
Maine	0.077	250	0.182	485	May-Sept
New Hampshire	0.097	150	0.444	802	May-Sept
Vermont	0.283	177	0.791	657	May-Sept
Massachusetts	0.123	372	0.283	1366	May-Sept
Rhode Island	0.081	476	0.220	2133	May-Sept
Connecticut	0.140	500	0.313	2158	May-Sept
New York	0.315	188	0.579	642	May-Sept
New Jersey	0.197	376	0.162	2222	May-Sept
Pennsylvania	0.307	239	0.413	669	May-Sept
Ohio -	0.618	183	0.153	1516	May-Sept
Indiana	0.728	206	0.067	1498	May-Sept
Illinois	0.795	213	0.041	1786	May-Sept
Michigan	0.285	197	0.238	955	May-Sept
Wisconsin	0.520	194	0.598	807	May-Sept
Minnesota	0.563	160	0.185	854	May-Sept
Iowa	0.944	242	0.050	1458	May-Sept
Missouri	0.724	111	0.079	674	
North Dakota	0.922	45	0.047	306	May-Sept
South Dakota	0.922	46	0.074	257	May-Sept
Nebraska	0.967	99	0.027	470	May-Sept
Kansas	0.915	92	0.034	437	May-Sept
Delaware	0.471	508	0.046	1725	April-Oct
Maryland	0.414	273	0.227	1799	April-Oct
Virginia			0.171	864	April-Oct
West Virginia	0.371	44	0.203	472	April-Oct
North Carolina	0.368	261	0.056	819	April-Oct
South Carolina	0.327	148	0.063	635	April-Oct
Georgia	0.417	164	0.058	609	April-Oct
Florida	0.368	233	0.077	930	April-Oct
Kentucky	0.557	141	0.117	792	April-Oct
Tennessee	0.507	118	0.140	669	April-Oct
Alabama	0.400	144	0.041	515	April-Oct
Mississippi	0.475	135	0.047	520	April-Oct
Arkansas	0.494	158	0.030	691	April-Oct
Louisiana	0.332	137	0.087	763	April-Oct
Oklahoma	0.782	68	0.051	442	April-Oct
Texas	0.811	54	0.053	354	April-Oct
Montana	0.658	20	0.026	186	May-Sept
Idaho	0.894	93	0.114	485	May-Sept
Wyoming	0.560	15	0.024	119	May-Sept
Colorado	0.570	69	0.039	332	April-Oct
New Mexico	0.600	21	0.056	100	April-Oct
Arizona	0.556	36	0.050	134	April-Oct
Utah	0.236	36	0.215	265	April-Oct
Nevada	0.127	19	0.215	104	• • • •
Washington	0.369	132	0.138	586	April-Oct
Oregon	0.300	68	0.093	330	May-Sept
California	0.318			936	May-Sept
Caritornia	0.310	316	0.119	370	April-Oct

Table A.5-2 Agricultural Land Use Characteristics

*Fraction of total state area (including water areas) devoted to agricultural use **Reflect 1979 statistics *Reflect 1978 statistics

.

. '

References for Appendix A

- Demographic Statistics Pertaining to Nuclear Power Reactor Sites, NUREG-0348, U.S. Nuclear Regulatory Commission, October 1979.
- 2. D. C. Aldrich, D. M. Ericson, and J. D. Johnson, Public Protection Strategies for Potential Nuclear Accidents: Sheltering Concepts with Existing Public and Private Structures, SAND77-1725, Sandia Laboratories, Albuquerque, NM, February 1978.
- 3. I. Hall, R. Prairie, and E. Boes, <u>Generation of</u> <u>Typical Meteorological Years for 26 SOLMET Stations</u>, <u>SAND78-1601</u>, Sandia Laboratories, August 1978.
- 4. User's Manual for Single Source (CRSTER) Model, US Environmental Protection Agency, Office of Air and Waste Management, Research Triangle Park, NC, July 1977.
- 5. G. C. Holzworth, <u>Mixing Heights, Wind Speeds, and</u> <u>Potential for Urbain Air Pollution Throughout the</u> <u>Contiguous United States</u>, Publ. No. AP-101, US Environmental Protection Agency, Office of Air Programs, Research Triangle Park, NC, 1972.
- 6. <u>Reactor Safety Study, Appendix VI: Calculation</u> of Reactor Accident Consequences, WASH-1400 (NUREG 75/014), US Nuclear Regulatory Commission, October 1975.
- 7. US Department of Commerce, 1979, <u>Statistical Abstract</u> of the United States.
- US Department of Agriculture, <u>Agricultural Statistics</u>, 1979.

A-31

Appendix B: Reactor Core Radionuclide Inventories

B.1 Core Radionuclide Inventory

Reactor accident consequence calculations are often performed using the Reactor Safety Study [1] radionuclide inventory for a 3200 MWt Westinghouse pressurized water reactor (PWR). This inventory, calculated for an end-ofcycle equilibrium core, has been used to represent both boiling water reactor (BWR) and PWR cores. Recently, however, an end-of-cycle equilibrium inventory for a 3412 MWt Westinghouse PWR was calculated using the SANDIA-ORIGEN computer code [2]. This inventory, which was calculated using a 25% greater fuel burnup than used for the WASH-1400 inventory, was used to perform the reactor consequence calculations discussed in Chapter 2. (A spent fuel burnup of 26,400 MWd/MTU was assumed to calculate the WASH-1400 inventories.)

The 3412 MWt PWR inventory was calculated by assuming that the three regions of the reactor core (each initially loaded with uranium enriched to 3.3% U-235) were operated at a constant specific power density of 38.3 MW/MTU charged. A three year refueling cycle and an 80% capacity factor were also assumed. This inventory is representative of an equilibrium core at a time when the three regions have average burnups of 11,000, 22,000, and 33,000 MWd/MTU charged (end-of-cycle).

The SANDIA-ORIGEN code calculates the time dependent activities of approximately 500 radionuclides; including activation products, fission products, and actinides. Of this number, only 54 radionuclides are expected to significantly impact reactor accident consequence calculations and as a result, are input to the CRAC2 code. The elimination of radionuclides from consideration was based on a number of parameters, such as quantity (curies), release fraction, radioactive half-life, dosimetry, and chemical characteristics [1]. Table B.1-1 lists the 54 radionuclides used to perform the consequence calculations. Also given is the activity of each radionuclide at the time the accident is assumed to occur. The reactor core inventories used to perform the power level sensitivity calculations discussed in Chapter 2 were obtained by linearly scaling (by thermal power level) the inventories presented in Table B.1-1.

Table B.1-1 Inventory of Radionuclides in the 3412 MWt PWR Core

a han and an

 $f_{i}=f_{i}^{i}=g_{i}^{i}g_{i}^{i}$

· - - -

No.	Radionulcide	Radioa Source	ctive Inventory (curies x 10 ⁻⁸)	Half-Life (days)
1	Cobalt-58	la francia	0.0075	71.0
2	Cobalt-60	1	0.000045	1,920
3.0	Krypton-85		0.0066	3,950
4	Krypton-85m		0.31	0.183
5	Krypton-87		0.57	0.0528
6	Krypton-88		0.77	0.117
7	Rubidium-86	eg fa legal	0.00048	18.7
8 .	Strontium-89		0.96	52.1
9	Strontium-90		0.052	10,300
10	Strontium-91	1	1.2	0.403
11 84	Yttrium-90		0.055	2.67
12	Yttrium-91		1.2	59.0
13	Zirconium-95		1.5	65.2
14	Zirconium-97		1.6	0.71
15	Niobium-95		1.4	C Per 2 € -3510
16	Molybdenum-99		1.7	2.8
17 18	Technetium-99m	in a series	1.4 1.2	0.25
19	Ruthenium-103 Ruthenium-105			39.5
20	Ruthenium-106		0.82	0.185
21	Rhodium-105	· ·	0.56	366 1.50
22	Tellurium-127	te star te	0.075	0.391
23	Tellurium-127m		0.0098	109
24	Tellurium-129		0.25	0.048
25	Tellurium-129m		0.067	34.0
26	Tellurium-131m	e stille	0.13	1.25
27	Tellurium-132	· · · ·	1.3	3.25
28	Antimony-127		0.077	3.88
29	Antimony-129		0.27	0.179
3,0	Iodine-131		0.87	8.05
31	Iodine-132	· .	1.3	0.0958
32	Iodine-133		1.8	0.875
33	Iodine-134	1.1.1	2.0	0.0366
34	Iodine-135		1.7	0.280
35	Xenon-133		1.8	5.28
36	Xenon-135	· · ·	0.38	0.384
37	Cesium-134	л. — А.	0.13	750
38	Cesium-136	÷.,	0.039	13.0
39 40	Cesium-137 Barium-140		0.065	11,000
40	Lanthanum-140		1.7	12.8
42	Cerium-141	•.	1.7 1.5	1.67
43	Cerium-143		1.5	32.3 1.38
44	Cerium-144		0.92	
45	Praseodymium-143		1.5	284 13.7
46	Neodynium-147		0.65	11.1
47	Neptunium-239	1.3	19.0	2.35
48	Plutonium-238	15 2	0.0012	32,500
	Plutonium-239	;	0.00026	8.9 x 10 ⁶
50	Plutonium-240		0.00029	2.5×10^6
51	Plutonium-241		0.054	5,350
52	Americium-241		0.000036	1.6×10^5
53	Curium-242		0.014	163
54	Curium-244		0.00084	6,630
				0,000

B-2

B.2 Radionuclide Inventory Impacts on Reactor Accident Consequences

The potential impacts of different radionuclide inventories on predicted accident consequences, and the appropriateness of inventory scaling, were examined using the CRAC2 code [3]. Consequence calculations were performed using end-of-cycle equilibrium inventories for the WASH-1400 3200 MWt Westinghouse PWR, the 3412 MWt Westinghouse PWR, a 3578 MWt General Electric (GE) BWR, and a 1518 MWt Westinghouse PWR. Calculations were also performed for the 3412 MWt PWR at 1/3 and 2/3 of the way way through the annual operating cycle. (The 3578 MWt BWR and 1518 MWt PWR inventories, like those for the 3412 MWt PWR, were generated with the SANDIA-ORIGEN computer code.) The operating characteristics for the four reactors are summarized in Table B.2-1. The 3412 MWt and 1518 MWt PWRs and the 3578 MWt BWR are considered to be representative of current reactor designs and compositions.

Table B.2-2 summarizes the four reactor inventories for selected radionuclides. In general, inventories of short-lived radionuclides are proportional to reactor thermal power level, while inventories of long-lived radionuclides are proportional to burnup; both are influenced by in-core fuel management plans.

Consequences were calculated assuming (1) an SST1 release (large-scale core melt with uncontrolled release directly to the atmosphere), (2) Indian Point population and wind-rose data, (3) New York City weather data, and (4) a distribution of evacuations within 10 miles of the reactor.* Table B.2-3 summarizes the consequence calculation results from which the following observations can be made.

 The 3412 MWt PWR land interdiction and decontamination results are approximately 30% larger than those for the WASH-1400 PWR. Differences for other consequences are somewhat less (10-17%).

*Consists of a 30%, 40%, 30% weighting of a 10 mile per hour evacuation after 1, 3, and 5 hour delays, respectively.

			······································	
Characteristic	WASH-1400	3412 MWt PWR	3578 MWt ^a BWR	1518 MWt PWR
Total Uranium in Fresh Core (MT)		89.1	136.7	47.5
Initial U-235 Enrichment (percent)	3.3	3.3	2.66, 2.83	3.2
Refueling Cycle Number of Years	annually 3	annually	annually 3,4	annually 3
an Element Spends in Core (years)	3	3		
Capacity Factor (Percent of time at Full Power)		80 8	80 [°] - 10 [°]	80
Average Fuel	26,400	33,600		28,000
Burnup at dis- charge (MWd/MTU)				
Average Power Density (MW/MTU)	40	38.3	26.1	32.0

Table B.2-1 Reactor Operating Characteristics

^aThe SANDIA-ORIGEN BWR calculations were performed on a per fuel assembly basis. The code generated radionuclide inventories by blending individual assembly results.

B-4

		(Designated Inventory) ÷ (3412 MWt PWR Inventory) WASH-1400								
dionuclide	Half-Life (days)	End-of-Cycle 3412 MWt PWR (Ci)	WASH-1400 End-of-Cycle 3200 MWt PWR	End-of-Cycle 3578 MWt BWR	End-of-Cycle 1518 MWt PWR	1/3 Cycle 3412 MWt PWR	2/3 Cycle 3412 MWt PW			
Kr-85	0.117	6.64 x 10 ⁵	1.03	1.36	0.44	0.68	0.84			
Mo-99	2.8	1.66×10^8	0.94	1.05	0.45	1.02	1.01			
Tc-99m	0.25	1.43×10^{5}	1.00	1.05	0.45	1.03	1.01			
Ru-103	39.5	1.25×10^{8}	0.85	1.06	0.44	0.87	0.96			
Ru-105	0.185	8.22×10^{7}	0.88	1.07	0.43	0.86	0.94			
Ru-106	366	2.90×10^{7}	0.86	1.24	0.42	0.66	0.83			
Te-129m	0.34	6.70 x 10^{6}	0.79	1.06	0.44	0.88	0.96			
Te-131m	1.25	1.28×10^{7}	1.00	1.07	0.44	0.97.	0.98			
Te-132	3.25	1.27×10^8	0.92	1.06	0.45	1.00	1.00			
Sb-129	0.179	2.72×10^{7}	1.22	1.06	0.44	0.93	0.97			
I-131	8.05	8.74×10^{7}	0.98	1.06	0.45	0.99	1.00			
I-132	0.096	1.29×10^8	0.92	1.05	0.44	0.99	1.00			
I-133	0.875	1.84×10^8	0.94	1.05	0.45	1.02	1.01			
1-134	0.037	2.02×10^8	0.95	1.05	0.45	1.02	1.01			
I-135	0.28	1.73×10^{8}	0.88	1.06	0.45	1.02	1.01			
Cs-134	750	1.26×10^{7}	0.60	1.20	0.38	0.55	0.76			
Cs-136	13.0	3.91×10^{6}	0.77	1.04	0.41	0.67	0.84			
Cs-137	11,000	6.54×10^6	0.72	1.39	0.44	0.67	0.83			
Ba-140	12.8	1.68×10^8	0.94	1.05	0.45	1.02	1.01			
Ce-144	284	9.15 x 10^7	0.92	1.14	0.45	0.77	0.90			

/

Table B.2-2 Inventory of Selected Radionuclides for the Reactors Studied.

Negati (Secolari de la casa de la casa). Al

B-5

•

Consequence	End-of-Cycle 3412 MWt PWR	WASH-1400 End-of-Cycle 3200 MWt PWR	End-of-Cycle 3578 MWt BWR	l/3 Cycle 3412 MWt PWR	2/3 Cycle 3412 MWt PWR	End-of-Cycle 1518 MWt PWR	Scaled ¹ End-of-Cycle 1518 MWt PW
Mean Early Fatalities	800	690	890	750	780	150	150
Mean Early Injuries	3600	3000	4100	3400	3500	960	970
Mean Latent Cancer Fatalities	7800	7000	8400	6800	7300	5300	5400
Mean Land Interdiction Area (km ²)	200	140	280	130	160	92	97
Mean Land Decontamination Area (km ²)	3800	2800	5900	2800	3100	2000	2100

Table B.2-3 Summary of CRAC2 Consequence Predictions.

¹Inventory = (1518 MWt/3412 MWt) x (3412 MWt PWR inventory).

and the second secon

8-6

- 2) The 3578 MWt BWR land decontamination and interdiction consequences are approximately 50% larger than those for the 3412 MWt PWR. Again, differences for other consequences are on the order of 10%.
- 3) Comparison of the 3412 and 1518 MWt PWR results indicate reductions in reactor size result in proportionately larger reductions in early consequences.
- 4) Comparison of the 1/3, 2/3, and end-of-cycle 3412 MWt PWR results indicate that differences in radionuclide inventory during the annual operating cycle have little influence on early consequences. However, time of the accident during the cycle does significantly influence predicted latent cancer fatalities and areas of land interdiction and decontamination.
- 5) There is essentially no difference in consequences for the 1518 MWt PWR predicted by using either the calculated or scaled inventories.

Differences in latent cancer fatality, land interdiction, and land decontamination consequences largely result from long-lived radionuclide inventory differences (e.g., Cs-137). Differences in early consequences are primarily due to differences in short-lived radionuclide inventories.

In summary, the results presented above indicate that reactor accident consequences are sensitive to differences in radionuclide inventories due to reactor size and design. Because of in-core fuel management plans, boiling water reactors will likely have larger inventories of long-lived radionuclides than a pressurized water reactor of the same Therefore, using PWR inventories for BWR consequence size. calculations could underestimate latent consequences. The time of a reactor accident during the annual operating cycle has little influence on early consequences; however, it can significantly influence latent effects. Reductions in reactor size will lead to substantial reductions in. early consequences, more so than would be expected based on differences in reactor power levels. In addition, linear scaling of radionuclide inventories by thermal power level is adequate for consequence calculations, provided that the reactor of interest has operating and design characteristics similar to those of the reactor from which the inventories are scaled.

References for Appendix B

- "Reactor Safety Study Appendix VI: Calculation of Reactor Accident Consequences," WASH-1400 (NUREG 75/ 014), U.S. Nuclear Regulatory Commission, October 1975.
- 2. D. E. Bennett, <u>Radionuclide Core Inventories for</u> <u>Standard PWR and BWR Fuel Management Plans</u>, SAND82-1111, <u>NUREG/CR-2724</u>, Sandia National Laboratories, Albuquerque, NM, to be published.
- 3. R. M. Ostmeyer, "Radionuclide Inventory Impacts on Reactor Accident Consequences," Transactions of the American Nuclear Society (November 1981).

B-8

age and service of an operation of the service of t any service and the service of the service of the service and the service of the service of the service of the s and the service of the

Appendix C: Site Specific Consequence Estimates

This appendix presents the consequence estimates for each of the 91 sites analyzed in Chapter 2. It is important to note that in each case the calculations assumed (1) that the site contained an 1120 MWe PWR, (2) meteorology based on the most appropriate regional National Weather Service Station (from among the 29 detailed in Appendix A), (3) actual site wind rose and population, (4) a summary evacuation (all persons within 10 miles evacuate at 10 mph after delays of 1, 3, or 5 hours, with probability .3, .4, .3, respectively) and (5) hypothetical releases of radioactive materials (see Section 2.3, Chapter 2). Thus the estimates presented in this appendix are only a guide to the impact of site characteristics (principally population distribution) on predicted consequences. In no way are these to be taken as estimates of existing/reactor combinations.

Table C.1 provides a summary of the mean early fatalities, early injuries, and latent cancer fatalities for SST1, SST2, and SST3. Figures C-1 through C-18 contain early fatality, early injury, and latent cancer fatality CCDFs for each of the 91 sites, conditional on an SST1 release and assuming the 1120 MWe PWR, summary evacuation, regional meteorology, and actual site population and wind rose. Since some of these characteristics do not exactly duplicate the characteristics of the actual reactor/site combinations, the CCDFs are not to be used in place of actual risk estimates for existing reactor/site combinations.

Table C-1. Mean Number (Per Reactor-Year) of Early Fatalities, Early Injuries and Latent Cancer Fatalities for each of 91 Sites, for SST1, SST2, or SST3 Accident Source Terms.

Assumptions:

- (1) Standard 1120 MWe PWR
- (2) Summary Evacuation
- (3) Actual Site Population and Wind rose
- (4) Best Estimate Meteorology

	Mean E	arly Fatal	lities*	Mean E	arly Inju	ries*	Mean Latent Cancer Fatalities*			
		· 🛨 · · ·	ST3	SST1	SST2	SST3	SST1	SST2	SST3	
Allens Creek	31xP ₁	0xP2	OxP3	93xP ₁	0.9xP ₂	OxP3	620xP ₁	49xP ₂	0.2xP3	
Arkansas	17xP ₁	OxP ₂	OxP3	150xP ₁	0.2xP ₂	OxP3	950xP ₁	82xP2	0.3xP3	
Bailly	58xP ₁	OxP ₂	OxP3	1200xP ₁	0.5xP ₂	OxP3	3300xP ₁	26 OxP ₂	0.9xP3	
Beaver Valley	150xP ₁	OxP ₂	OxP3	1200xP ₁	0.4xP2	OxP3	3400xP ₁	200xP ₂	0.6xP3	
Bellefonte	63xP ₁	0.08xP ₂	OxP3	110xP ₁	5.6xP ₂	OxP3	1000xP ₁	70xP ₂	0.3xP3	
Big Rock Pt.	^{15xP} 1	OxP2	OxP3	90xP ₁	0.5xP ₂	OxP3	680xP ₁	^{53xP} 2	0.2xP3	
Black Fox	13xP ₁	OxP ₂	OxP3	220xP ₁	0.01xP ₂	OxP3	780xP ₁	69xP2	0.3xP3	
Braidwood	16 0xP ₁	0.05xP ₂	OxP3	420xP ₁	10xP ₂	OxP3	3200xP ₁	240xP ₂	0.9xP ₃	
Browns Ferry	25xP ₁	0xP2	OxP3	220xP1	0.03xP ₂	OxP3	970xP ₁	69xP ₂	0.3xP3	
Brunswick	12xP1	OxP2	OxP3	120xP ₁	0.01xP ₂	OxP3	890xP ₁	98xP2	0.4xP ₃	

*Detailed Probabilistic Risk Assessments (PRAs) have not been performed for all reactors. Therefore, consequence calculations were performed in this study using Siting Source Terms (SSTs) defined by NRC (see Section 2.3.1, Chapter 2). By adjusting the probabilities associated with each of the source terms, the set can be made to approximately represent any current LWR design. Based on currently available PRAs, NRC has suggested that representative probabilities for the SSTs are: P_1 for SST1 = 1 x 10⁻⁵, P_2 for SST2 = 2 x 10⁻⁵, and P_3 for SST3 = 1 x 10⁻⁴. There are very large variations (factors of 10 to 100) in the accident probabilities associated with a specific design.

Caution should be used when applying these numbers. Probability times consequence is not an adequate representation of risk; it provides only a common measure for comparative purposes (i.e., rank ordering). The Complementary Cumulative Distribution Functions (shown in Figure C-1 through C-18) are a better representation of risk.

~~

		rly Fatal		ries*					
	SST1	SST2	SST3	SST1	SST2	SST3	SST1	SST2	SST
Byron	54xP ₁	0.09xP ₂	0xP3	330xP ₁	4.3xP ₂	^{OxP} 3	2500xP ₁	^{190xP} 2	0.7x
Callaway	10xP ₁	^{0xP} 2	0xP3	100xP ₁	0.04xP ₂	^{OxP} 3	1200xP ₁	97xP ₂	0 .3 x
Calvert Cliffs	18xP ₁	0xP2	OxP3	170xP ₁	0.08xP ₂	OxP3	2400xP ₁	120xP ₂	0.4x
Catawba	100xP ₁	0xP2	OxP3	710xP ₁	0.2xP ₂	^{0xP} 3	1500xP ₁	110xP ₂	0 .4 x
Cherokee	27xP ₁	0xP2	0xP3	250xP ₁	0.1xP ₂	0xP3	1200xP ₁	76xP ₂	0 .3x
Clinton	16xP ₁	0xP2	OxP3	130xP ₁	0.7xP ₂	0xP3	2300xP ₁	170xP2	0.7x
Comanche Peak	1.3xP ₁	0xP2	0xP3	37xP ₁	0xP ₂	0xP3	640xP ₁	49xP ₂	0.2x
Cooper	4.7xP ₁	OxP2	^{OxP} 3	47xP ₁	0.09xP ₂	0xP3	900xP ₁	81xP2	0 .3 x
Crystal River	21xP ₁	0xP2	OxP3	88xP ₁	0.9xP ₂	0xP3	590xP ₁	66xP ₂	0 .3 x
Davis-Besse	21xP ₁	OxP ₂	OxP3	420xP ₁	0.6xP ₂	0xP3	2600xP ₁	160xP ₂	0.5x
Diablo Canyon	4.7xP ₁	0xP ₂	OxP3	^{50xP} 1	OxP ₂	OxP3	1200xP ₁	98xP2	0.4x
Donald C. Cook	^{55xP} 1	0.04xP ₂	OxP3	590xP ₁	2.2xP ₂	OxP3	2500xP ₁	120xP ₂	0.4x
Dresden	42xPl	0xP2	^{0xP} 3	540xP ₁	0.3xP ₂	OxP3	3300xP ₁	260xP ₂	0 .9 x
Duane Arnold	21xP ₁	OxP2	0xP3	380xP ₁	0.4xP ₂	OxP3	1700xP ₁	190xP ₂	0.8x
Fermi	160xP ₁	0.08xP ₂	0xP3	970xP ₁	7.1xP ₂	OxP3	3000xP ₁	200xP ₂	0.6x
Fitzpatrick	5.0xP ₁	^{OxP} 2	OxP3	110xP ₁	0.06xP ₂	OxP3	1200xP ₁	57xP ₂	0 .2 x
Forked River	84xP ₁	0xP ₂	0xP3	530xP ₁	0.8xP ₂	^{OxP} 3	4400xP ₁	200xP2	0.6x
Fort Calhoun	^{50xP} 1	0.1xP ₂	0xP_3	440xP ₁	3.0xP ₂	OxP3	1100xP ₁	110xP ₂	0.4x
Ft. St. Vrain	15xP1	0xP ₂	0xP3	220xP ₁	0xP2	0xP3	810xP ₁	82xP ₂	0 .3 x
Ginna	llxP ₁	^{0xP} 2	^{OxP} 3	370xP ₁	0.1xP ₂	^{OxP} 3	1900xP ₁	^{89xP} 2	0.3x
Grand Gulf	14xP1	0xP2	^{0xP} 3	73xP ₁	0.7xP ₂	OxP3	700xP ₁	^{60xP} 2	0 .3 x
Hadden Neck	110xP ₁	0xP ₂	0xP ₂	890xP	1.2xP ₂	0xPa	2100xP	160xP ₂	0.5 v

*See footnote, page C-2.

j.

•							Mean Latent			
	Mean E SST1	rly Fata SST2	alities SST3	* Mean I SSTl	Tarly Inju SST2	sst3	Canc SST1	er Fatal SST2	SST3	
				0011	0,512	0010		0012		
Hartsville	^{19xP} 1	^{OxP} 2	0xP3	140xP ₁	0.04xP ₂	0xP3	970xP1	64xP ₂	0.2xP ₃	
Hatch	4xP1	^{0xP} 2	0xP3	62xP ₁	0.04xP ₂	^{0xP} 3	770xP1	64xP ₂	0.2xP ₃	
Hope Creek	120xP ₁	0xP ₂	0xP3	440xP1	0xP2	0xP3	3000xP ₁	160xP ₂	0.5xP ₃	
Indian Pt.	830xP1	0.08xP ₂	0xP3	3600xP ₁	18xP2	OxP3	8100xP ₁	590xP ₂	1.8xP ₃	
Joseph M. Farley	12xP1	0xP2	0xP3	85xP ₁	0.03xP ₂	0xP3	670xP ₁	56xP ₂	0.2xP3	
Kewaunee	1.2xP ₁	0xP2	0xP3	78xP1	0xP2	^{0xP} 3	1200xP ₁	70xP ₂	0.3xP3	
LaCrosse	32xP1	0xP2	0xP3	200xP ₁	1.8xP2	0xP3	850xP ₁	58xP2	0.2xP3	
La Salle	26xP ₁	^{OxP} 2	0xP3	180xP1	0.6xP ₂	0xP3	2800xP ₁	200xP ₂	0.7xP ₃	
Limerick	970xP1	2.2xP ₂	0xP3	2800xP ₁	6.6xP ₂	0xP3	5400xP ₁	370xP2	1.3xP3	
Maine Yankee	4.1xP ₁	0xP2	0xP3	34xP1	^{0xP} 2	0xP3	770xP1	29xP ₂	0.1xP3	
Marble Hill	28xP ₁	0xP2	OxP3	420xP ₁	0xP ₂	0xP3	2400xP ₁	180xP ₂	0.7xP ₃	
McGuire	130xP ₁	0xP2	OxP3	680xP ₁	^{0xP} 2	0xP3	1600xP ₁	130xP ₂	0.5xP3	
Midland	320xP ₁	0.2xP ₂	OxP3	1100xP ₁	1.3xP ₂	OxP3	2200xP ₁	130xP ₂	0.5xP3	
Millstone	240xP1	0.02xP ₂	0xP3	990xP ₁	4.5xP2	0xP3	3200xP ₁	160xP ₂	0.6xP3	
Monticello	12xP ₁	0xP ₂	OxP3	200xP ₁	0.08xP ₂	OxP3	1100xP ₁	98xP2	0.4xP3	
Nine Mile Pt.	5.2xP ₁	0xP2	0xP3	110xP1	0.06xP ₂	0xP3	1200xP ₁	58xP2	0.2xP ₃	
North Anna	14xP1	0xP ₂	0xP3	^{92xP} 1	0.08xP ₂	^{OxP} 3	1800xP ₁	75xP ₂	0.3xP ₃	
Oconee	2.0xP ₁	0xP ₂	0xP3	240xP1	0.03xP ₂	OxP3	1100xP ₁	70xP2	0.3*P3	
Oyster Creek	^{84xP} 1	0xP2	OxP3	530xP1	0.8xP2	0xP3	4400xP ₁	200xP ₂	0.6xP3	
Palisades	37xP ₁	0.02xP ₂	OxP3	250xP1	1.3xP ₂	OxP3	1700xP ₁	90xP ₂	0.3xP3	
Palo Verde	5.8xP ₁	0xP ₂	0xP3	^{59xP} 1	0.2xP ₂	0xP3	450xP ₁	26xP ₂	0.09xP ₃	
Peach Bottom	97xP ₁	0xP ₂	0xP3	400xP1	0.02xP ₂	0xP3	2800xP ₁	140xP ₂	0.4xP ₃	

*See footnote, page C-2.


C--4

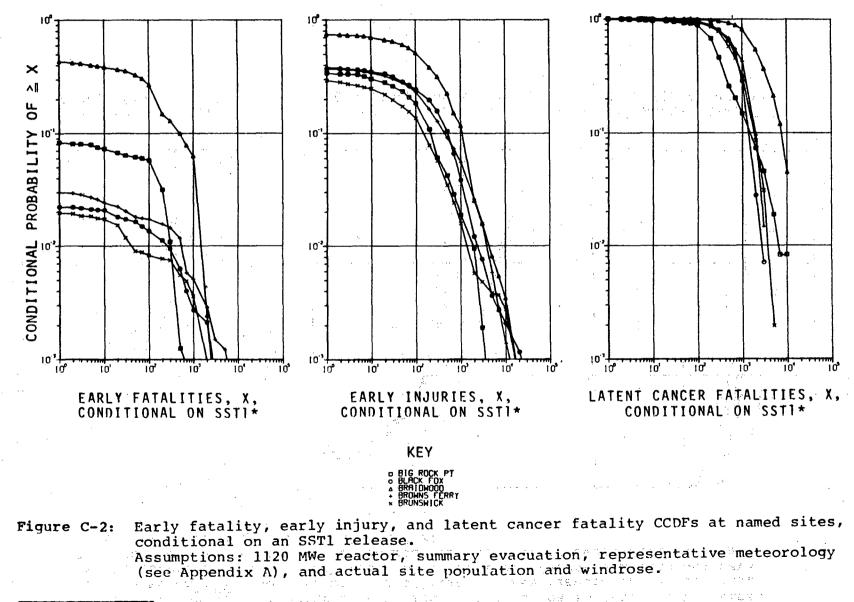
1. 1. 1. 1. 1. <u>1</u> .	Mean Ea SST1	arly Fatal SST2	lities* SST3	Mean I SST1	Early Inju SST2	ries* SST3	Mean Latent Cancer Fatalities* SST1 SST2 SST3			
			2212			5515	5511	5512	5515	
Pebble Springs	0.41xP1	0xP ₂	0xP3	3.7xP ₁	^{0xP} 2	OxP3	230xP ₁	18xP2	0.07xP3	
Perkins	98xP1	^{0xP} 2	OxP3	520xP ₁	2.1xP ₂	0xP3	1500xP ₁	120xP ₂	0.5xP3	
Perry	95xP ₁	0.07xP ₂	0xP3	520xP ₁	4.2xP ₂	0xP3	2500xP ₁	160xP ₂	0.6xP3	
Phipps Bed	170xP ₁	0.3xP ₂	OxP3	300xP ₁	16xP ₂	0xP3	1300xP ₁	82xP ₂	0.3xP3	
Pilgrim	71xP ₁	0.02xP ₂	OxP3	300xP ₁	2.4xP ₂	0xP3	1500xP ₁	85xP ₂	0.3xP3	
Pt. Beach	7.7xP ₁	^{0xP} 2	0xP3	110xP ₁	0.3xP ₂	0xP3	1400xP ₁	77xP ₂	0.3xP3	
Prairie Is.	56xP ₁	^{0xP} 2	0xP3	260xP ₁	2.4xP ₂	0xP3	1400xP ₁	110xP ₂	0.4xP3	
Quad Cities	17xP1	0xP2	0xP3	290xP ₁	0.04xP ₂	0xP3	1900xP ₁	170xP ₂	0.7xP3	
Rancho Seco	15xP ₁	OxP2	OxP3	110xP ₁	0.02xP ₂	0 x P3	870xP ₁	87xP ₂	0.3xP3	
River Bend	31xP1	^{0xP} 2	^{OxP} 3	200xP ₁	0.2xP ₂	0xP3	750xP ₁	60xP ₂	0.2xP3	
Robinson	16xP ₁	0xP2	0xP3	170xP ₁	0.01xP ₂	0xP3	880xP ₁	59xP ₂	0.2xP3	
St. Lucie	77xP ₁	0xP2	0xP3	310xP ₁	0.6xP ₂	0xP3	700xP1	69xP ₂	0.4xP3	
Salem	120xP ₁	0xP2	0xP3	440xP ₁	OxP2	0xP3	3000xP ₁	160xP ₂	0.5xP3	
San Onofre	llxP1	^{0xP} 2	0xP3	150xP ₁	0xP2	0xP3	1800xP ₁	150xP ₂	0.5xP3	
Seabrook	13xP ₁	OxP2	OxP3	210xP ₁	0.04xP ₂	0xP3	1000xP ₁	54xP ₂	0.2xP3	
Sequoyah	110xP ₁	0xP2	0xP3	690xP ₁	0.6xP ₂	0xP3	1300xP ₁	^{95xP} 2	0.3xP3	
Shearon Harris	40xP1	^{OxP} 2	0xP3	260xP ₁	0.4xP ₂	0xP3	1300xP ₁	110xP2	0.4xP3	
Shoreham	140xP ₁	^{0xP} 2	0xP3	870xP ₁	1.9xP ₂	^{0xP} 3	3400xP ₁	170xP2	0.5xP3	
Skagit	50xPl	0xP2	0xP3	370xP1	0.4xP ₂	0xP3	500xP ₁	49xP ₂	0.2xP ₃	
South Texas	5.2xP ₁	^{0xP} 2	0xP3	32xPl	^{0xP} 2	^{0xP} 3	610xP ₁	43xP2	0.2xP3	
Surry	65xP ₁	0xP2	0xP3	330xP ₁	^{0xP} 2	0xP3	1700xP ₁	95xP ₂	0.3xP3	
Susquehanna	180xP1	0xP2	^{OxP} 3	700xP ₁	0.2xP ₂	0xP3	3300xP ₁	150xP2	0.5xP3	

*See footnote, page C-2.

	Mean F	arly Fat	alitie	s* Mean E	arly Inju	ries*	Mean Latent Cancer Fatalities*			
· · ·	SST1	SST2	SST3	SST1	SST2	SST3	SST1	SST2	SST3	
Three Mile Island	240xP ₁	OxP2	0xP3	1200xP ₁	4.5xP ₂	0xP3	3500xP ₁	170xP ₂	0.6xP3	
Trojan	46xP ₁	0.1xP ₂	0xP3	350xP ₁	3.8xP ₂	^{OxP} 3	1100xP ₁	73xP ₂	0.3x ² 3	
Turkey Pt.	31xP ₁	OxP2	0xP3	460xP ₁	OxP2	0xP3	690xP ₁	83xP ₂	0.4xP3	
Vermont Yankee	130xP ₁	0xP2	0xP3	320xP ₁	4.4xP ₂	^{0xP} 3	1800xP ₁	72xP ₂	0.3xP3	
Virgil Summer	12xP ₁	0xP ₂	0xP3	120xP ₁	0xP2	^{OxP} 3	1000xP ₁	63xP2	0.2xP ₃	
Vogtle	0.07xP ₁	^{0xP} 2	0xP3	85xP ₁	^{0xP} 2	0xP3	900xP ₁	70xP ₂	0.3xP ₃	
WPPSS 1,4	0.1xP ₁	0xP2	0xP3	110xP1	OxP2	OxP3	310xP ₁	37xP ₂	0.2xP ₃	
WPPSS 2	1.0xP ₁	^{OxP} 2	^{OxP} 3	120xP ₁	0xP ₂	0xP3	720xP1	53xP ₂	0.2xP ₃	
WPPSS 3,5	0.1xP ₁	OxP2	^{0xP} 3	110xP ₁	0xP2	0xP3	310xP1	37xP ₂	0.2xP ₃	
Waterford	170xP ₁	0.2xP ₂	0xP3	580xP ₁	8.3xP ₂	0xP3	990xP ₁	93xP ₂	0.4xP ₃	
Watts Bar	13xP ₁	0xP2	0xP3	110xP ₁	0.02xP ₂	^{0xP} 3	1000xP ₁	66xP2	0.3xP ₃	
Wolf Creek	2.4xP ₁	0xP2	^{OxP} 3	34xP ₁	0.04xP2	0xP3	760xP1	70xP ₂	0.3xP ₃	
Yankee Rowe	18xP1	0xP2	OxP3	180xP ₁	0.05xP ₂	^{0xP} 3	2300xP ₁	100xP2	0.2xP ₃	
Yellow Creek	5.6xP ₁	0xP2	0xP3	68xP1	0xP2	^{OxP} 3	850xP ₁	63xP ₂	0.3xP ₃	
Zimmer	46xP1	^{0xP} 2	0xP3	670xP ₁	0.4xP ₂	^{0xP} 3	2400xP ₁	170xP2	0.6xP ₃	
Zion	520xP ₁	4.1xP ₂	^{OxP} 3	1600 x P ₁	32xP ₂	0xP3	4000xP1	330xP ₂	1.2xP ₃	

*See footnote, page C-2.

Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology


(see Appendix A), and actual site population and windrose.

in e la classe de la companya de la

a ser generale a substance en esta en e

*See footnote, page C-2.

그는 것을 하는 것이 같아요. 이 물건에 있는 것을 가지 않는 것이 가지 않는 것이 가지 않는 것이 없다.

С<mark>-</mark>8

*See footnote, page C-2.

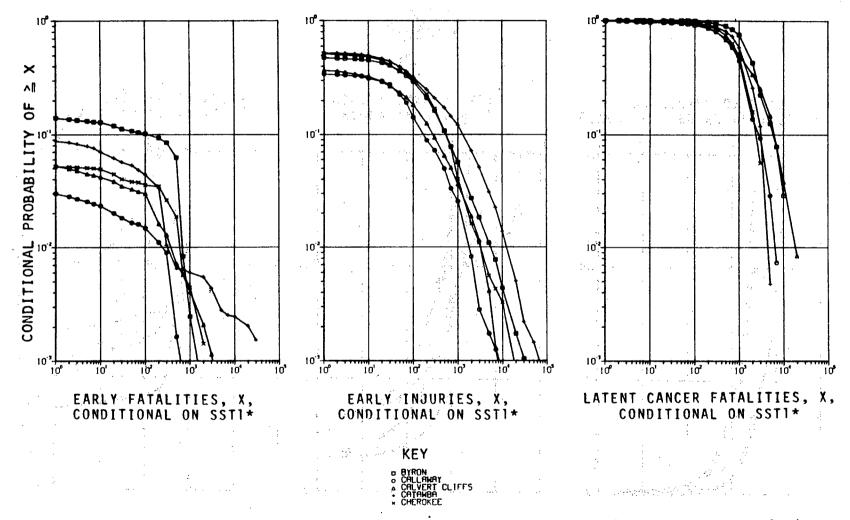
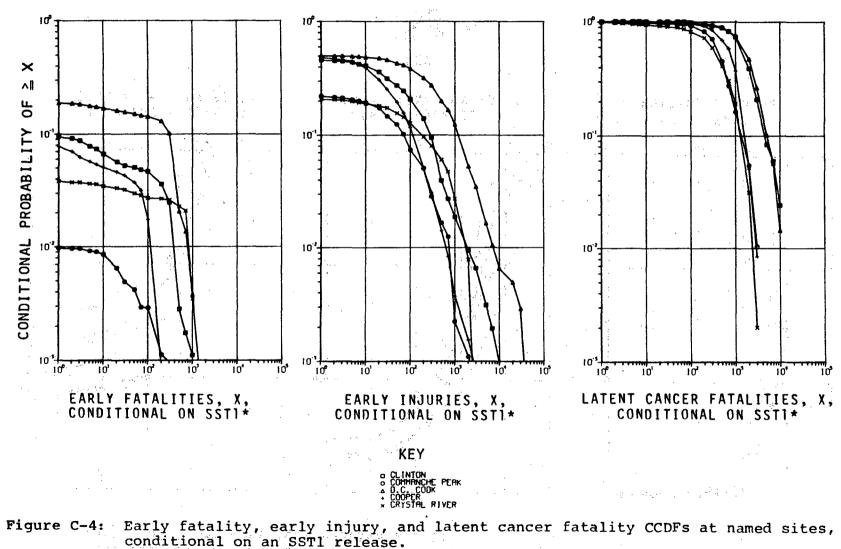



Figure C-3: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2.

6-0

Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

ちゃうふしゃ ポージ・ひざ 塗さ かいけつしゃ

*See footnote, page C-2.

배명 수 있는 것은 것은 것은 것이 있는 것이 같이 있는 것이 없는 것이 없다.

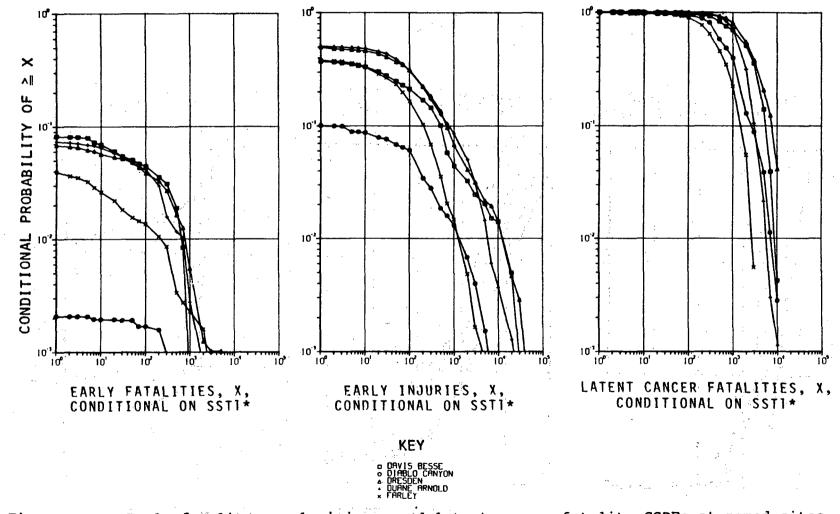


Figure C-5: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2.

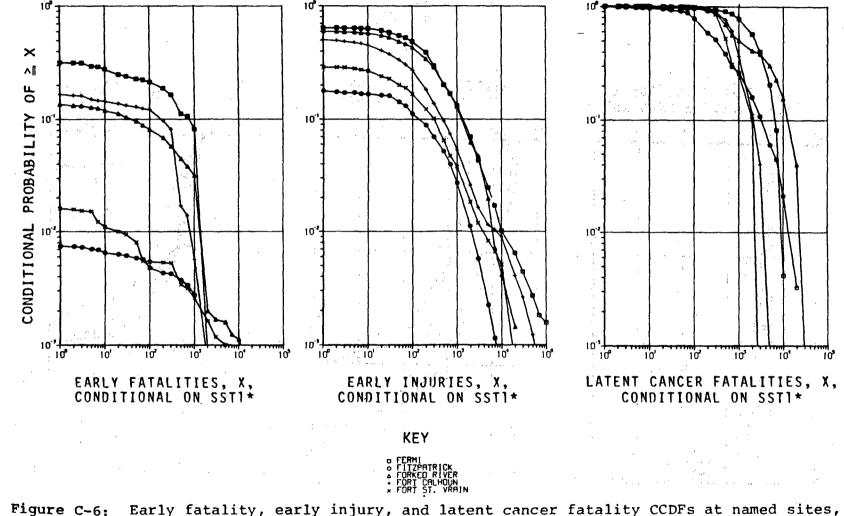


Figure C-6: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

an an an that a start data that a start of the start of the

*See footnote, page C-2.

计操作性学 医硫酸盐 化合成分离 建立的 建铁铁铸

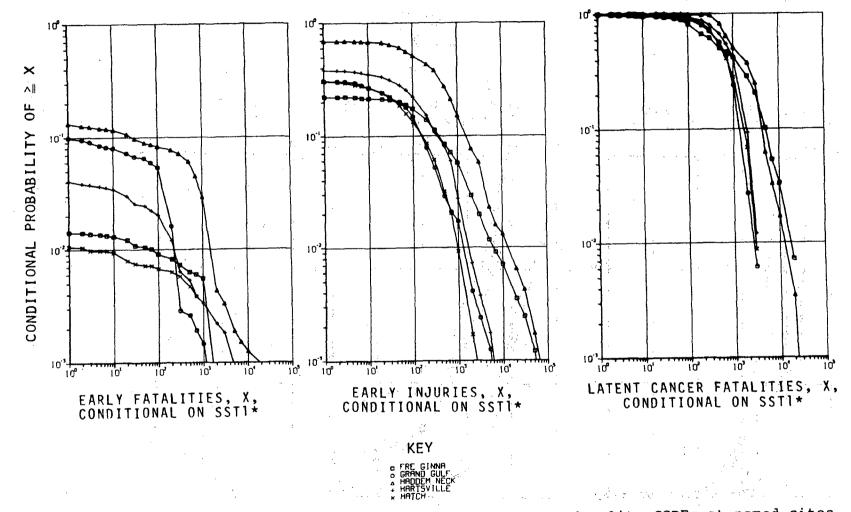
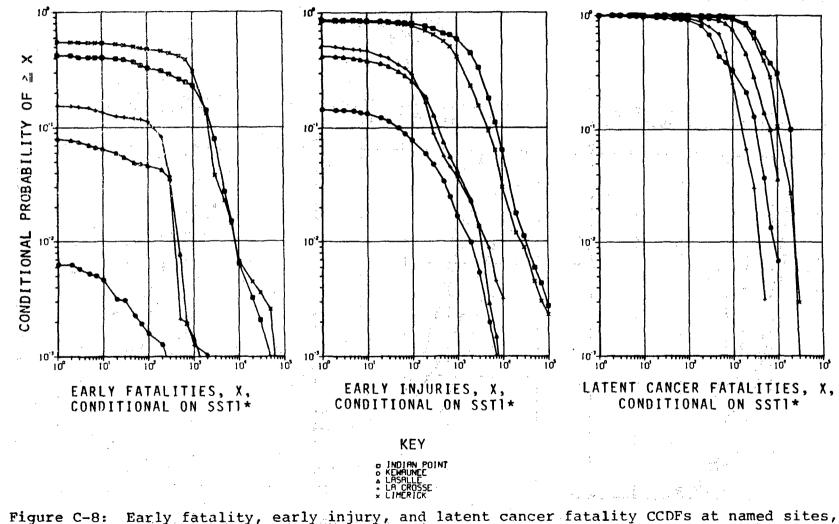



Figure C-7: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SSTI release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2.

conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

(C.

*See footnote, page C-2.

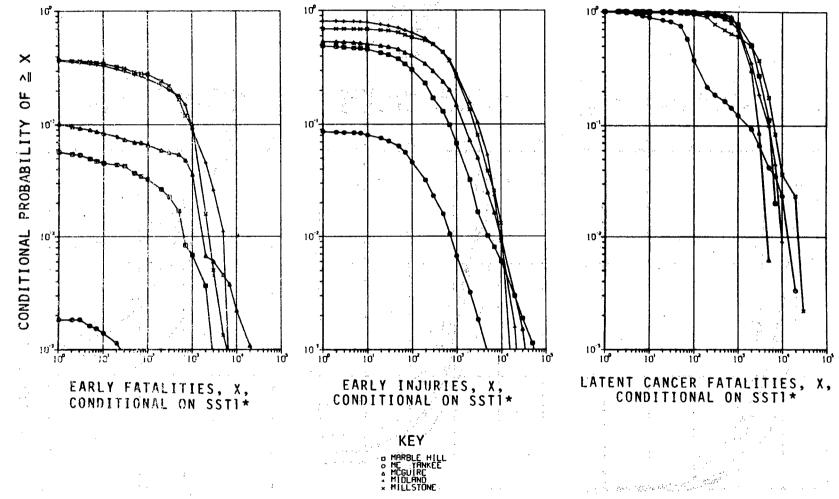


Figure C-9: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2. The data of the protocol of the sector with the sector build be and the secto

and the state of the state of the state

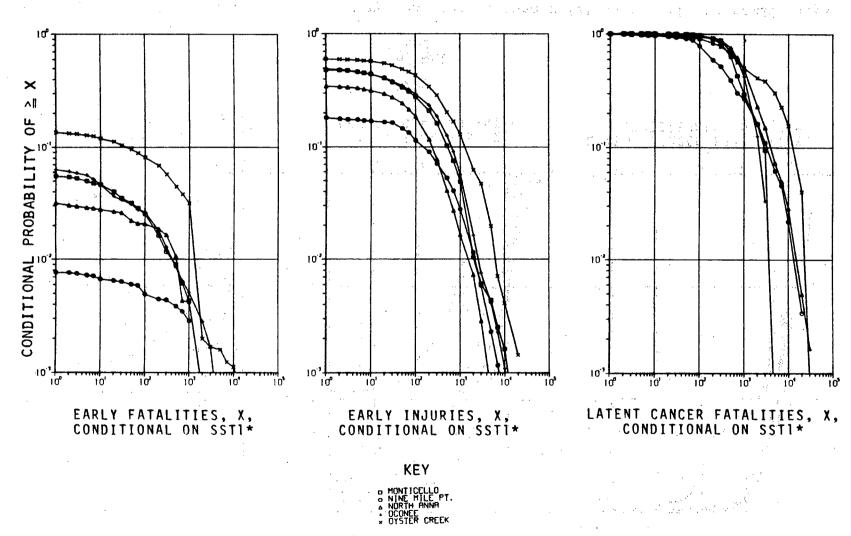


Figure C-10: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2.

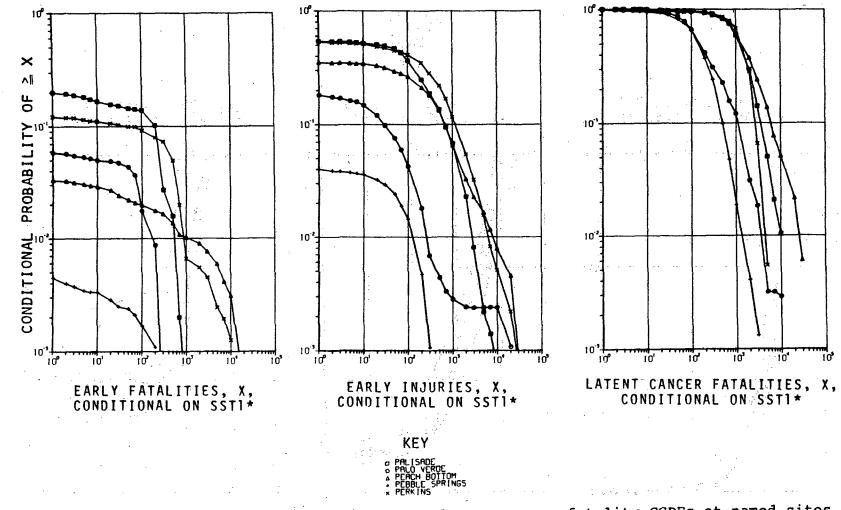
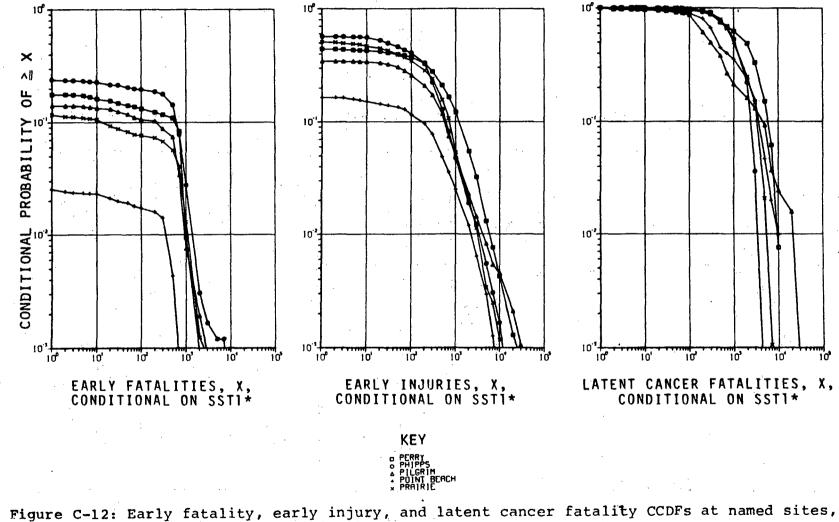



Figure C-11: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2.

conditional on an SSTI release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

C-18

*See footnote, page C-2.

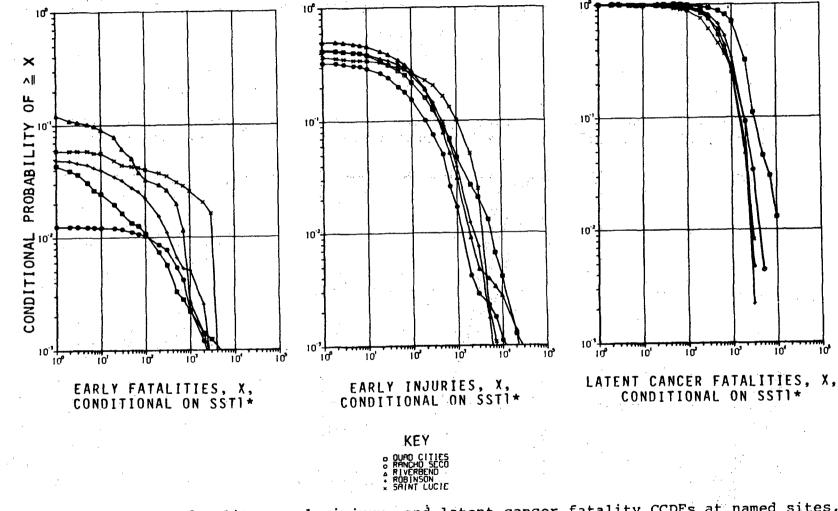
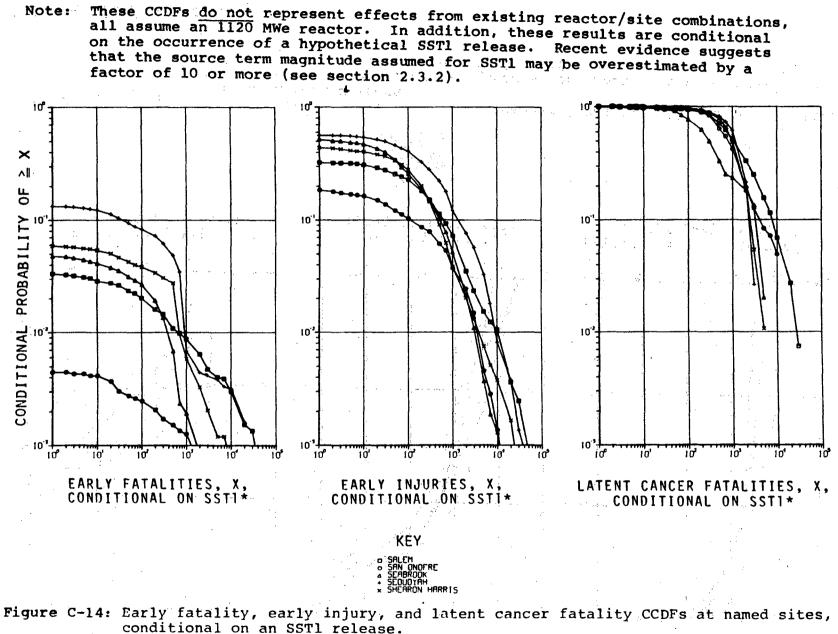



Figure C-13: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2.

Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

*See footnote, page C-2.

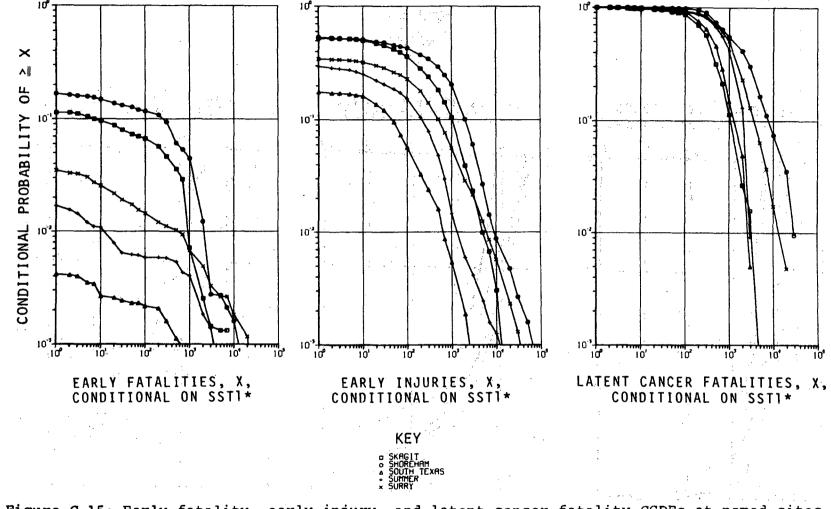


Figure C-15: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

> 1997 – Allen Star, Maria Santa Alekson Alekson, Alekson Santa Santa

*See footnote, page C-2

Note: These CCDFs do not represent effects from existing reactor/site combinations, all assume an 1120 MWe reactor. In addition, these results are conditional on the occurrence of a hypothetical SST1 release. Recent evidence suggests that the source term magnitude assumed for SST1 may be overestimated by a factor of 10 or more (see section 2.3.2).

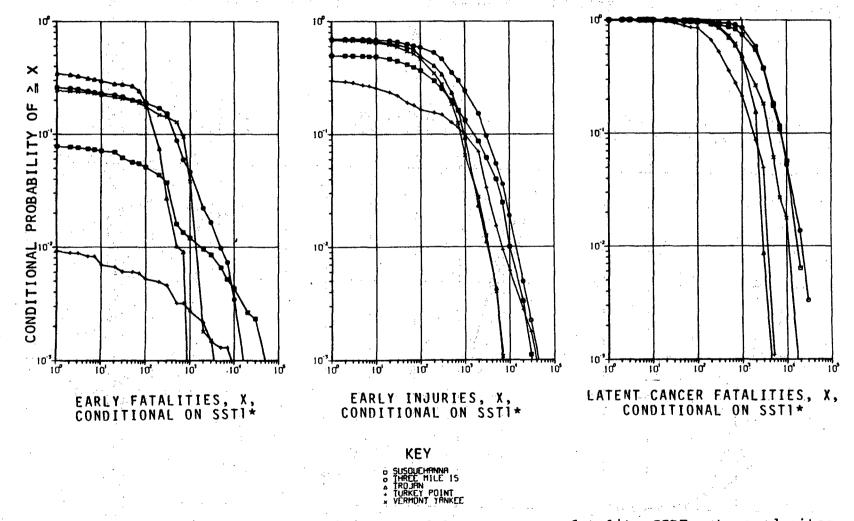


Figure C-16: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix Λ), and actual site population and windrose.

ဂု

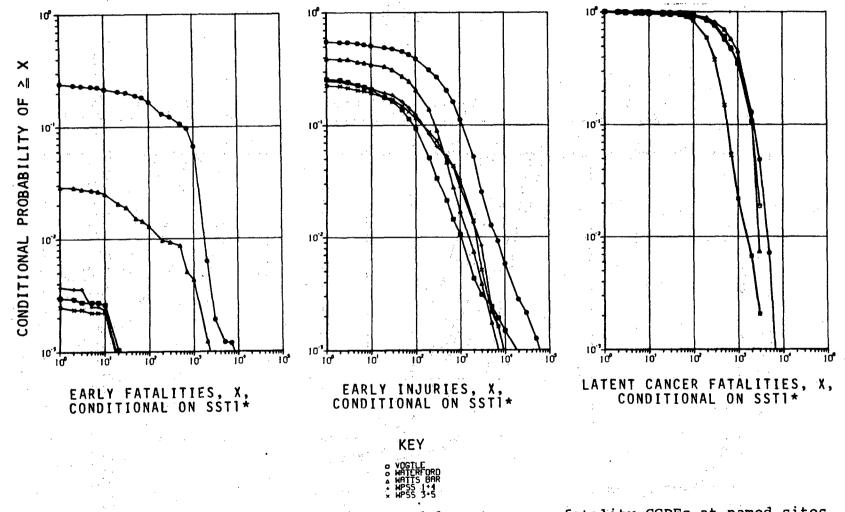
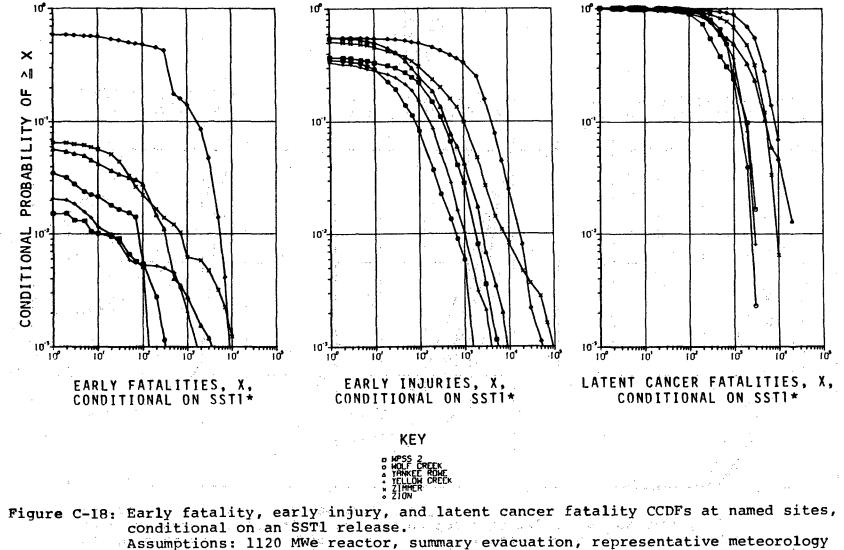



Figure C-17: Early fatality, early injury, and latent cancer fatality CCDFs at named sites, conditional on an SST1 release. Assumptions: 1120 MWe reactor, summary evacuation, representative meteorology (see Appendix A), and actual site population and windrose.

C-23

(see Appendix A), and actual site population and windrose.

Appendix D: Additional Population Statistics for Current Reactor Sites

The demographic characteristics of the 91 reactor sites described in Chapter 2 and Appendix A were analyzed for this study. These data, which were summarized in Chapter 3, provide a perspective of previous siting decisions and delineate the population characteristics of current reactor sites. This appendix contains additional demographic data which complement the data presented in Chapter 3. These data are presented in the following sections.

Section

Data Description

D.1	Site Population Statistics
D.2	Exclusion Distances
D.3	Site Population Factors

D.1 Site Population Statistics

The 91 population distributions examined in this report were all constructed on a 16 sector, circular polar grid. For any specified portion (a circle, an annulus, a sector) of that grid, 91 values of population density are available, one for each of the 91 population distributions. By cumulation of the 91 values for a given portion of the grid, a population density CCDF may be constructed.* Six different sets of population density CCDFs have been constructed for the following areas of the population distribution grid:

- <u>Set 1</u> (Figures D.1-1 thru D.1-8): Eight annuli (0-2, 2-5, 5-10, 10-20, 20-30, 30-50, 50-100, and 100-200 mi).
- <u>Set 2</u> (Figures D.1-9 thru D.1-16): eight radial distances (0-2, 0-5, 0-10, 0-20, 0-30, 0-50, 0-100, and 0-200 mi).

*Population density CCDFs are Log-Log plots of the fraction of sites vs population density. Any point on the distribution gives the fraction of sites (y-axis value), which have a population density within the specified portion of the grid (annulus, circle, sector), that is greater than or equal to the specified population density (x-axis value).

- Set 3 (Figures D.1-17 thru D.1-22): the most populated 22.5° sector in each of six annuli (0-2, 2-5, 5-10, 10-20, 20-30, and 30-50 mi)on the 16 sector grid.
- Set 4 (Figures D.1-23 thru D.1-28): the most populated 22.5° sector in each of six radial distances (0-2, 0-5, 0-10, 0-20, 0-30 and 0-50 mi) on the 16 sector grid.
- Set 5 (Figures D.1-29 thru D.1-34): the most populated 45° sector (two adjacent 22.5° sectors) in each of six annuli (0-2, 2-5, 5-10, 10-20, 20-30, and 30-50 mi) on the 16 sector grid.
- Set 6 (Figures D.1-35 thru D.1-40): the most populated 45° sector (two adjacent 22.5° sectors) in each of six radial distances (0-2, 0-5, 0-10, 0-20, 0-30, and 0-50 mi) on the 16 sector grid.

Each figure contains six CCDFs, one for each of the five NRC administrative regions (NE, MW, S, W, SW, see Figure 3-1) and one for all regions combined (All).

Tables D.1-1 thru D.1-4 present the data used to construct the CCDFs in Figures D.1-1 thru D.1-28. Table D.1 presents, for each of the 91 sites, population densities within eight annuli; Table D.2 presents similar data for eight radial distances; Table D.3 for the most populated 22.5° sector of six annuli; and Table D.4 for the most populated 22.5° sector of six radial distances.

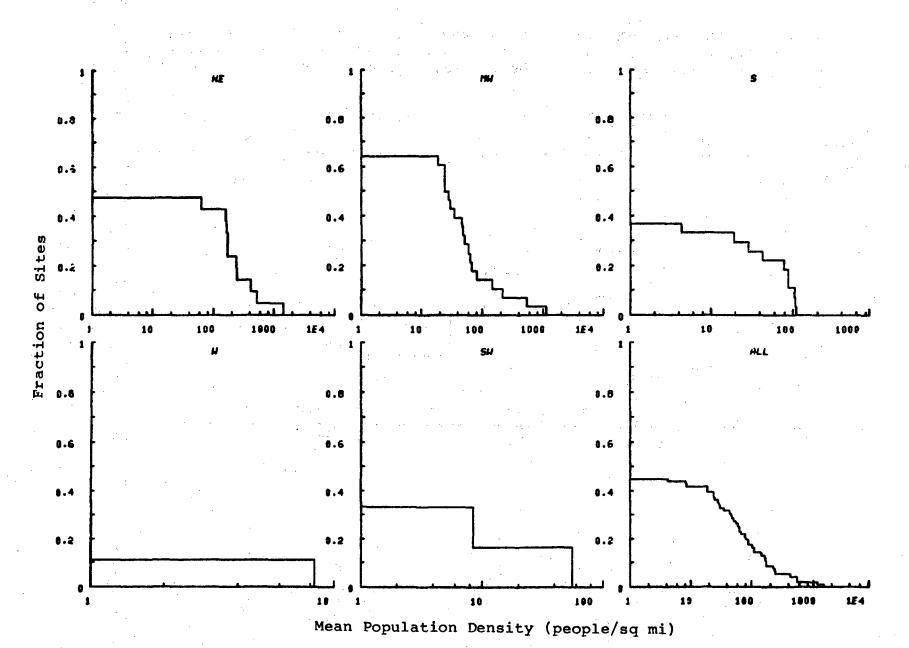


Figure D.1-1. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 0-2 Miles.

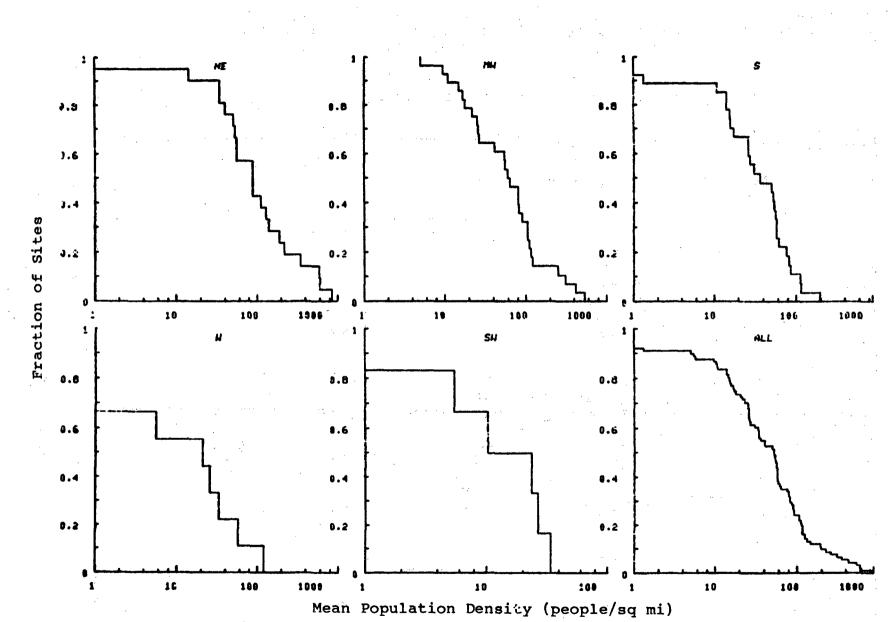


Figure D.1-2. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 2-5 Miles.

0-4

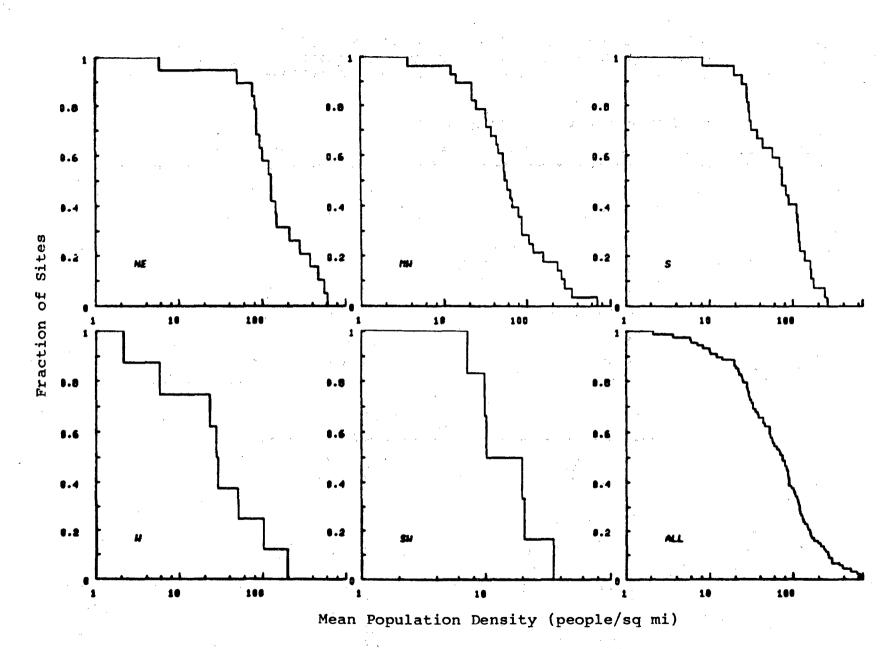


Figure D.1-3. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 5-10 Miles.

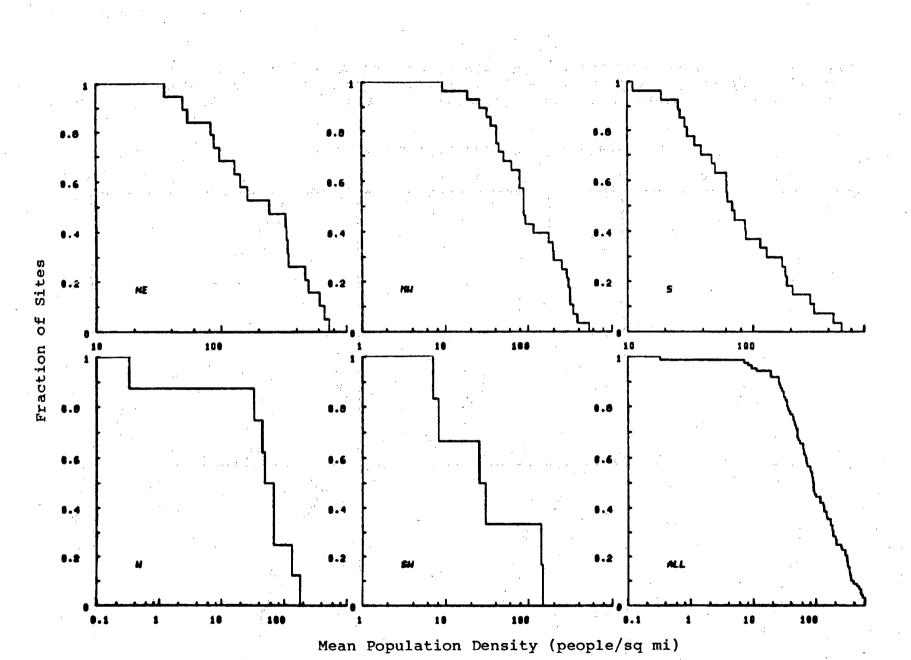


Figure D.1-4. CCDEs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 10-20 Miles.

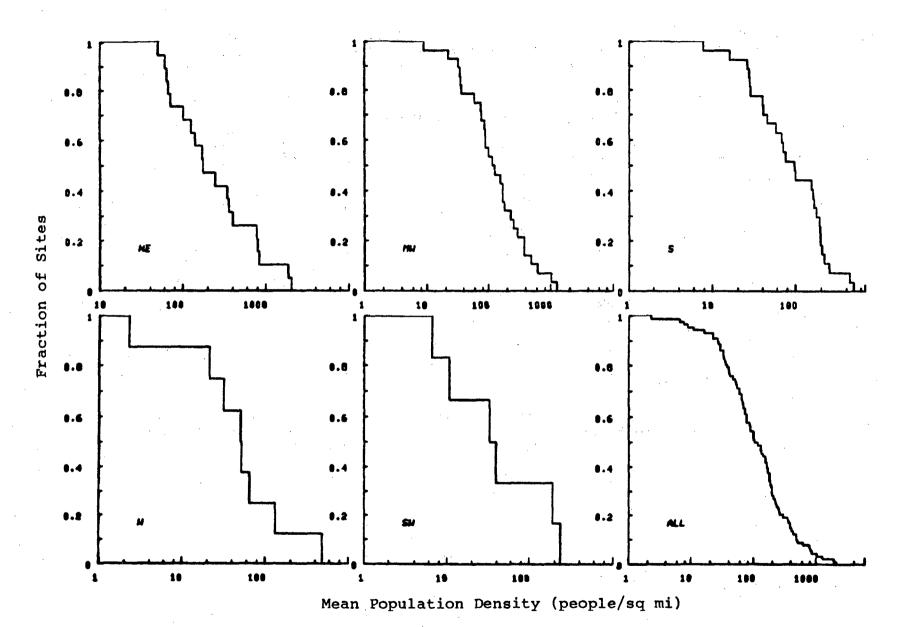
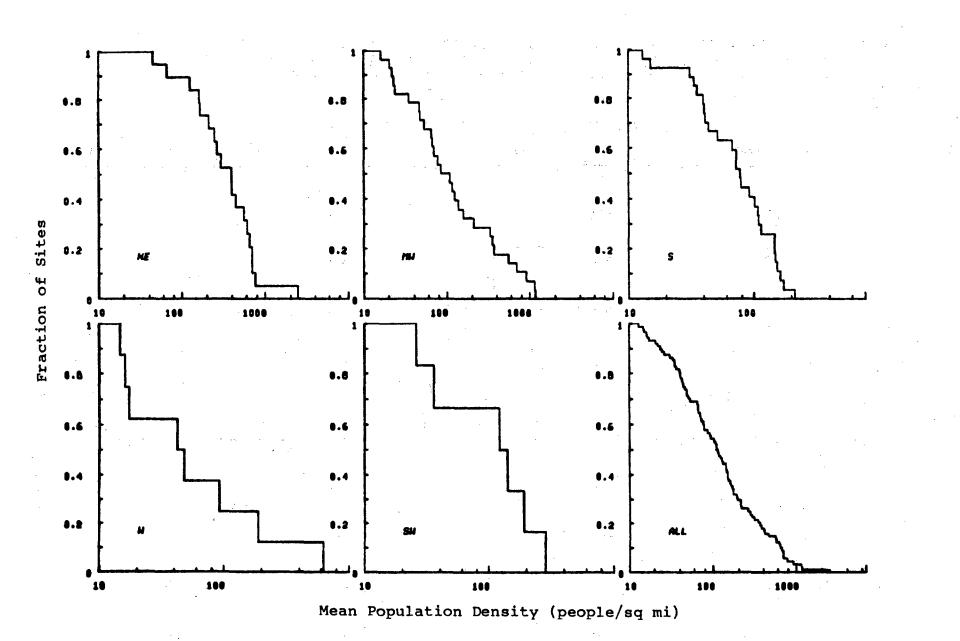



Figure D.1-5. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 20-30 Miles.

.....

Figure D.1-6. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 30-50 Miles.

¢

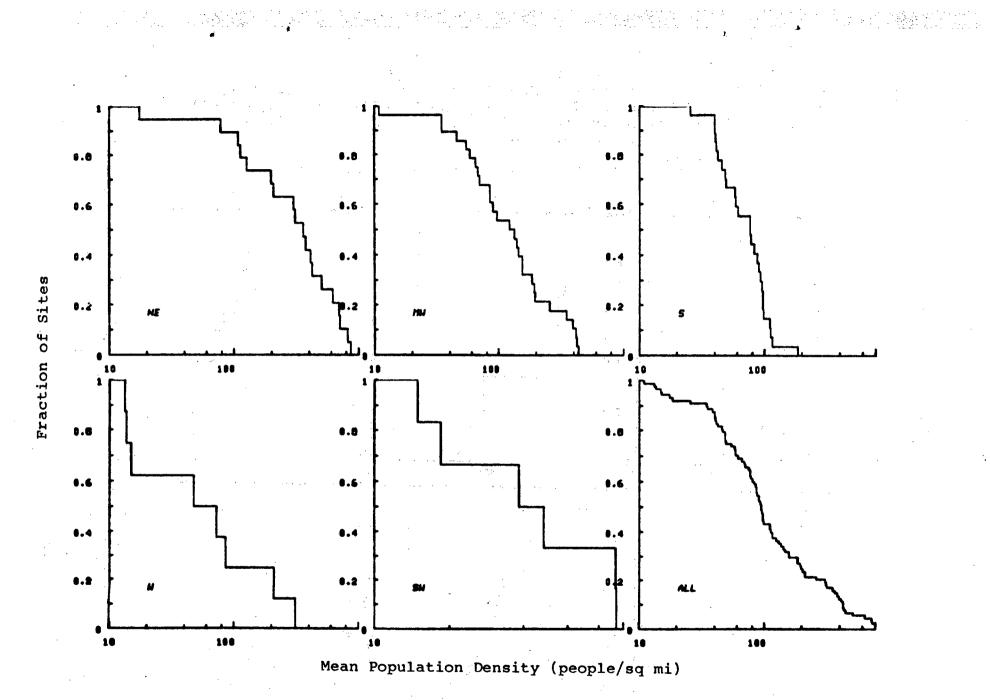


Figure D.1-7. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 50-100 Miles.

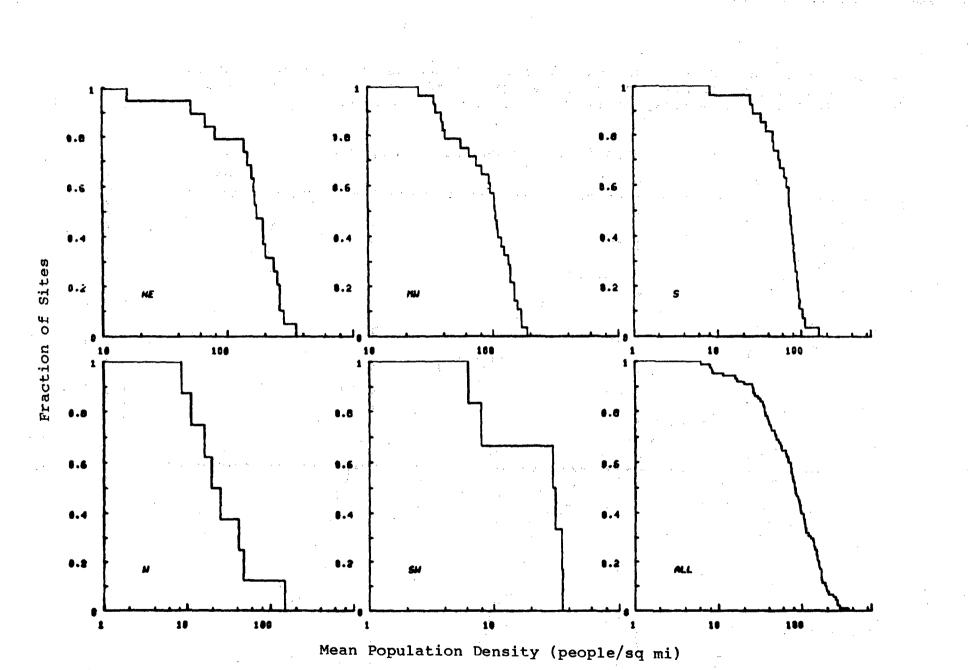


Figure D.1-8. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Annulus Interval 100-200 Miles.

1

۲

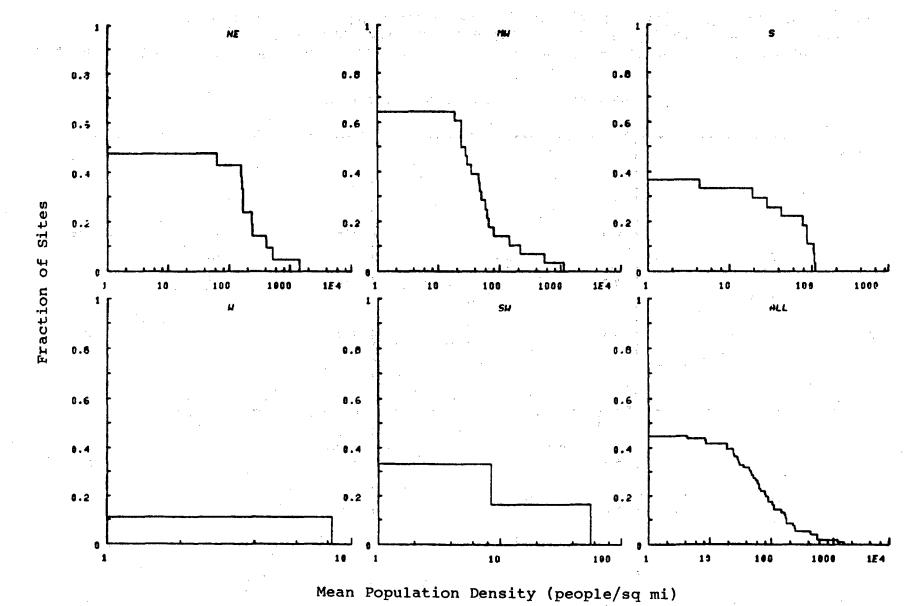
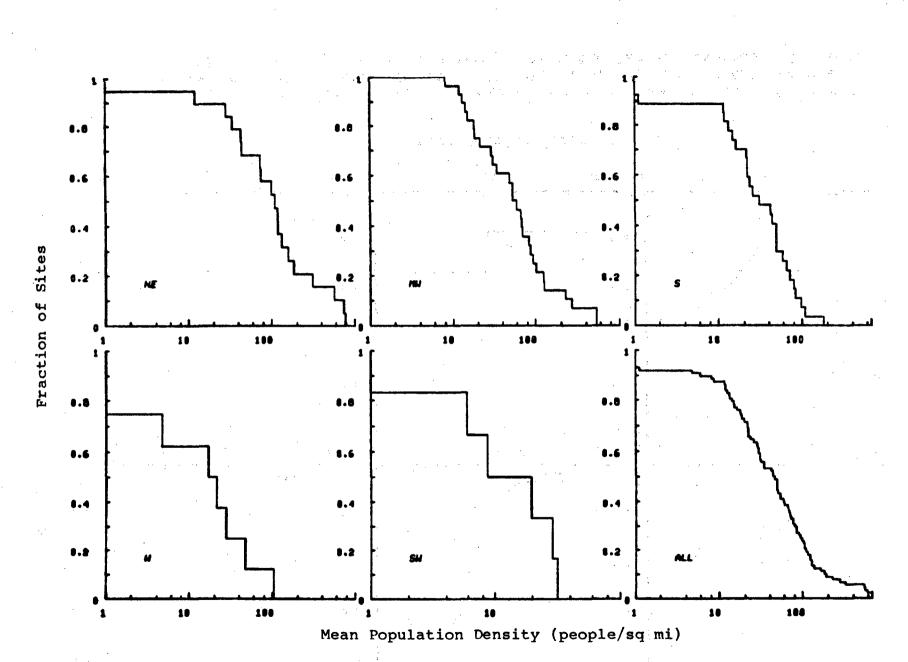
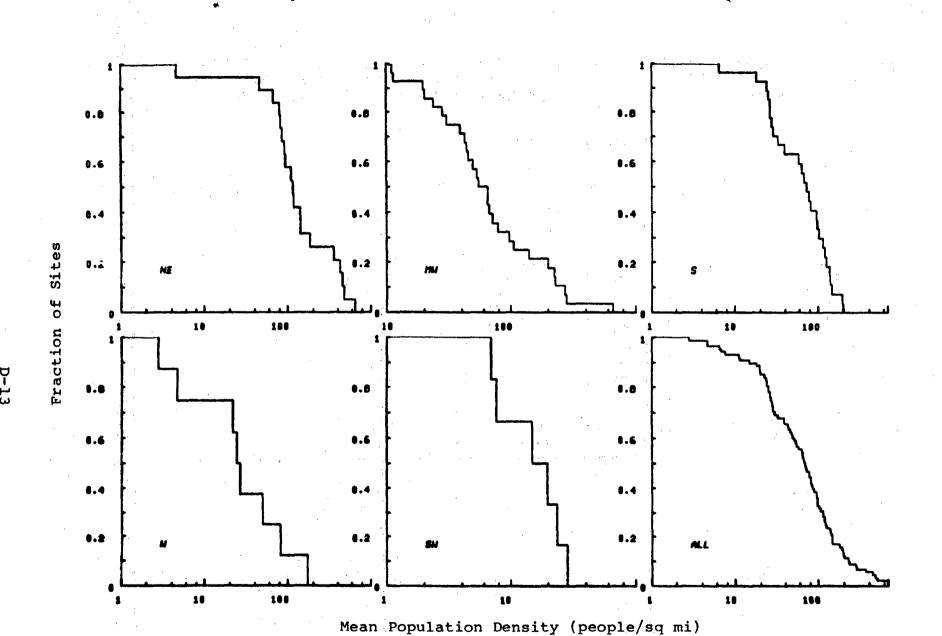
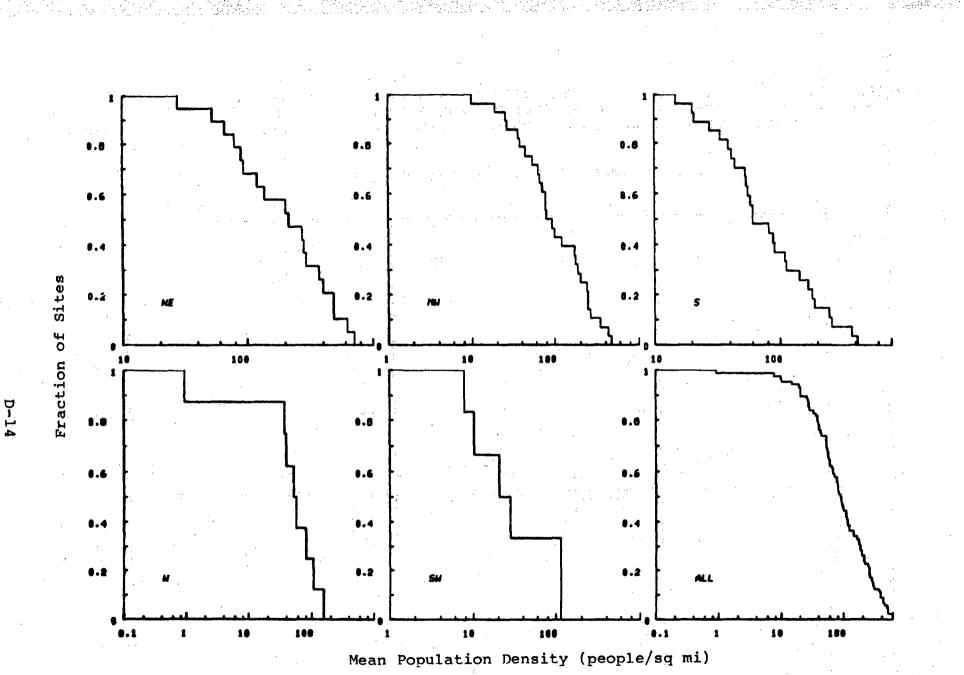


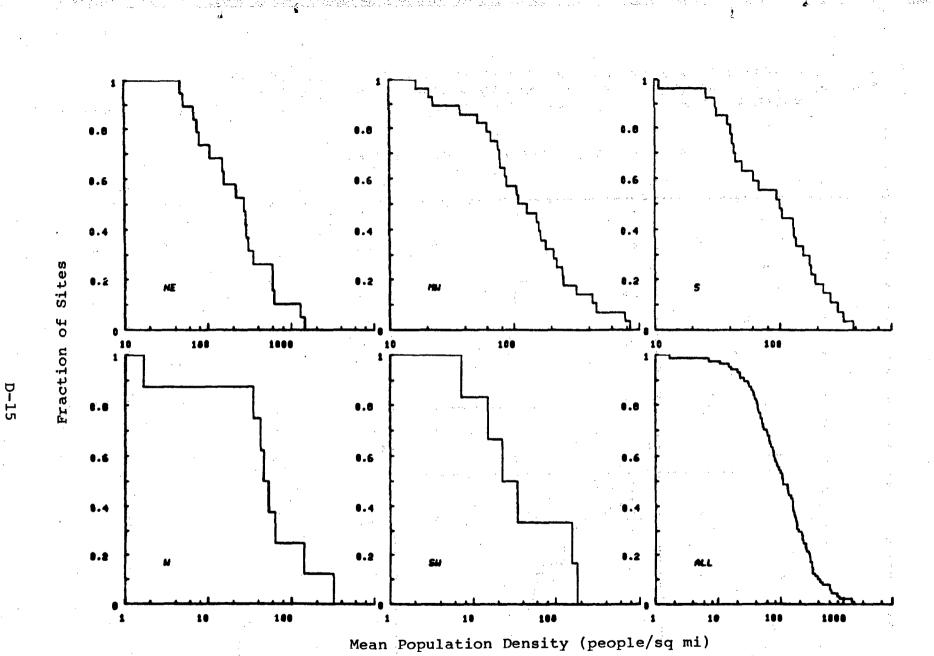
Figure D.1-9. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-2 Miles.


Figure D.1-10. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-5 Miles.

\₹_____

ŧ,


CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-10 Miles. Figure D.1-11.

CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-20 Miles. Figure D.1-12.

۹.

۳.

CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-30 Miles. Figure D.1-13.

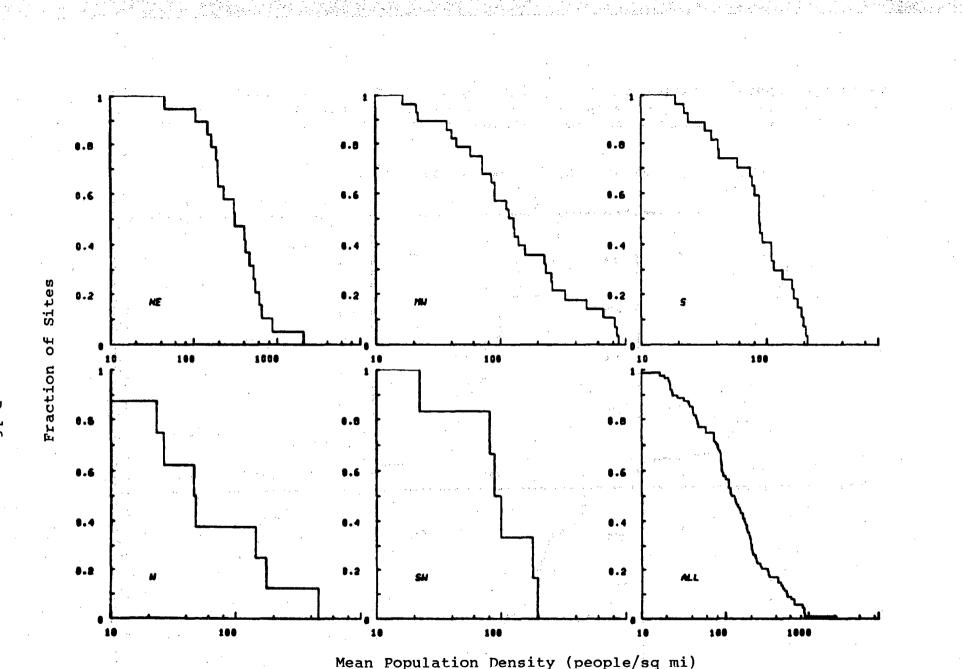


Figure D.1-14. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-50 Miles.

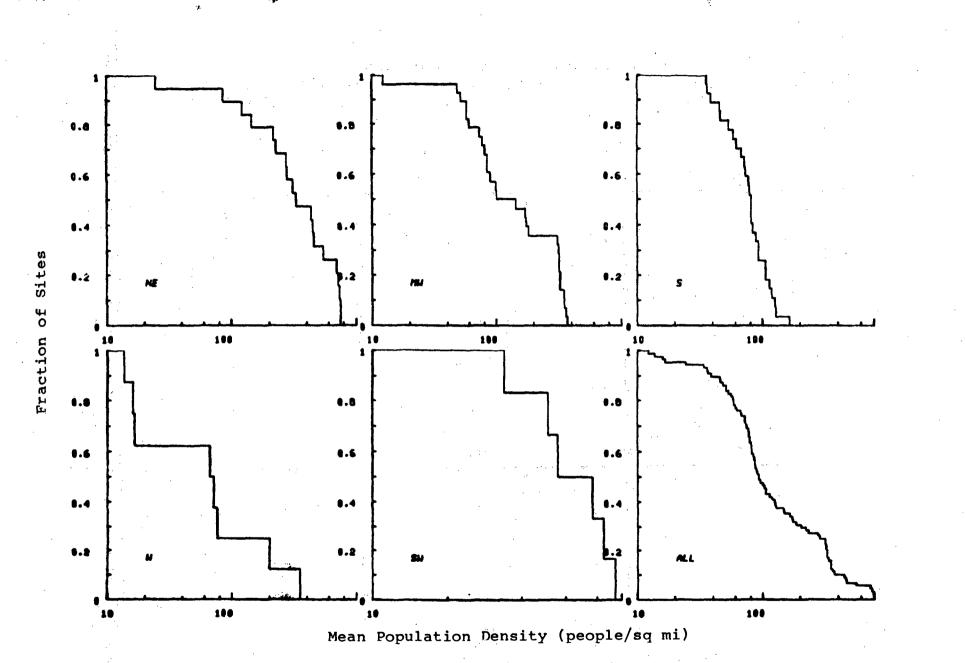
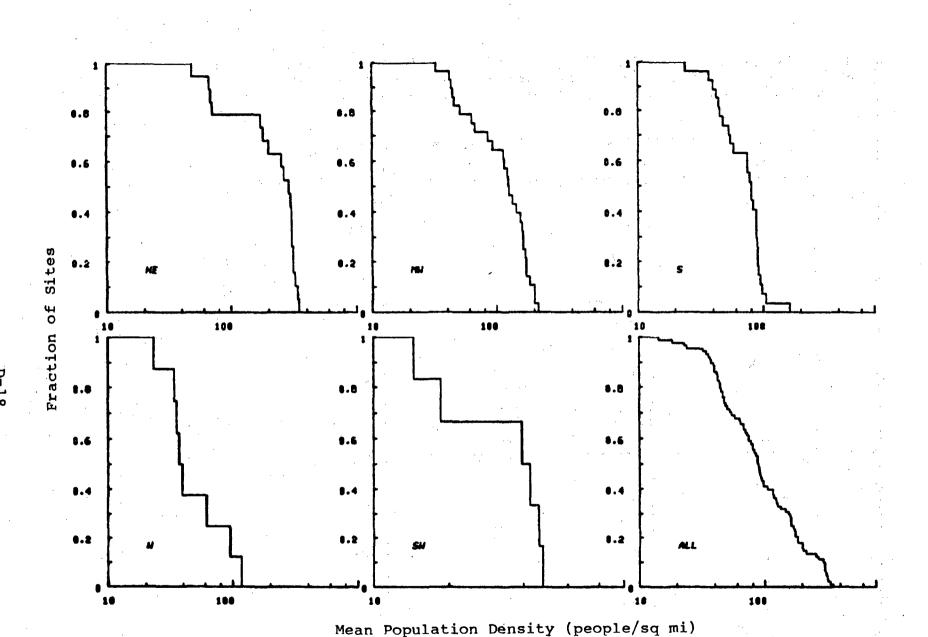
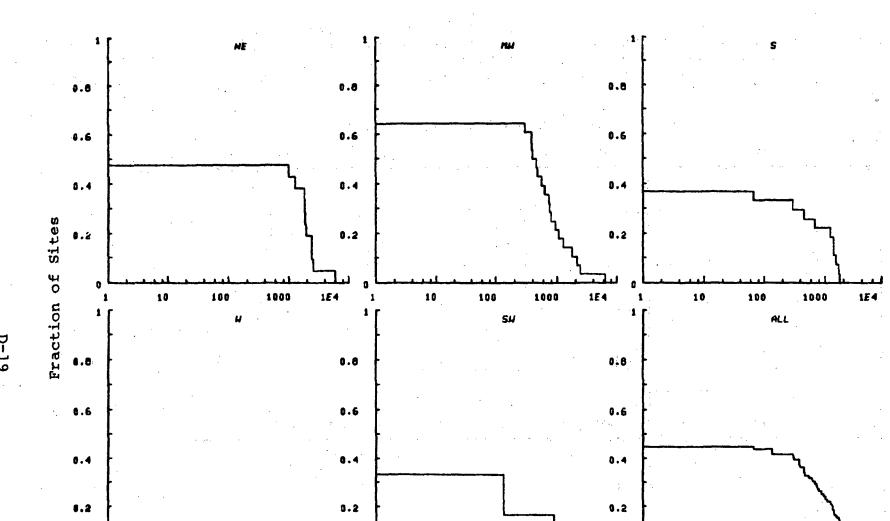
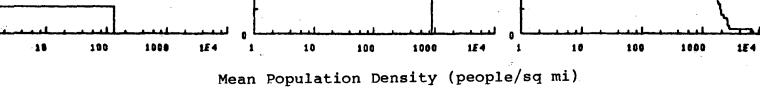


Figure D.1-15. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-100 Miles.


Figure D.1-16. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Radial Distance 0-200 Miles.

2.

e,

D-18

CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Figure D.1-17. Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Annular Interval 0-2 Miles.

D-19

1

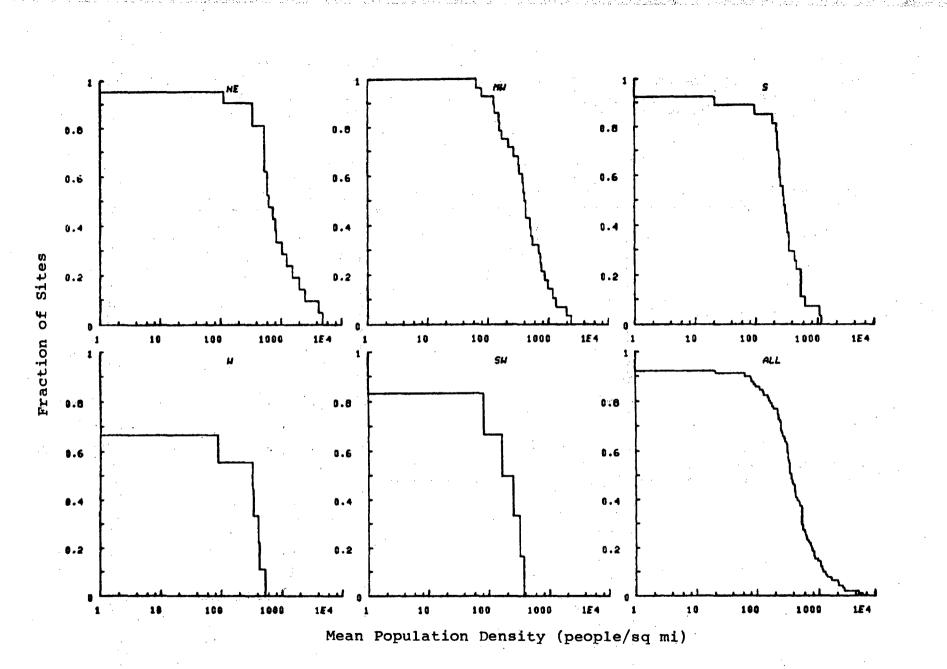


Figure D.1-18. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Annular Interval 2-5 Miles.

i

· 3

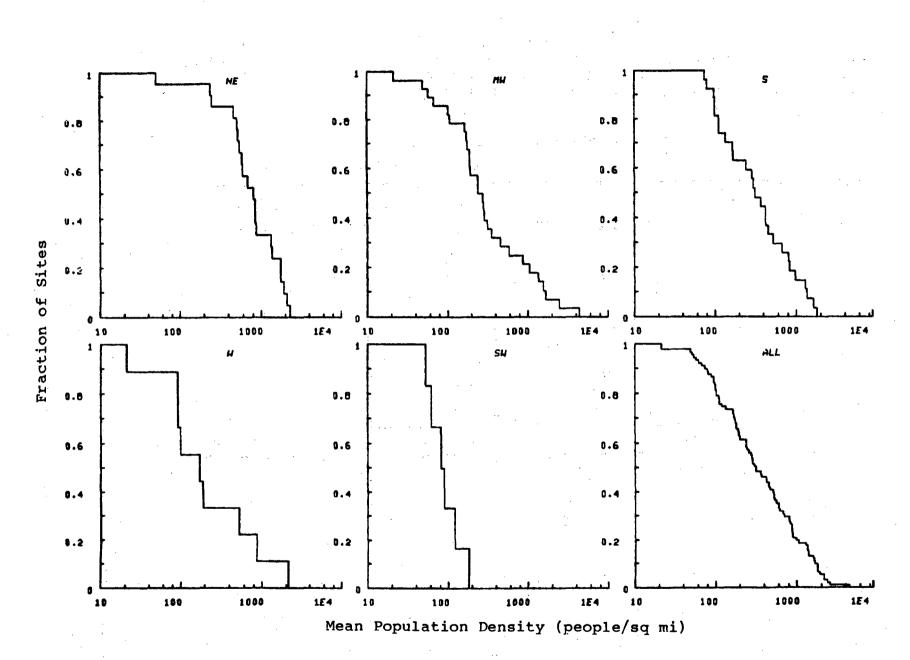


Figure D.1-19. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Annular Interval 5-10 Miles.



Figure D.1-20. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Annular Interval 10-20 Miles.

in,

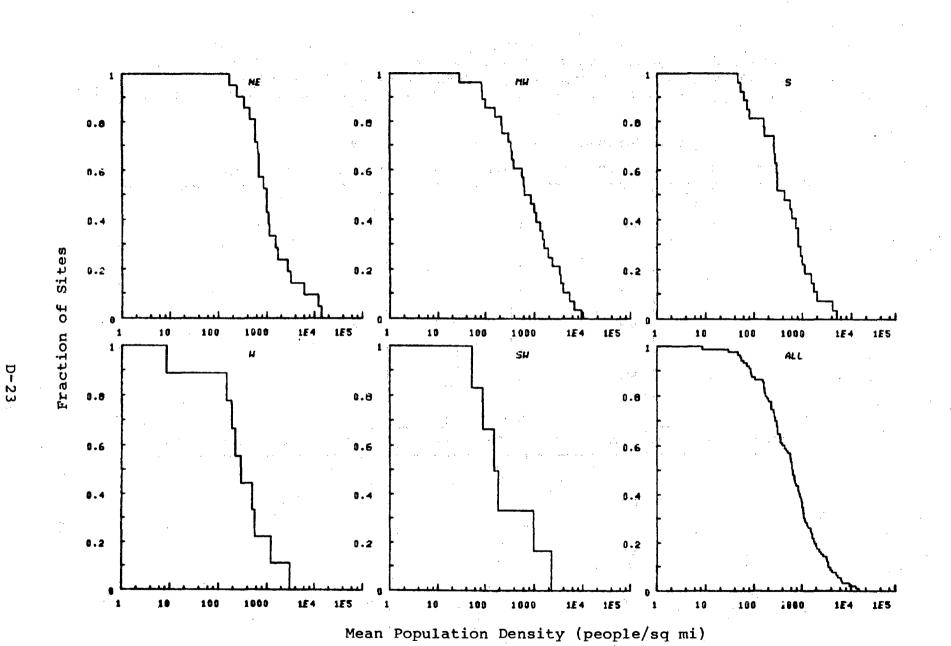


Figure D.1-21. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Annular Interval 20-30 Miles.

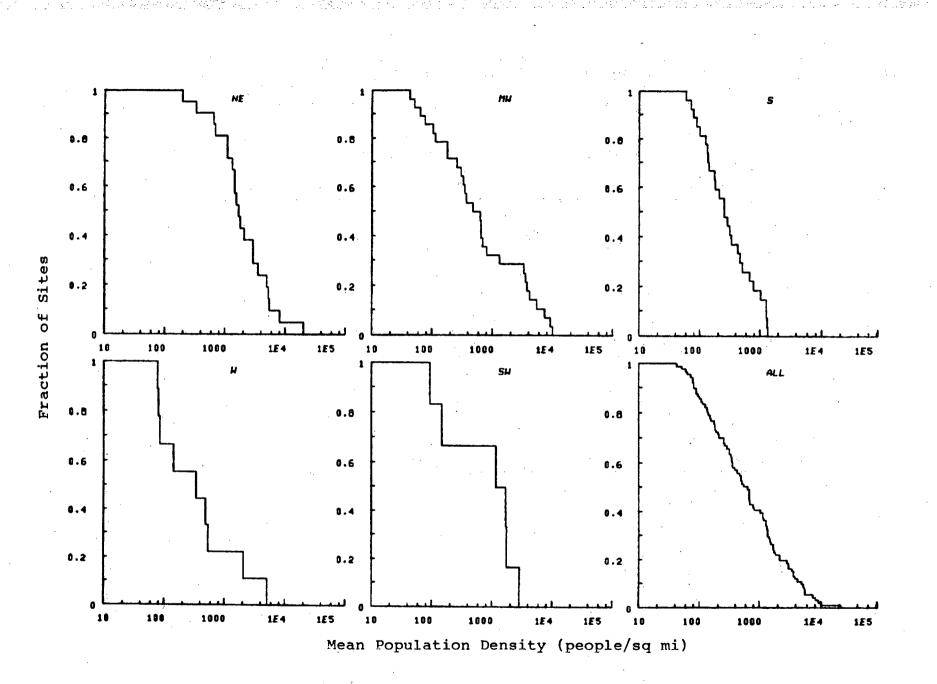


Figure D.1-22. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Annular Interval 30-50 Miles.

1)

₩.,

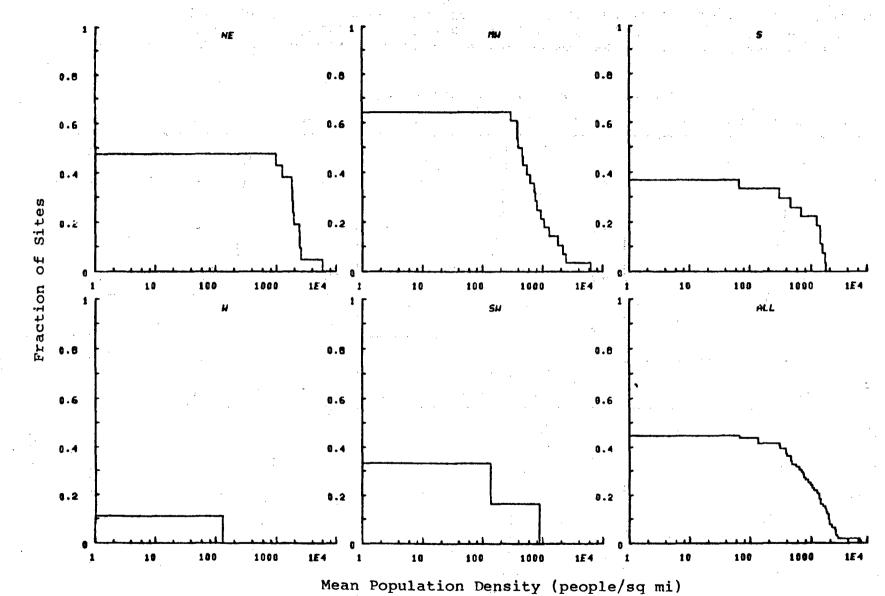


Figure D.1-23. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Radial Distance 0-2 Miles.

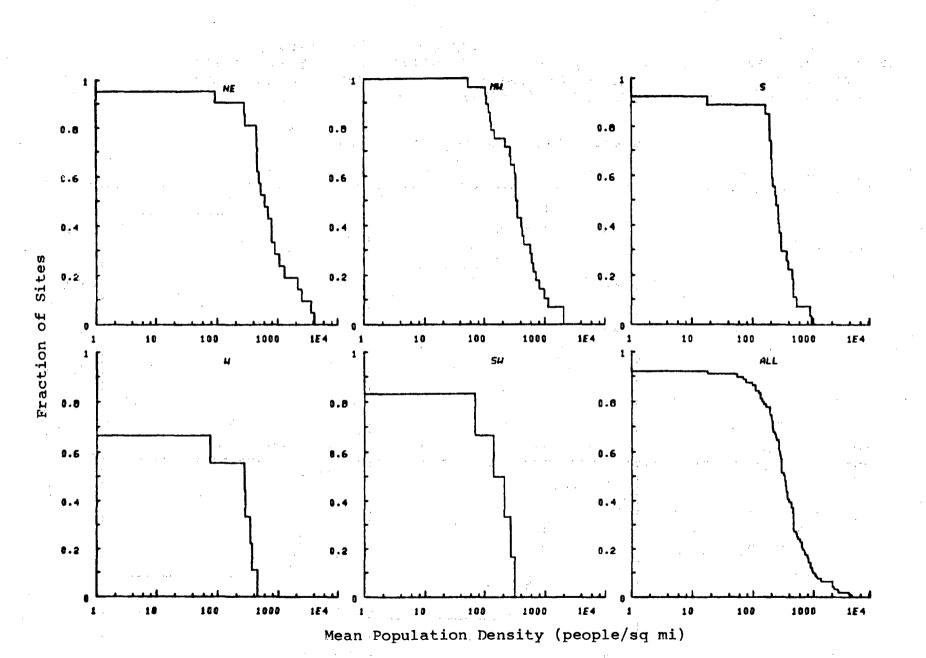


Figure D.1-24.

. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Radial Distance 0-5 Miles.

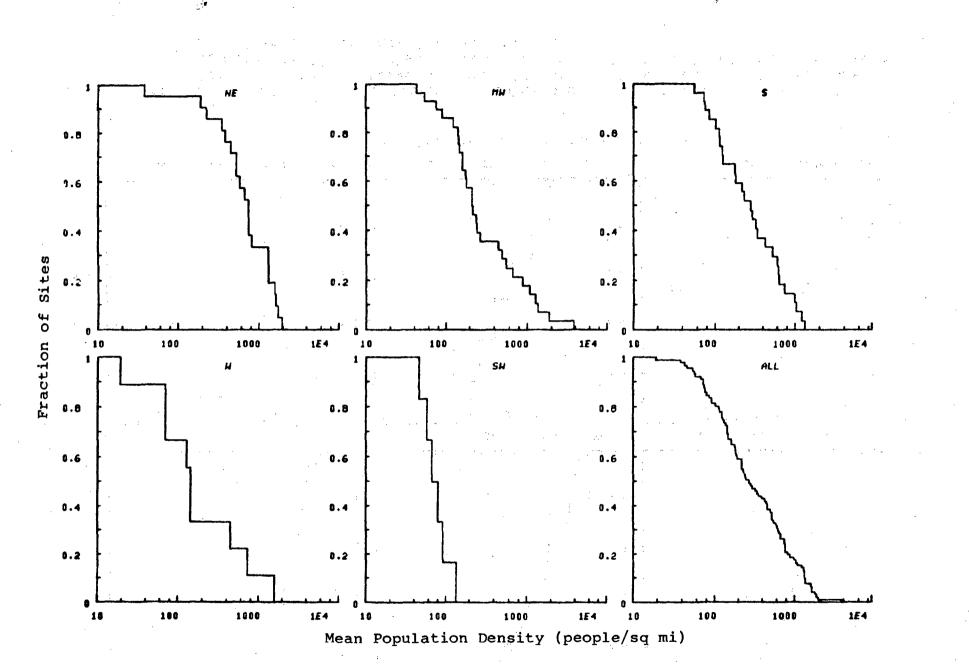


Figure D.1-25. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Radial Distance 0-10 Miles.

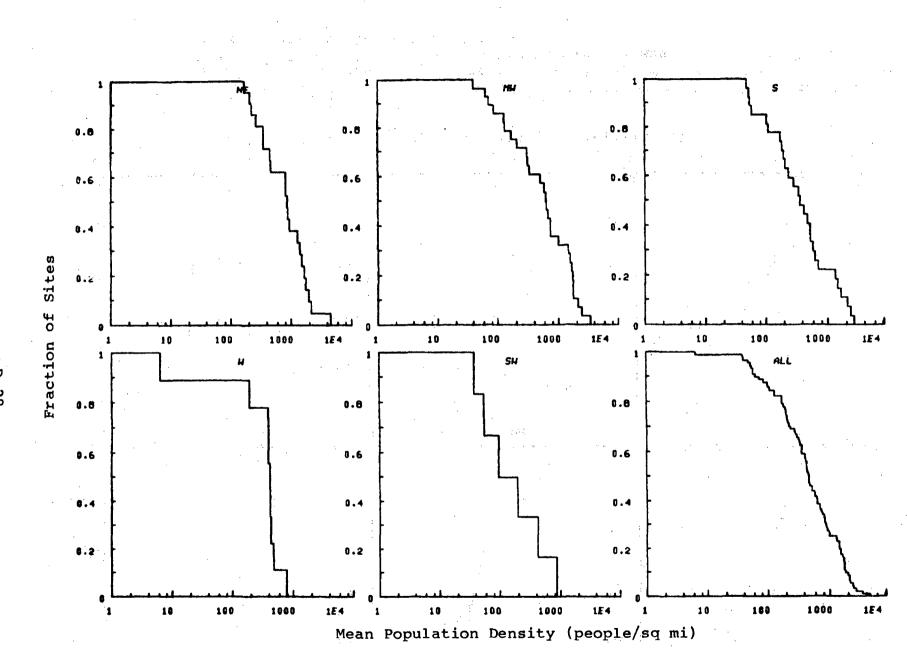
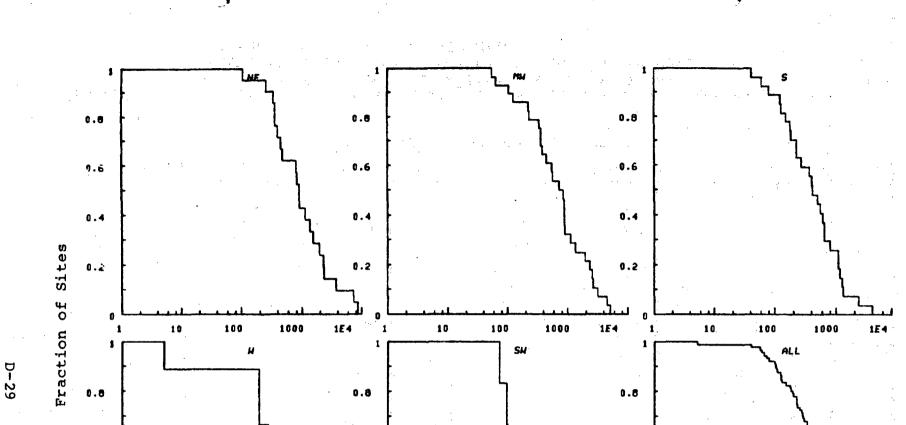



Figure D.1-26.

CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Radial Distance 0-20 Miles.

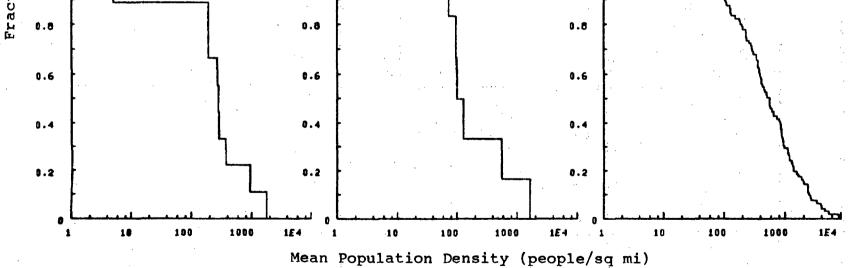


Figure D.1-27. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Radial Distance 0-30 Miles.

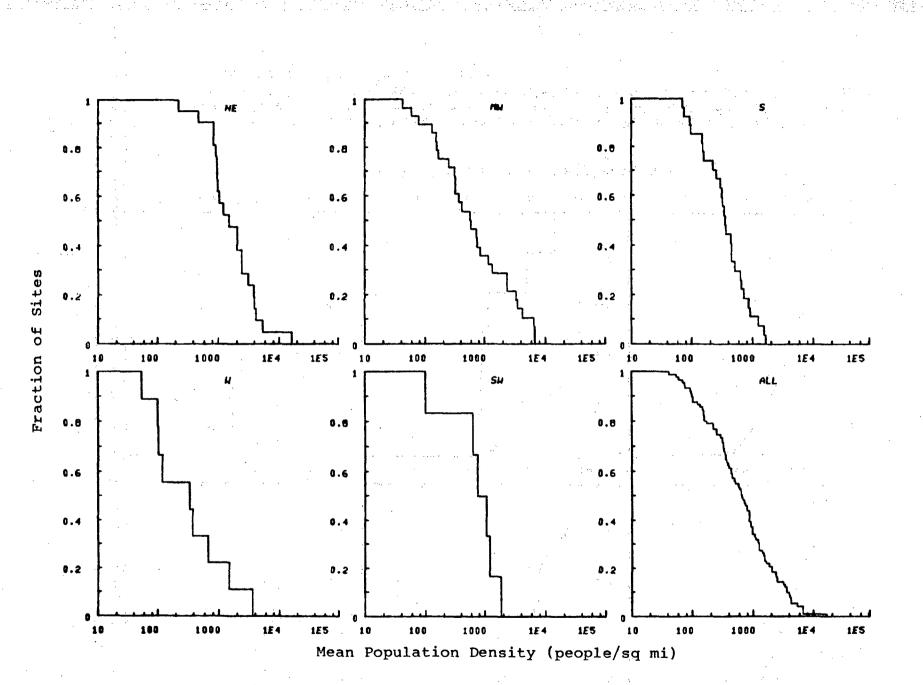
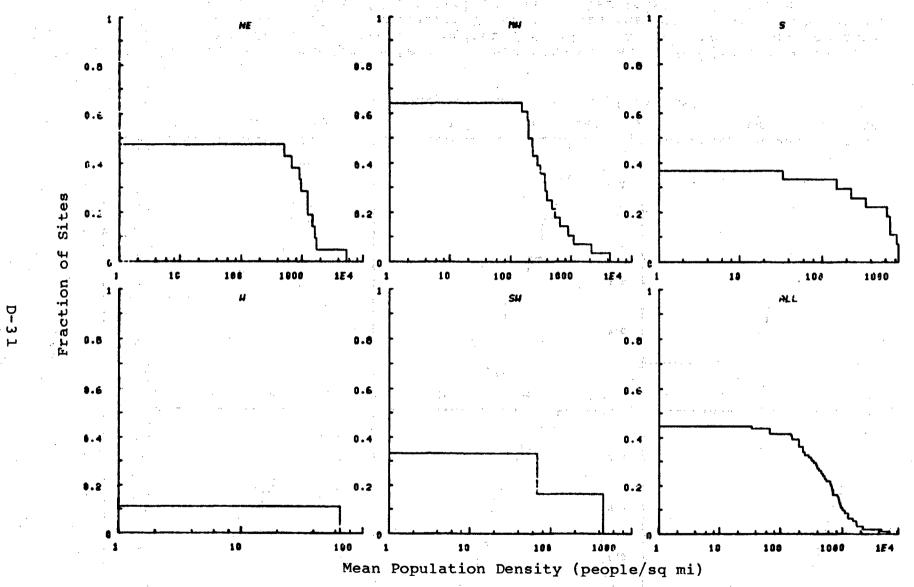



Figure D.1-28. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 22.5° Sector of the Radial Distance 0-50 Miles.

CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Annular Interval 0-2 Miles. Figure D.1-29.

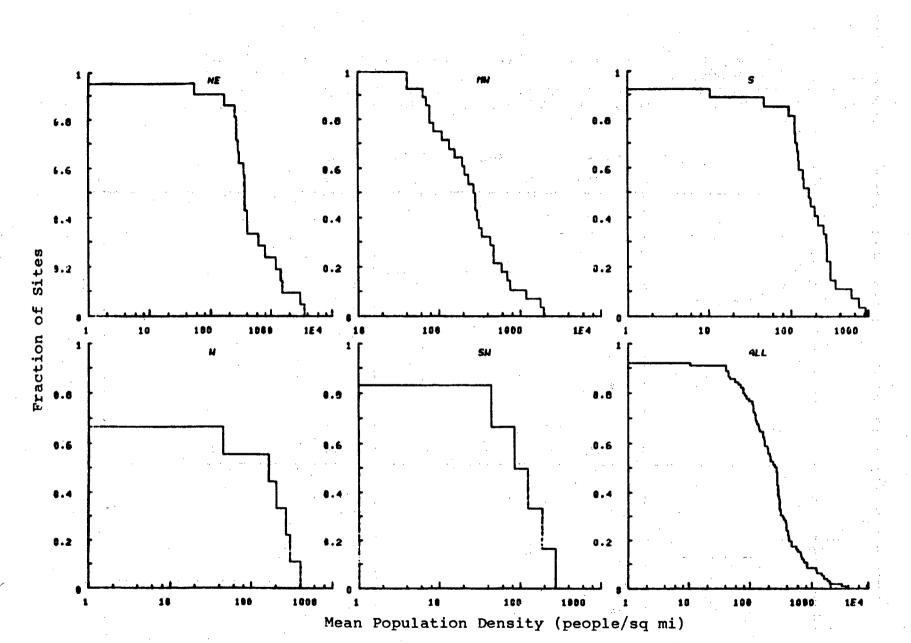


Figure D.1-30. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Annular Interval 2-5 Miles.

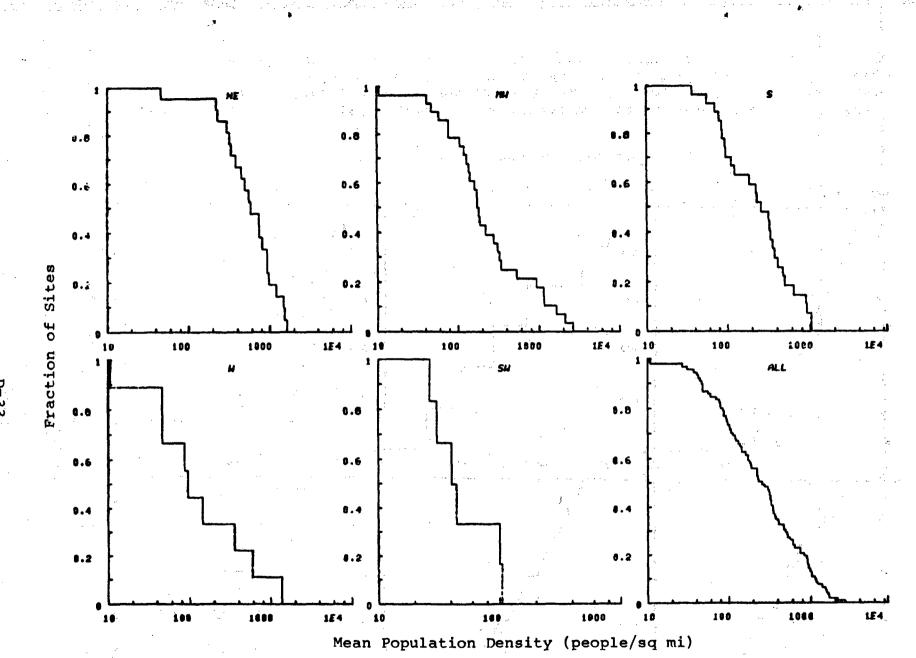
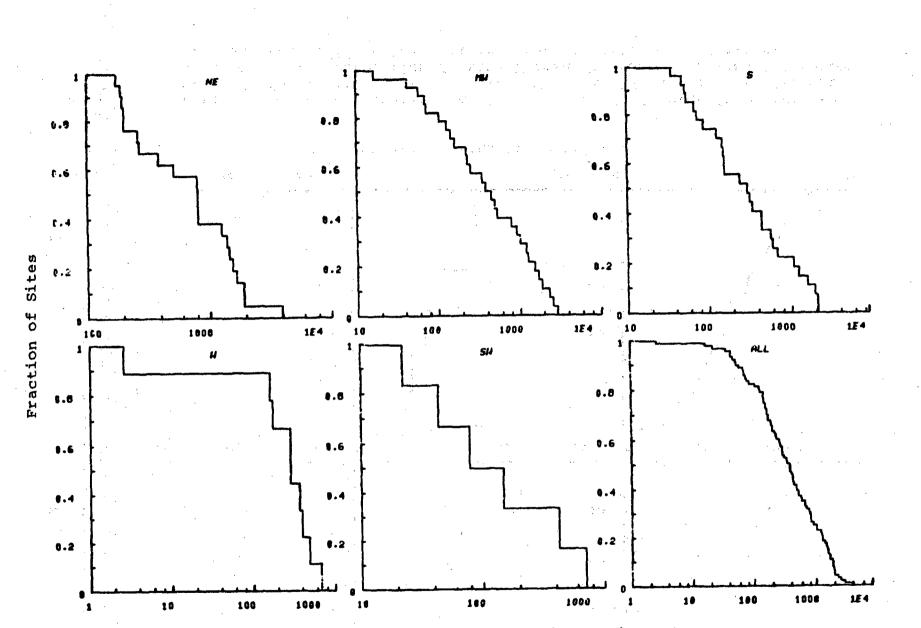



Figure D.1-31. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Annular Interval 5-10 Miles.

Mean Population Density (people/sq mi)

Figure D.1-32. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Annular Interval 10-20 Miles.

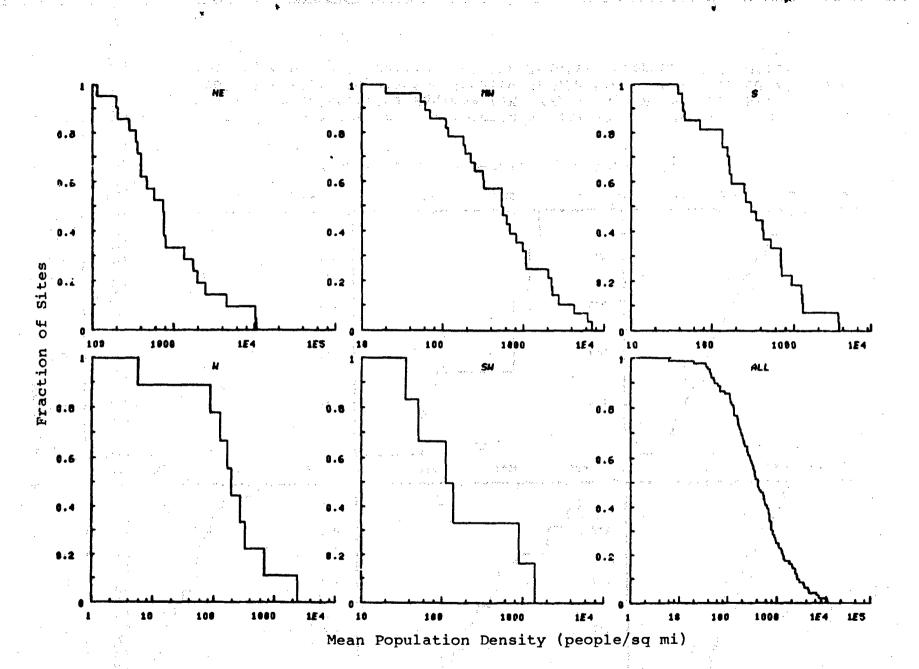


Figure D.1-33. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Annular Interval 20-30 Miles.

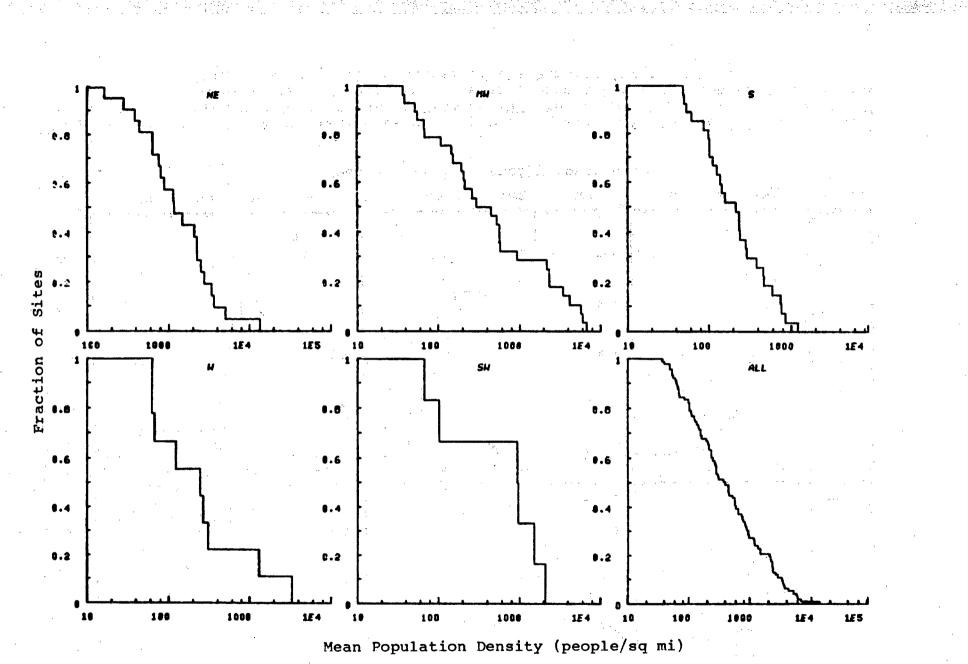


Figure D.1-34. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Annular Interval 30-50 Miles.

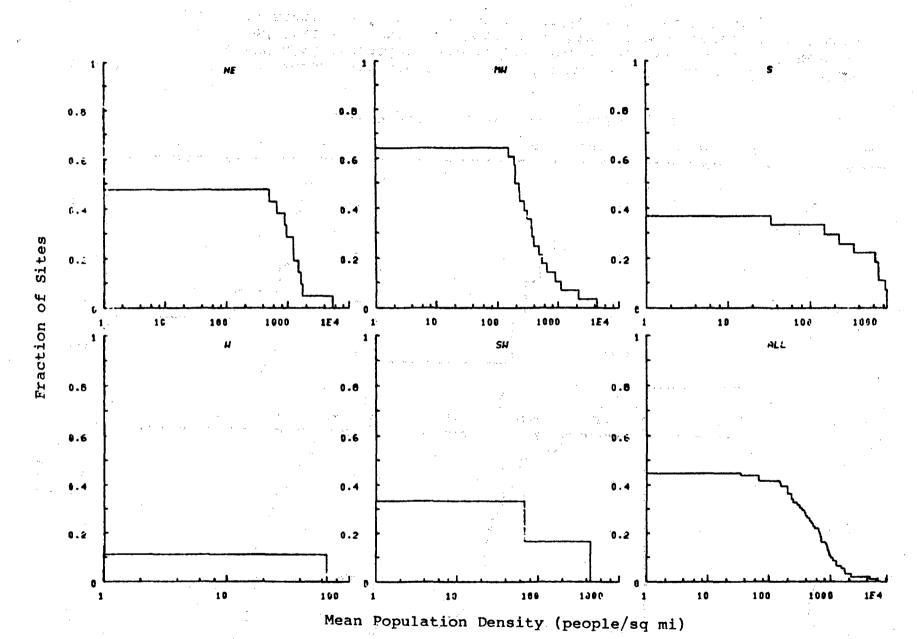


Figure D.1-35. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Radial Distance 0-2 Miles.

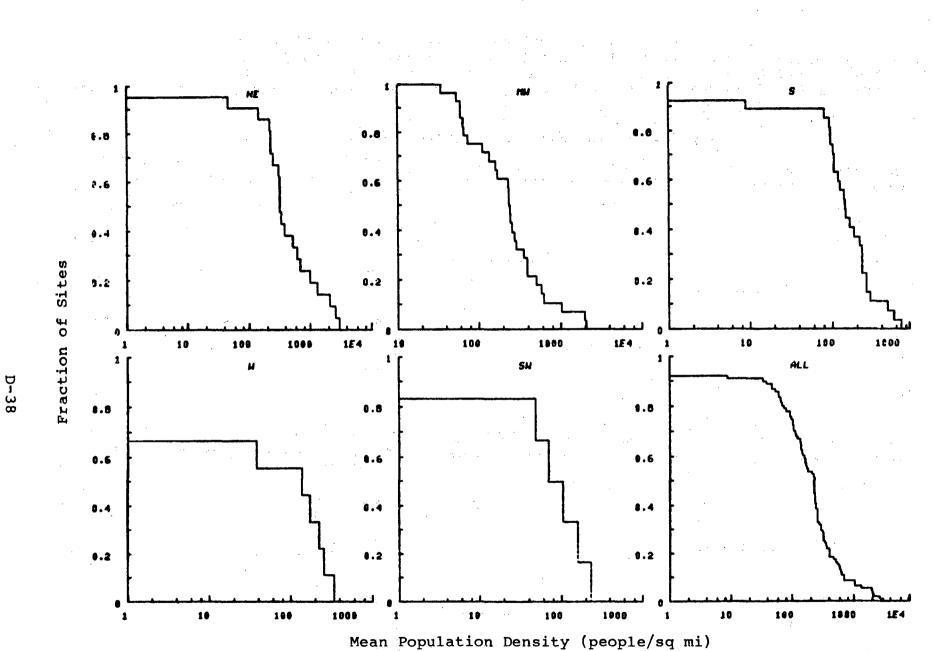


Figure D.1-36.

CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Madial Distance 0-5 Miles. <**4***

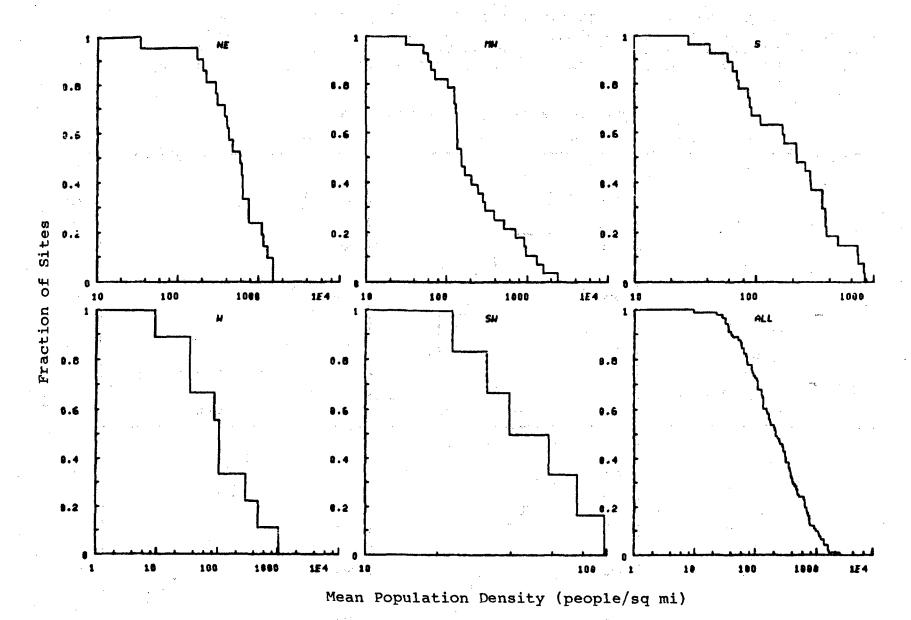
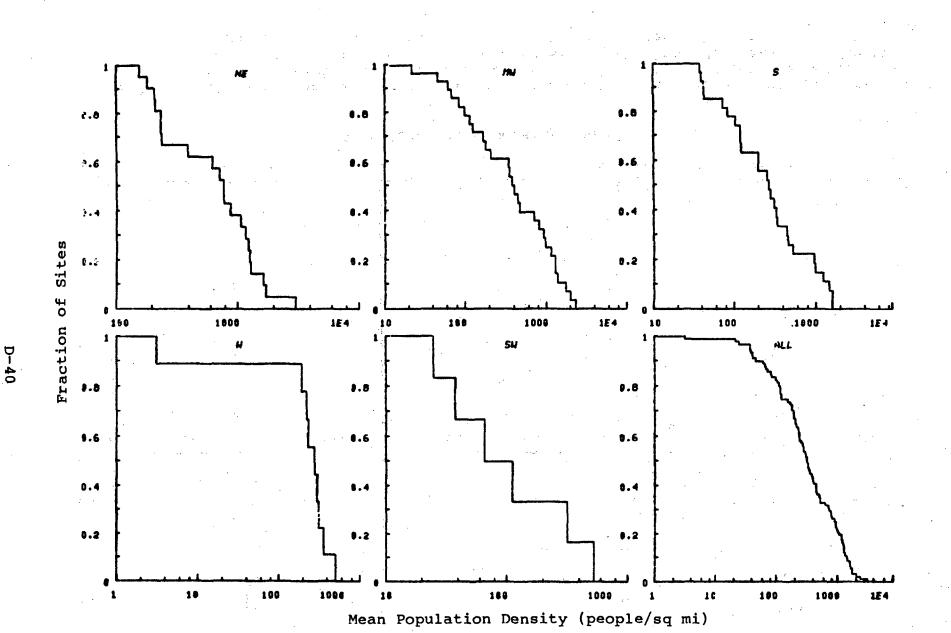



Figure D.1-37. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Radial Distance 0-10 Miles.

CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Radial Distance 0-20 Miles. Figure D.1-38.

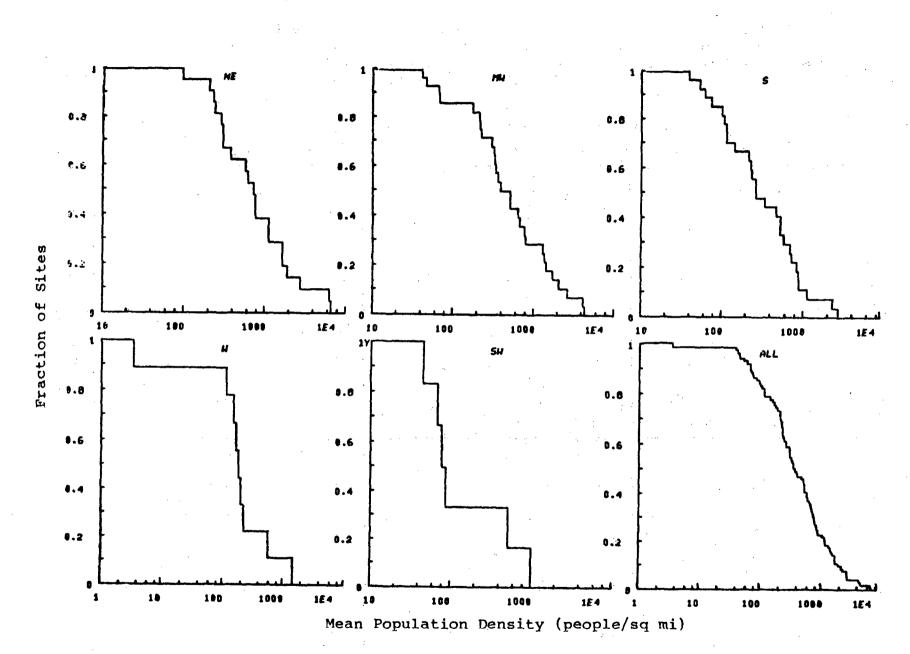


Figure D.1-39. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Radial Distance 0-30 Miles.

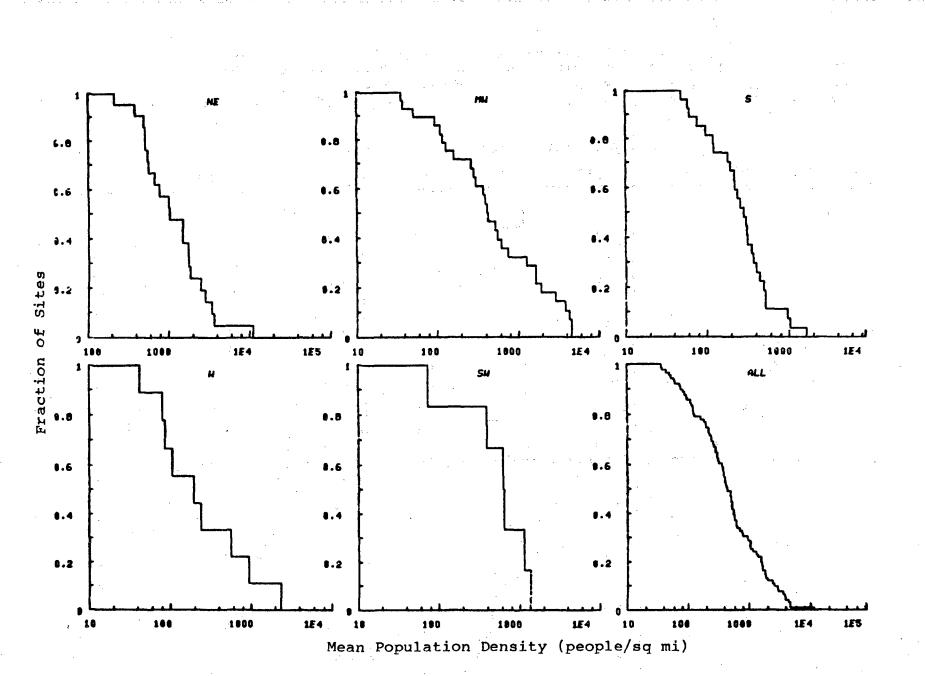


Figure D.1-40. CCDFs of Population Density (people/sq mi) at 91 Reactor Sites for the Five NRC Administrative Regions (NE, MW, S, W, SW) and for All Regions Combined (All): Population Density Within the Most Populated 45° Sector (two adjacent 22.5° sectors) of the Radial Distance 0-50 Miles.

à.

TABLE D.1-1

POPULATION DENSITIES (PEOPLE PER SQ. MI.) FOR 91 REACTOR SITES INNER AND OUTER ANNULAR RADII ARE GIVEN IN MILES

SITE ************************************	0-5	5-10	10-20	20-30	30-50	50-100	100-200
							•
1 ALLENS CREEK	. 31	21	30	39	286		35
l ALLENS CREEK 2 ARKANSAS 1 + 2 3 BAILLY S	58	83	26				,
3 BAILLY S	271	283	534	1024	.906	145	134
4 BEAVER VALLEY 1 + 2	160	565	342	787	403	210	139
5 BELLEFONTE 1	21	89	30	41	147	87	76
6 BIG ROCK POINT	54	14	27	9	16	11	39
7 BLACK FOX	29	10	147	234	36	38	35
5 BELLEFONTE 1 6 BIG ROCK POINT 7 BLACK FOX 8 BRAIDWOOD 1	127	53	79	168	700	258	111
9 BROWNS FERRY 1, 2, +	12	121	88	98	71	76	80
10 DDINGWICK 1 ± 2	31	25	62	26	13	40	48
10 BRONSWICK I + 2 11 BYRON 1 12 CALLAWAY 13 CALVERT CLIFE 1 + 2	83	59	250	127	85	439	74
12 CALLAWAY	8	12	32	87	24	123	56
13 CALVERT CLIFF 1 + 2	34	52	55	51	456	201	167
14 CATAWBA 1	49	237	431	154	107	116	73
15 CHEROKEE	48	113	113	220	162	95	91
16 CLINTON	18	46	36	168	79	68	188
16 CLINTON 17 COMMANCHE PEAK	. 20	20	່ 7		142	94	30
18 COOK DC $1 + 2$ 19 COOPER S	. 93	157	115		117	418	169
19 COOPER S	14	22	19	22	22	70	40
20 CRYSTAL RIVER 21 DAVIS-BE 1	15	30	11	8	31	. 89	25
21 DAVIS-BE 1	21	55	89	380	212	350	
22 DIABLO CANYON $1 + 2$	0	30	69	32	17	13	
22 DIABLO CANYON 1 + 2 23 DRESDEN 2 + 3 24 DUANE ARNOLD 25 FARLEY 1 + 2 26 FERMI 2 27 FITZPATRICK	68	118	199		1157	156	
24 DUANE ARNOLD	50	346	42	37	54		94
25 FARLEY 1 + 2	22	. 29	71	27	41	48	
26 FERMI 2	126	259	386	1254	562	194	125
27 FITZPATRICK	29	150	50	72	129	79	67
28 FORKED RIVER 1	/6	131	146	176	565		148
29 FORT CALHOUN 30 FORT ST VRAIN 31 R. E. GINNA	101	25	312	182	23	34	42
30 FORT ST VRAIN	9	35	143	188	192	15	6
31 R. E. GINNA	77	124	611	143	67	114	52
32 GRAND GULF I	16	28	19	40	40	49	57
	113	211	473	803	305		158
34 HARTSVILLE	44	37	61	46	148	46	83
35 HATCH, E.I. $1 + 2$	13		38				64
36 INDIAN PT 2 + 3		617	732	2046		304	
37 KEWAUNEE	21	33	80	99		84	
38 LASALLE 1 + 2		53	90	75			
39 LA CROSSE	13	22	89		35	55	
40 LIMERICK 1	792	381	668			705	169
41 MARBLE HILL	88	44	301	379		141	104
42 ME YANKEE	0	6	36	63	45	18	82
		137			113	111	73
44 MIDLAND 2	535	87	289	85	109	185	
45 MILLSTONE 1 + 2	582	284	167	102	410	624	204
46 MONTICELLO	67	38	45	155		35	26
	~ /	50		100	0.10		20

TABLE D.1-1 (cont'd)

SITE	0-5	5-10	10-20	20-30	30-50	50-100	100-20	00
****								*** 5
47 NINE M. PT. 1 + 2				72				
48 NORTH ANNA 1, 2, + 3	12	28	29	58				
49 OCONEE 1, $2 + 3$	42	176	68	163	72	77	94	
49 OCONEE 1, 2 + 3 50 OYSTER CREEK 51 PALISADE 52 PALO VERDE 1 53 PEACH BOTTOM 2 + 3	76	131	146	176	565	875	148	.
51 PALISADE	70	106	92	58	158	423	148	
52 PALO VERDE 1	6	7	. 8	7		18		
52 DEACH ROTTOM 2 ± 3	ΔΔ	96	246	362				
54 PEBBLE SPRINGS 55 PERKINS 56 PERRY 1 57 PHIPPS BEND 58 PILGRIM 1 59 POINT BEACH 1 + 2	5	20.	240		15		48	
54 PEBBLE SPRINGS	70	109	203	251	172	96		
55 PERKINS	79	109	203					
56 PERRY I	224	230	178	296				
57 PHIPPS BEND	82	57	128		78			
58 PILGRIM 1	119	85	132					
59 POINT BEACH $1 + 2$	30	80	63	88				
60 PRAIRIE 1 + 2	60	67	51			46		
60 PRAIRIE 1 + 2 61 QUAD CITIES 1 + 2	18	64	313	77	47	85	150	
62 RANCHO SECO	22	. 29			93			•
62 RANCHO SECO 63 RIVERBEND 1	49				43			
64 H. B. ROBINSON 2	97		50	75				
65 GAINT LUCIE 1	71	160	34		41	58		
65 SAINT LUCIE 1 66 SALEM 1 + 2 67 SAN ONOFRE 68 SEABROOK 1	15	100	334		778			
66 SALEM I + 2	45	102					11	
67 SAN ONOFRE	18	103					· · ·	
68 SEABROOK 1	120	.88		64				
69 SEQUOYAH 1 + 2	108	115	303	71		82		
70 SHEARON HARRIS	23	69	168					
71 SHOREHAM	135	146	347			714		
70 SHEARON HARRIS 71 SHOREHAM 72 SKAGIT	49	52	34		43	74		
73 SOUTH TEXAS	· O	10	25	11	26	94	31	
71 VIDCII C CUMMED	1	43	47	194	67	110	84	
75 SURRY ST 1 + 2	26	253	185	194	212			
76 SUSQUEHANNA 1	188	130		178	172			
77 THREE MILE ISLAND	320	470	499		168			
77 THREE MILE ISLAND 78 TROJAN	104	197	50		190			3
79 TURKEY POINT $1 + 2$	104	164	179			26	20	
79 TURKEI POINI I + 2	102	79	99		217			
80 VERMONT YANKEE 1 81 VOCTLE	102		26		35			
	U .,	8		162		58	79	
82 WATERFORD 3	181	119	282	490	91	40	27	
83 WATTS BAR 1 + 2		31		68		· · · · · · · · · · · · · · · · · · ·		·
84 WPPSS1+4	· 0	6	69		16	14		
85 WPPSS 3 + 5	28	24	46	53	49		20	
86 WPPSS 2	· 0	6	61	. 27	16	14	43	
87 WOLF CREEK	34	4	9	32	21	97	35	
88 YANKEE ROWE	12	88	84		255	311	261	
89 YELLOW CREEK	15	32	42	35	49	66	65	
90 ZIMMER 1	53	87	203	622	126	156	105	
91 ZION	538		347	484				
>1 910M	550			101	1-00			

TABLE D.1-2

ni Sali

CUMMULATIVE POPULATION DENSITIES (PEOPLE PER SQ. MI.) FOR 91 REACTOR SITES, CIRCLE RADII ARE GIVEN IN MILES

SITE	0-5	0-10 ******				0-100	
1 ALLENS CREEK	31	23	28	35	196	.85	48
2 ARKANSAS 1 + 2	58	77	39	26	19	37	44
3 BAILLY S	271	280	471		860	324	
4 BEAVER VALLEY $1 + 2$	160	464	373	603	475	277	
5 BELLEFONTE 1	21	72	41	41	109	92	80
	54	24	26	16	16	12	32
7 BLACK FOX	29	15	114				39
8 BRAIDWOOD 1	127	72	77	128	494	317	163
9 BROWNS FERRY 1, 2, $+$	12	94	89	94	80	77	80
10 BRUNSWICK 1 + 2	31	26	53		22	36	45
11 BYRON 1	83	65	204		112	357	145
12 CALLAWAY	8	11	27	61	37	102	67
13 CALVERT CLIFF 1 + 2	34	48	53	52	310	229	182
14 CATAWBA 1	49	190	371	250	159	126	87
15 CHEROKEE	48	.97	109	171	165	113	96
16 CLINTON	18	39	37	109	90	74	159
17 COMMANCHE PEAK	20	20	10	23	99	95	46
$18 \text{ COOK DC} \qquad 1+2$	93	141	122	180	139	349	214
19 COOPER S	14	20	19	21	22	58	44
20 CRYSTAL RIVER	15	26	15	11	24	73	37
21 DAVIS-BE 1	31	49	79	246	225	318	198
22 DIABLO CANYON $1 + 2$	ō	22	57	43	27	17	117
	· ·	105	176	222	821	322	162
24 DUANE ARNOLD	68 50	272	100	65	58	58	85
	22	27	60	42	41	46	53
26 FERMI 2	126	226	346	851	666	312	172
27 FITZPATRICK	29	119	67	70	107	86	72
28 FORKED RIVER 1	76	117	139	160	419	761	301
29 FORT CALHOUN	101	44	245	210	91	48	43
30 FORT ST VRAIN	9	29	114	155	179	56	19
31 R. E. GINNA	77	112	486	295	149	123	70
32 GRAND GULF 1	16	25	20	31	37	46	54
33 HADDEM NECK	113	187	401		420	722	299
34 HARTSVILLE	44	39	55	50	113 -		78
35 HATCH, E.I. 1 + 2	13	18	33	. 31	32	39	58
36 INDIAN PT 2 + 3	752	651	711	1453	2099	752	335
37 KEWAUNEE	21	30	68	85	. 73	81	
38 LASALLE 1 + 2	12	42	78	76	117	322	169
39 LA CROSSE	13	20	71	51	41	51	92
40 LIMERICK 1	792	483	622	1319	871	746	313
41 MARBLE HILL	88	55	240	317	157	145	
42 ME YANKEE	0	4	28	47	46	25	68
43 MCGUIRE $1 + 2$	64	119	408	289	176	128	87
44 MIDLAND 2	535	199	266	166	129	171	116
45 MILLSTONE $1 + 2$	582	359	215	152	317	547	290
46 MONTICELLO	67	45	45	106	256	90	42

TABLE D.1-2 (cont'd)

SITE *******************************	0-5	0-10	0-20	0-30	0-50	0-100 0	-200
*****	* * * * * *	* * * * * * *					
47 NINE M. PT. 1 + 2	29	119	67	70	107	86	72
48 NORTH ANNA 1, 2, $+$ 3	12	24	28	44	109		162
49 OCONEE 1, $2 + 3$	42	142	87	129	93		91
50 OYSTER CREEK	76	117	139	160	419	761	301
51 PALISADE	70	97	93	74	128		198
52 PALO VERDE 1	6	7	8	7	81		14
53 PEACH BOTTOM 2 + 3	44	83	205	292	527	452	311
54 PEBBLE SPRINGS	5	3	1	2	10	14	40
55 PERKINS	79	102	178	219	189	119	88
56 PERRY 1	224	228	190	249	329		173
57 PHIPPS BEND	82	63	112	104	87		89
58 PILGRIM 1	119	94	122	280	548 73		201
59 POINT BEACH $1 + 2$	30		64	77 88	261		126 51
$\begin{array}{c} 60 \text{ PRAIRIE } 1 + 2 \\ 61 \text{ OUDD GITTIEG } 1 + 2 \end{array}$	60 18	65 53	55 248	153	85	85	134
61 QUAD CITIES 1 + 2 62 RANCHO SECO	22	27	107	321	175		63
63 RIVERBEND 1	49		81	134	76		47
64 H. B. ROBINSON 2	97	80	58	67	73	92	74
65 SAINT LUCIE 1	71	138	60	43	42	2 C	42
66 SALEM 1 + 2	45		272	314	611		302
67 SAN ONOFRE	18	82	158	144	456	350	96
68 SEABROOK 1	120	96	91	76	202		49
69 SEQUOYAH 1 + 2	108	113	255	153	88	83	87
70 SHEARON HARRIS	23	58	141	1.76	133	106	82
71 SHOREHAM	135	144	296	602	664		305
72 SKAGIT	49	51	38	54	47		23
73 SOUTH TEXAS	0	7	21	15	22	76	42
74 VIRGIL C. SUMMER	1	33	43	127	89	105	
75 SURRY ST 1 + 2	26		188	191	204	•	104
		144	284	225	191		348
	- 320	433	483	352	234		321
78 TROJAN	104	174	81	65	145	72 72	37
79 TURKEY POINT 1 + 2	0		165	316	211		24
80 VERMONT YANKEE 1	102	84	95 21	80 99	168 58	314 58	255 73
81 VOGTLE	181	6 135	245	381	195		40
82 WATERFORD 3 83 WATTS BAR 1 + 2	22	29	53		87		94
$83 \text{ WATTS BAR } 1 \neq 2$ 84 WPPSS1+4	0	4	53	36		16	36
85 WPPSS 3 + 5	28	25	41	48	48		34
86 WPPSS 2	20	4	47	36	23	16	36
87 WOLF CREEK	34		10	22	21		46
88 YANKEE ROWE	12	69	81	107	202		267
89 YELLOW CREEK	15	28		37	44		64
90 ZIMMER 1	53	78			232		122
	538		424	457			
						• •	

TABLE D.1-3

POPULATION DENSITIES (PEOPLE PER SQ. MI.) IN MOST POPULATED 22.5° SECTOR OF EACH ANNULUS

				· · · · ·
SITE ************************************	0-5MI *********	5-10MI	10-20MI	20-30MI
************************	******	******	*****	*****
1 ALLENS CREEK	209.4	182.3	130.8	153.1
2 ARKANSAS $1 + 2$	364.2	676.5	112.0	69.4
3 BAILLY S	1123.1	1650.5	4113.3	9294.1
1 ALLENS CREEK 2 ARKANSAS 1 + 2 3 BAILLY S 4 BEAVER VALLEY 1 + 2	1073.8	2108.9	1003.9	6199.0
5 BELLEFONTE 1	199.6	420.6	89.1	79.7
5 BELLEFONTE 1 6 BIG ROCK POINT	71 ()	40 0		
7 BLACK FOX	267.3	81.0	1148.5	2232.1
8 BRATDWOOD 1	267.3 619.3 189.1	283.1	409.3	1462.9
9 BROWNS FERRY 1. 2. $+$ 3	189.1	814.7	502.6	730.4
$\frac{10 \text{ BRINSWICK } 1 + 2}{10 \text{ BRINSWICK } 1 + 2}$	452 3	112.9	809.6	254.8
11 DYDON 1	256 3	173 8	2101 9	255 3
$\frac{11}{12} \frac{DIRON}{AVI}$	120.0	57 3	161 0	557 6
12 CALLAWAI	129.0	240.2	101.0	557.0
13 CALVERT CLIFF 1 + 2	293.4	240.3	220.0	1/1./
	263.0	1613.2	2/19.9	607.2
15 CHEROKEE	276.9	981.9	448.0	807.3
16 CLINTON	107.8	287.3	83.1	1001.1
6 BIG ROCK POINT 7 BLACK FOX 8 BRAIDWOOD 1 9 BROWNS FERRY 1, 2, $+$ 3 10 BRUNSWICK 1 + 2 11 BYRON 1 12 CALLAWAY 13 CALVERT CLIFF 1 + 2 14 CATAWBA 1 15 CHEROKEE 16 CLINTON 17 COMMANCHE PEAK 18 COOK DC 1 + 2 19 COOPER S 20 CRYSTAL RIVER 21 DAVIS-BE 1 22 DIABLO CANYON 1 + 2 23 DRESDEN 2 + 3 24 DUANE ARNOLD 25 FARLEY 1 + 2 26 FERMI 2 27 FITZPATRICK 28 FORKED RIVER 1	316.6	88.5	29.2	183.6
18 COOK DC 1 + 2	335.3	1053.0 108.6	474.3	1930.4
19 COOPER S	54.2	108.6	63.1	83.7
20 CRYSTAL RIVER	235.3	164.5	51.7	52.6
21 DAVIS-BE 1	337.6	318.3	417.2	2358.0
22 DIABLO CANYON $1 + 2$	0.0	175.2	566.8	295.7
23 DRESDEN 2 + 3	332.7	359.6	2023.6	1093.6
24 DUANE ARNOLD	269.1	2488.4	102.4	86.2
25 FARLEY 1 + 2	160.7	134.5	619.9	46.1
26 FERMI 2	586.9	1364.6	2637.4	6556.7
27 FITZPATRICK	160.7 586.9 468.3	1758.1	310.2	599.6
28 FORKED RIVER 1	458.6	858.5	847.5	1029.9
29 FORT CALHOUN	976.8	239.0	3212.8	1593.9
30 FORT ST VRAIN	139.1	858.5 239.0 120.7	574.2	965.4
31 R. E. GINNA	692.2	515.3	5883.2	700.6
32 GRAND GULF 1	692.2 207.8 789.6	168.7	60.7	301.1
33 HADDEM NECK	207.8 789.6	881.2	1725.3	2730.1
34 HARTSVILLE	456.9	79.6	274 1	160.2
35 HATCH, E.I. $1 + 2$	210.4	112.9	136.1	61.5
	2513.7	1916.9	2363.0	14617.9
		197.0	814.8	
37 KEWAUNEE	225.1			1292.6
JO LASALLE I T Z	122.2	192.5	383.3	337.7
39 LA CROSSE	148.3	68.0	891.6	
40 LIMERICK 1	4232.5	1340.1	2167.5	12296.5
41 MARBLE HILL	649.0	166.2	2318.0	3443.4
42 ME YANKEE	0.0		218.8	683.2
43 MCGUIRE $1 + 2$	388.5	425.8	3096.1	433.5
44 MIDLAND 2	2006.6	276.6	2221.0	304.1
45 MILLSTONE $1 + 2$	3739.0	1369.8	865.4	251.1
46 MONTICELLO	456.3	190.9	98.2	621.0
-				

TABLE D.1-3 (cont'd)

SITE ************************************	0-5MI	5-10MI	10-20MI	20-30MI
		•		
47 NINE M. PT. 1 + 2				
48 NORTH ANNA 1, 2, $+$ 3	187.2	98.5	57.2	294.6
49 OCONEE 1. $2 + 3$	215.1	821.7	277.7	920.6
49 OCONEE 1, 2 + 3 50 OYSTER CREEK 51 PALISADE	458.6	959 5	847 5	1020 0
50 OISIER CREEK	415 0	460.0		1029.9
51 PALISADE	415.8	460.0	944.2	220.5
52 PALO VERDE 1	69.7	53.2	75.4	88.1
53 PEACH BOTTOM 2 + 3	69.7 290.1	255.2	1292.9	1092.9
54 PEBBLE SPRINGS 55 PERKINS	76.4	21.2	5.3	8.6
55 PERKINS	458.8	314.9	5.3 675.8	810.2
56 PERRY 1	811.4	1561.6	899.0	3837.3
57 PHIPPS BEND	265.9	287.9	915.8	557.4
50 DTLCDTM 1	996 6	611 9	413.4	1773.1
59 POINT BEACH 1 + 2 60 PRAIRIE 1 + 2		076 7	617.3	
59 POINT BEACH I + 2	355.1	8/0./	017.3	623.4
60 PRAIRIE 1 + 2	280.3	596.8	219.0	866.5
61 QUAD CITIES 1 + 2	109.8	240.1	1937.6	383.8
62 RANCHO SECO	348.6	101.5	573.9	3087.3
63 RIVERBEND 1	295.8	298.9	440.0	1673.5
64 H. B. ROBINSON 2	525.0	523.0	198.9	262.9
65 SAINT LUCIE 1	947.7	1350.3	221.0	303.3
66 SALEM 1 + 2	626 6	601 1	2014.0	1569 1
67 SAN ONOFRE	200.0	001.1	1061.9	1252 7
60 GRADBOOK 3	200.9	460.0	540 7	
68 SEABROOK 1	540.7 294.2	409.8	548.7	453.3
69 SEQUOYAH 1 + 2	294.2	372.0	1900.2	2/4./
70 SHEARON HARRIS	190.5	242.8	721.1	1106.3
71 SHOREHAM	805.7	816.3	1589.7	3219.4
72 SKAGIT			207.1	
73 SOUTH TEXAS			265.7	
74 VIRGIL C. SUMMER	17.7	99.8	206.9	1956.7
75 SURRY ST 1 + 2	244.5	1751.9	1320.4	1521.0
	1309.7			•
77 THREE MILE ISLAND			1622.8	
78 TROJAN			176.8	
79 TURKEY POINT 1 + 2			2107.5	
80 VERMONT YANKEE 1			361.2	
81 VOGTLE	0.0	74.4	76.9 3399.3	991.7
82 WATERFORD 3	880.3	452.7	3399.3	5068.1
83 WATTS BAR 1 + 2	203.1	98.3	248.0	163.3
84 WPPSS1+4	0.0	95.1	581.8	158.1 🔮
85 WPPSS 3 + 5	453.7	193.3	540.7	225.5
86 WPPSS 2	0 0	95.1	538.3	
87 WOLF CREEK	127 6	21 5	16.8	
OF WOLF CREEK OO VINVER DOMF	72/00	21.J 70E 1	10.0	670 6
88 YANKEE ROWE 89 YELLOW CREEK	22.2	102.1	200.1	0/0.0
89 YELLOW CREEK	132.2	101.6	262.6	102.3
90 ZIMMER 1		180.0		5331.2
91 ZION	2040.9	4367.4	1665.5	3344.7

TABLE D.1-4

POPULATION DENSITIES (PEOPLE PER SQ. MI.) IN MOST POPULATED 22.5° SECTOR OF EACH CIRCLE

SITE ********************************	0-5MI	0-10MI	0-20MI 0-30MI
* * * * * * * * * * * * * * * * * * * *	****	*******	*****
1 ALLENS CREEK 2 ARKANSAS 1 + 2 3 BAILLY S 4 BEAVER VALLEY 1 + 2	209.4	136.7	98.1 128.6
2 ARKANSAS $1 + 2$	364.2	598.4	194.6 125.1
3 BAILLY S	1123.1	1355.6	3423.9 5163.4
4 BEAVER VALLEY 1 + 2	1073.8	1594.2	903.2 3845.3
5 BELLEFONTE 1	199.6	335.6	107.7 80.5
6 BIG ROCK POINT	716.9	215.9	132.2 66.2
7 BLACK FOX	267.3	66.8	861.4 1622.9
8 BRAIDWOOD 1	619.3	218.8	316.7 878.7
9 BROWNS FERRY 1, 2, +	3 189.1	611.1	529.7 427.3
4 BEAVER VALLEY 1 + 2 5 BELLEFONTE 1 6 BIG ROCK POINT 7 BLACK FOX 8 BRAIDWOOD 1 9 BROWNS FERRY 1, 2, + 10 BRUNSWICK 1 + 2 11 BYRON 1 12 CALLAWAY 13 CALVERT CLIFE 1 + 2	452.3	113.1	607.2 411.4
11 BYRON 1	356.3	162.6	1656.5 889.0
12 CALLAWAY	129.8	43.0	129.7 341.3
13 CALVERT CLIFF 1 + 2	293.4	229.0	210.1 109.3
14 CATAWBA 1	263.0	1209.9	2075.7 1259.9
15 CHEROKEE	276.9	736.4	361.2 501.1
16 CLINTON	107.8	215.5	72.2 572.2
17 COMMANCHE PEAK	316.6	79.1	38.5 102.0
11 BYRON 1 12 CALLAWAY 13 CALVERT CLIFF 1 + 2 14 CATAWBA 1 15 CHEROKEE 16 CLINTON 17 COMMANCHE PEAK 18 COOK DC 1 + 2 19 COOPER S 20 CRYSTAL RIVER 21 DAVIS-BE 1 22 DIABLO CANYON 1 + 2 23 DRESDEN 2 + 3 24 DUANE ARNOLD 25 FARLEY 1 + 2 26 FERMI 2 27 FITZPATRICK 28 FORKED RIVER 1 29 FORT CALHOUN 30 FORT ST VRAIN 31 R. E. GINNA 32 GRAND GULF 1 33 HADDEM NECK 34 HARTSVILLE 35 HATCH, E.I. 1 + 2 36 INDIAN PT 2 + 3 37 KEWAUNEE 39 LOCALHE 1 4 2	335.3	867.9	572.7 1141.4
19 COOPER S	54.2	90.3	63.3 56.5
20 CRYSTAL RIVER	235.3	123.4	53.5 41.4
21 DAVIS-BE 1	337.6	238.7	327.8 1367.2
22 DIABLO CANYON $1 + 2$	0.0	131.4	441.6 201.4
23 DRESDEN 2 + 3	332.7	269.7	1538.2 876.8
24 DUANE ARNOLD	269.1	1922.2	505.8 241.8
25 FARLEV 1 + 2	160.7	100.8	475.8 231.4
26 FERMI 2	586.9	1073.2	2069.3 4507.6
27 FITZPATRICK	468.3	1318.6	362.0 365.6
28 FORKED RIVER 1	458.6	758.5	825.3 939.0
29 FORT CALHOIN	976.8	244.2	2417.8 1960.0
30 FORT ST VRAIN	139.1	90.6	430.7 553.9
31 P F GINNA	692 2	386.5	4507 8 2392 7
32 GRAND GULF 1	207.8	178.5	51.8 183.1
33 HADDEM NECK	789.6	660.9	1439.7 2009.7
34 HARTSVILLE	456 9	114.2	205.6 155.2
35 HARTON FT 1 + 2	210 4	84 7	
$36 \text{ INDIAN DT } 2 \pm 3$	2513 7	1627 5	2161 0 8684 2
37 KEWAUNEE	2313.7	147.7	618.5 735.8
37 KEWAUNEE 38 LASALLE 1 + 2	122 2	14/ 4	301.9 228.0
30 IN COOSSE	1/0 3	53.7	682 1 392 5
39 LA CROSSE 40 LIMERICK 1	1222 5	12/2 5	1759 1 7511 9
40 EIMERICK 1 41 MARBLE HILL	649 0	194 6	1753.1 2692.1
		38.1	173.6 404.3
	-	319.4	
44 MIDLAND 2 45 MILLSTONE 1 + 2		549.1	1718.5 911.8 877.7 485.5
			86.2 368.5
46 MONTICELLO	400.3	143.2	00+2 300+3

TABLE D.1-4 (cont'd)

				• • • • • •
SITE *****		0-10MI		
	468.3		362.0	365.6
48 NORTH ANNA 1, 2, + 3	187.2	73.9	47.0	
49 OCONEE 1, $2 + 3$	215.1			
50 OYSTER CREEK	458.6	758.5	825.3	
51 PALISADE	415.8		741.4	452.0
52 PALO VERDE 1	69.7	57.3	56.5	74.1
53 PEACH BOTTOM $2 + 3$		191.4		841.6
54 PEBBLE SPRINGS	76.4	19.1	6.4	
55 PERKINS		291.7		
56 PERRY 1 Sector 4	811.4		993.4	
57 PHIPPS BEND		215.9		
		584.3		
59 POINT BEACH $1 + 2$	355.1	657.6	627.4	362.0
60 PRAIRIE 1 + 2	280.3			
61 QUAD CITIES 1 + 2		180.1		
	348.6		430.4	
		231.9	335.1	1078.7
64 H. B. ROBINSON 2		523.5		
65 SAINT LUCIE 1	947.7			
66 SALEM 1 + 2	626.6	450.8		
67 SAN ONOFRE		735.6		
68 SEABROOK 1	540.7	352.3	475.5	344.2
69 SEQUOYAH 1 + 2		283.0	1456.0	799.7
70 SHEARON HARRIS			580.4	
71 SHOREHAM		813.7		
72 SKAGIT	288.3	451.5	201.2	301.2
73 SOUTH TEXAS	0.0	46.0	199.3	
74 VIRGIL C. SUMMER	17.7	74.9	173.9	1091.1
75 SURRY ST 1 + 2	244.5			1164.1
76 SUSQUEHANNA 1	1309.7	748.9	1979.1	1362.8
77 THREE MILE ISLAND	2157.0	1758.2	1656.6	824.4
78 TROJAN	365.9	1618.7	480.5	382.6
79 TURKEY POINT 1 + 2	0.0	966.8	1628.8	2316.4
80 VERMONT YANKEE 1	507.7	526.0		261.4
81 VOGTLE	0.0	55.8	57.7	559.2
82 WATERFORD 3	880.3			3979.2
83 WATTS BAR 1 + 2	203.1	124.5	186.0	127.9
84 WPPSS1+4	0.0	71.4	436.3	281.7
85 WPPSS 3 + 5	453.7	145.0	405.5	
86 WPPSS 2	0.0	71.4	403.7	
87 WOLF CREEK	427.6	123.0	39.7	
88 YANKEE ROWE	95.5		223.7	
89 YELLOW CREEK	132.2		213.0	
90 ZIMMER 1			747.0	
91 ZION	2040.9	3779.5	1724.0	2349.3

D.2 Exclusion Distances

5

Table D.2-1 presents the distance to the closest boundary of the exclusion zone surrounding each of the 91 reactor sites, discussed in Chapter 2 and Appendix A. The variability of these distances is displayed in Figure 3-2 in Chapter 3.

41's '

TABLE D.2-1

EXCLUSION DISTANCES (MILES) FOR 91 REACTOR SITES

SIT	re.	EX. DIST.
	re *********	*****
1 ALLE	ENS CREEK ANSAS 1 + 2	0.82
2 ARKA	ANSAS 1 + 2	0.65
3 BATT	LLYS	0.12
	VER VALLEY 1 + 2	0.38
	LEFONTE 1	0.57
	ROCK POINT	0.51
	CK FOX	0.53
8 BRAI	DWOOD 1	0.28
9 BROW	WNS FERRY 1, 2, $+$ 3	0.76
	1 = 1 + 2	0.57 0.29
11 BYRC 12 CALI		0.29
	VERT CLIFF 1 + 2	0.71
	AWBA 1	0.47
15 CHEF		0.37
16 CLIN		0.61
	MANCHE PEAK	0.87
18 COOK		0.38
19 COOF		0.46
	STAL RIVER	0.83
21 DAVI	IS-BE 1	0.39
22 DIAE	BLO CANYON $1 + 2$	0.50
23 DRES	SDEN 2 + 3	0.42
	IE ARNOLD	0.27
	LEY 1 + 2	0.78
	1I 2	0.57
27 FIT2	ZPATRICK	0.61
28 FORK	KED RIVER 1	0.38
	CALHOUN	0.23
	T ST VRAIN	0.37
	E. GINNA ID GULF 1	0.28 0.47
	DEM NECK	0.33
	SVILLE	0.76
	CH, E.I. 1 + 2	0.78
	AN PT 2 + 3	0.21
37 KEWA		0.75
	$\mathbf{LLE 1 + 2}$	0.32
39 LA C		0.21
40 LIME		0.47
	BLE HILL	0.42
42 ME Y		0.38
	JIRE 1 + 2	0.47
44 MIDL		0.31
45 MILL	LSTONE 1 + 2	0.31

TABLE D.2-1 (cont'd)

*****	SITE **************************	EX. DIST.
46 1	MONTICELLO	0.30
47 1	NINE M. PT. $1 + 2$	0.97
<u>-</u> , ,	NORTH ANNA 1, 2, $+$ 3	0.84
	$120 \times 12 \times$	1.00
50 0	NET I, Z + J	0.25
50 0		0.42
50	DCONEE 1, 2 + 3 DYSTER CREEK PALISADE PALO VERDE 1	0.56
52 1	PEACH BOTTOM $2 + 3$	0.50
	PEBBLE SPRINGS	0.49
	PERKINS	0.37
	PERRY 1	0.57
	PHIPPS BEND	0.47
	PILGRIM 1	0.27
	POINT BEACH 1 + 2	0.75
	$\begin{array}{c} \text{POINT BLACH I + 2} \\ \text{PRAIRIE 1 + 2} \end{array}$	0.44
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	0.24
	RANCHO SECO	
	RIVERBEND 1	0.40 0.57
	H. B. ROBINSON 2	0.26
	SAINT LUCIE 1	0.97
	SALEM 1 + 2	0.72
	SAN ONOFRE	0.50
		0.57
	SEQUOYAH 1 + 2	0.36
	SHEARON HARRIS	1.33
	SHOREHAM	0.19
	SKAGIT	0.38
	SOUTH TEXAS	0.89
	VIRGIL C. SUMMER	1.01
	SURRY ST $1 + 2$	0.35
		0.35
	THREE MILE ISLAND	0.38
	TROJAN	0.41
	TURKEY POINT 1 + 2	0.79
	VERMONT YANKEE 1	0.17
	VOGTLE	0.68
	NATERFORD 3	0.57
	WATTS BAR 1 + 2	0.75
	NPPSS1+4	1.21
	NPPSS 3 + 5	0.81
	NPPSS 2	1.21
	WOLF CREEK	0.75
	YANKEE ROWE	0.59
	YELLOW CREEK	0.43
	ZIMMER 1	0.24
91 2	ZION	0.57

D.3 Site Population Factors

Table D.3-1 presents the Site Population Factor (SPF_n) and the Wind Rose Weighted Site Population Factor (WRSPF_n) for each of the 91 reactor sites discussed in Chapter 2 and Appendix A. For every site, the factors have been calculated for each of the following four distances: 5, 10, 20, and 30 miles. The equations used in these calculations are presented in Section 3.2 of Chapter 3.

Table D.3-1. SITE POPULATION FACTORS (SPF) AND WIND ROSE WEIGHTED SITE POPULATION FACTORS (WRWSPF) FOR 91 REACTOR SITES

	REGION	SPF5	SPF10	SPF20	SPF30	WRSPF5	WRSPF10	WRSPF20	WRSPF30
ALLENS CREEK	SW	.31084E-01	.26170E-01	.270856-01	-29669E-01	-29167E-01	-28190E-01	.29807E-01	.33529E-01
ARKANSAS I + 2	S	.347376-01	.60184E-01 .21447E+00	.48306E-01	.41624E-01	-26405E-01	.60023E-0.1	.48555E-01 .40154E+00	.42915E-01
BATLLY S	MW NE	.17129E+00		.33316E+00 .29870E+00	.46225E+00 .38618E+00	15890E+00	.24294E+00 .22261E+00		.51750E+00 .34474E+00
BEAVER VALLEY 1 + 2 BELLEFONTE 1	5	.90963E-01 .60386E-01	.25042E+00 .72908E-01	.58133E-01	.54642E-01	.76206E-01	.84200E-01	•24205E+00	
				.27861E-01	.23975E-01			.65040E-01	.59/19E-01
BIG ROCK POINT BLACK FOX	MW SW	.32287E-01	.25840E-01	.55139E-01	.23975E-01	.33586E-01	.27221E-01 .13323E-01	.27626E-01	.23375E-01 .73356E-01
BRAIDWOOD 1	ni Ci	13580E+00	.10993E+00	.96933E-01	.11376E+00			-41818E-01	
BROWNS FERRY 1, 2, 4		.79286E-02	.44405E-01	.64588E-01	.70623E-01	.12694E+00 .83789E-02	.10149E+00	.88696E-01	.99681E-01
BRUNSWICK 1 + 2	5	.20188E-01						.78023E-01	.77970E-01
BYRON I	JAN		•22260E-01	.32303E-01	.31477E-01	.17567E-01	22345E-01	.32963E-01	.31882E-01
CALLAWAY	11	.71963E-01	.67722E-01	10320E-01	-12009E+00	-78011E-01	.73461E-01	.10725E+00	.11010E+00
CALVERT CLIFF 1 + 2	NE	.90153E-02	.10237E-01		.32205E-01	-51928E-02	.83736E-02	.17589E-01	.28591E-01
CATAWBA 1		.19608E-01	.30431E-01	-40544E-01	.42677E-01	.25289E-01		.55162E-01	.53537E-01
CHEROKEE	5 S	.28386E-01	.97801E-01	-20199E+00	.19320E+00	.15367E-01	-58678E-01	-24996E+00	.24078E+00
CLINTON	5 MW	.32364E-01	.60843E-01 .31270E-01	.74998E-01 .33278E-01	.10486E+00	-38806E-01	.82775E-01	.90473E-01	.11931E+00
COMMANCHE PEAK	SW				.62732E-01	.152946-01	-23542E-01	-29828E-01	.65338E-01
	-	.84912E-02	12700E-01	-10855E-01	.15435E-01	.20515E-01	.20185E-01	.15354E-01	.1/798E-01
COOK DC 1 + 2 COOPER S	MW .	-84697E-01	-11303E+00	11942E+00	•14056E+00	.88946E-01	10599E+00	.10839E+00	.13656E+00
	MW S	.100/8E-01	.14811E-01	.16822E-01	-17901E-01	-10219E-01	-14122E-01	.15045E-01	.17908E-01
CRYSTAL RIVER	ร มพ	.16346E-01	.22168E-01	.18219E-01	-16187E-01	.29057E-01	.30043E-01	.24442E-01	.21577E-01
DAVIS-BE 1	3471 ST	.32672E-01	.40451E-01	.55738E-01	.12140E+00	.56239E-01	.59827E-01	.70913E-01	.12767E+00
DIABLO CANYON 1 + 2 DRESDEN 2 + 3	91 M.M	.0 .44720E-01	.98598E-02	· 35215E-01	-34517E-01	.0	.57107E-02	-14153E-01	.18607E-01
DUANE ARNOLD	MW	.39515E-01	.67169E-01 .12939E+00	.11713E+00	.14378E+00	.42523E-01	.70489E-01	-94596E-01	.11579E+00
FARLEY 1 + 2	S	.114996-01	.17446E-01	.12819E+00 .33556E=01	.10952E+00 .32332E-01	.31349E-01 .88854E-02	.13590E+00 .15052E-01	.13519E+00 .28956E-01	.11556±+00
FERMI 2	-AW	.15821E+00	.19137E+00	.245316+00	.44021E+00	•12502E+00	.17859E+00		+28465E+01 +31792E+00
FITZPAIRICK	NE	.19642E-01	.68462E-01	.62453E-01	.63600E-01	.18665E-01	.98174E-01	•18463E+CO	
FORKED RIVER	nE	.80588E-01	.08402E-01	.11249E+00	.12548E+00	.59297E-01	.72795E-01	.83389E-01 .88249E-01	. 82/34E-01
FORT CALHOUN	-474	.73958E-01	-55546E-01	.12552E+00	.14071E+00	.10434E+00	.73081E-01	.20558E+00	.102/3E+00 .23105E+00
FORT ST VRAIN	- W-	.73534E-02	.20285E-01				.21997-01		.97050E-01
GINNA R.E.	dĖ.	.13334E-02	72451E-01	•23521E+00	.21771E+00	.46365E-01	.81548E-01	.338096+00	311772+00
GRAND GULF I	S	12290E-01	.19601E-01	.19342E-01	.23405E-01	.13523E-01	.22849E-01	.21192E-01	.24940E-01
HADDEM NECK	NE	.12231E+00	.14928E+W	-24484E+00	.36523±+00	.95413E-01		.39105E+00	.52525E+00
HARTSVILLE	S.	.215576-01	.26881E-01	.37927E-01	.39203E-01	20832E-01	.26524E-01	.36980E-01	.3/850E-01
HATCH, E.I. $1 + 2$	S .	.111228-01	.14720E-01	.22/31E-01	.23889E-01	.12330E-01	.13566E-01	.21401E-01	.22887E-01
INDIAN $PT 2 + 3$	NE	.81326E+00	.74045E+00	.73557E+00	.98620E+00	•12330E=01		.8/477E+00	.11167E+01
KENAUNEE	AW .	.93780E-02	17390E-01	.365982-01	4/946E-01	-16358E-01	.23622E-01	.4971/E-01	.72662E-01
LASALLE + 2	AW	.13544E-01	.29233E-01	.55404 -01	.59426E-01	•90269E+02	.24474E-01	.60214E-01	.64080E-01
LA CROSSE	411	.17126E-01	.19149E-01	.394876-01	.38589E-01	.18270E-01	.20467E-01	.50259E-01	.48158E-01
LIMERICK	NE		.58125E+00	.59208E+00	.93770E+00	.82582E+00	.65562E+00	.64060E+00	.77740E+00
MARBLE HILL	ia m		.48820E-01	.12305E+00	.18073E+00	.42417E-01	.45750E-01	.14/292+00	.216292+00
ME YANKEE			.17540E-02	.1415/E-01	23032E-01	.0	.11468E-02	.11221E-01	
MCGUIRE I + 2	NE S	.68527E-01	.891976-01	•14157E-01	.21353E+00	55320E-01			.194432-01
MIDLAND 2	- S WW	.51650E+00	-36272E+00		.27855E+00	.472735+00	.86377E-01 .33162E+00	.20839E+00- .27610E+00	20379E+00
MILLSIONE 1 + 2		• 44527E+00	.39795E+00	.31930E+00	.27355E+00	.38361E+00	.33459±+00		.23981E+00
MONTICELLO	54W	. 36455E-01	.369885-01					.2/492E+00	.24015E+00
NINE M. PT. I + 2	NE	.19642E-01	.08462E-01	.401082-01	•63248E-01	-35726E-01	.34907E-01	.388136-01	. 60259E-01
NINE $A \cdot P' \cdot T + 2$ NORTH ANNA 1, 2, + 3		.78517E-02	.16242E-01	.62453E-01 .20497E-01	.636002-01 .23285E-01	.18938E-01	.985866-01	.830336+01	.82225E-01
-0CONEE 1. 2 + 3	S	.209462-01	./10835-01				.22356E-01	.240406-01	.29313E-01
	5	·20/**0E*01	• • • • • • • • • • • •	.710722-01	.87147E-01	.20376E-01	.54069E-01	.56334E-01	.70361E-01

and the second

Table D.3-1. (continued)

			2						
					:				
			· · ·		•.	•			
SITE NAME	REGION	SPF5	SPF10	SPF20	SPF30	WRSPF5	WRSPFIO	#RSPF20	WRSPF30
OYSTER CREEK	NE	.80588E-01	.94443E-01	11249E+00	12548E+00	59297E-01	72795E-01	. 8024YE-01	10273E+00
PALISADE		.54980E-01	.74781E-01	.78747E-01	.74770E-01	.64503E-01	.90103E-01	10466E+00	1004/E+00
PALO VERDE I	SW	.59341E-02	.57060E-02	.64846E-02	.63884E-02	.72781E-02	.65626E-02	.682256-02	67668E-02
PEACH BOTTOM 2 + 3			.46280E-01	.10392E+00	.15471E+00	16166E-01	.43229E-01	.10408E+00	.16286E+00
	NE	.21262E-01				.10765E-02	.18643E-02	.12494E-02	.16/77E-02
PEBBLE SPRINGS	di-	.32039E-02	-26601E-02	.19549E-02	.193796-02				
PERKINS	. 5	.56885E-01	.73595E-01	.11950E+00	.14722E+00	.69392E-01	.77501E-01	.1292/E+00	.16576E+00
PERRY	MW.	.18134E+00	.19633E+00	.18713E+00	.20736E+00	.19364E+00	.22503E+00	.21854E+00	.25700E+00
PHIPPS BEND	S	.10524E+00	.84886E-01	.9 1704E-01	.97858E-01	.14545E+00	.11126E+00	.97714E-01	.90997E-01
PILGRIM I	NE	• 11534E+00	.10936E+00	.1159/E+00	.1/2/2E+00	.10559E+00	.10456E+00	.12056E+00	.18316E+00
POINT BEACH 1 + 2	NW	27877E-01	.42796E-01	.50634E-01	.56737E-01	.30607E-01	.61374E-01	.78181E-01	.84/59E-01
PRAIRIE + 2	MW	.52533E-01	.60849E-01	.58239E-01	.68463E-01	.68078E-01	.89779E-01	.81843E-01	.98066E-01
OUAD CITIES 1 + 2	MIN	.92684E-02	-28898E-01	.11576E+00	.10374E+00	.74518E-02	.26202E-01	.15572E+00	.14606E+00
RANCHO SECO	nt -	.11965E-01	.16493E-01	.49437E-01	.14276E+00	.21786E-UI	.24511E-01	.6246dE-01	.1830/E+00
RIVERBEND 1	5	.30502E-01	.43/67E-01	.5535HE-01	.81505E-01	26084E-01	.38615E-01	.53917E-01	.83519E-01
H. B. ROBINSON 2	5	.44152E-01	.60/49E-01	.56364E-01	.59736E-01	.31658E-01	.40944E~01	- 40993E-01	46573E-01
SAINT LUCIE I	S	.54634E-01	.83901E-01	.69659E-01	.61506E-01	.26940E-01	.57388E-01	.50326E-01	.43984E-01
SALEM 1 + 2	NE	-20414E-01	.44992E-01	.12554E+00	.17034E+00	.10118E-01	.37371E-01	13494E+00	.1/374E+00
SAN ONOFRE	. W	.69002E-02	.48712E-01	.83859E-01	.96513E-01	.66242E-02	.33136E-01	.69350E-01	13646E-01
SEABROOK	NE	.67564E-01	.70954E-01	.75767e-01	.74099E-01	.51712E-01	.53509E-01	.61434E-01	.60380E-01
SEQUOYAH I + 2	S	.74540E-01	.92644E-01	.15439E+00	.14585E+00	.10185E+00	.99429E-01	.24659E+00	. 2204 3E+00
SHEARON HARRIS	S	19205E-01	.32954E-01	71277E-01	10028E+00	.18313E-01	.27659E-01	.62003E-01	.89401E-01
SKAGIT	· N	.34859E-01	.43992E-01	4200801	.47567E-01	.55447E-01	.72359E-01	.61431E-01	.61342E-01
SHOREHAM	NE	.16493E+00	.15862E+00	22164E+00	35388E+00	-14089E+00	14828E+00	.23875±+00	.39069E+00
SOUTH TEXAS	SW	.0	32669E-02	.11954E-01	11540E-01	.0	.31599E-02	.11627E-01	.10927E-01
VIRGIL C. SUMMER	ŝ	.50986E-03	16901E-01	254 77E-01	59106E-01	.55440E-03	.16344E-01	.27235E-01	54535E-01
SURRY SI 1 + 2	. 5	.11499E-01	.10123E+00	12692E+00	14067E+00	.14934E-01	98112E-01	11710E+00	12781E+00
SUSQUEHANNA 1	NE	.88449E-01	.10759E+00	17999E+00	17990E+00	13817E+00	14840E+00	18670E+00	184426+00
THREE ALLE ISLAND	NE	22949E+00	.31201E+00	399962+00	37154E+00	.19179E+00	30919E+00	42313E+00	. 39465E+00
TROJAN		.600396-01	10794E+00	.83903E-01	80567E-01	.69927E-01	18613E+00	.15456E+00	.14013E+00
TURKEY POINT 1 + 2		.0	.53684E-01	985996-01	.16790E+00	.0	.44722E-01	.72504E-01	102956+00
VERMONT YANKEE I	NE	.95964E-01	.94227E-01	.950356-01	88480E-01	10817E+00	.14159E+00	11733E+00	10599E+00
VOGTLE	5	.0	36769E-02	10877E-01	.39824E-01	.0	.34954E-02	10971E-01	29754=-01
WATERFORD 3	S			13643E+00		.14376E+00	.14389E+00	.15424E+00	.20/172+00
	-	.16326E+00	.14743E+00	• • • • • • • • • •	.25577E+00				
WATTS BAR 1 + 2	S	.15094E-01	.22252E-01	.34829E-01	.41281E-01	.10159E-01	.17329E-01	.23514E-01	37329E-01
WPPS51+4	N	•0	.33914E-02	-25418E-01	249446-01	.0	.14139E-U2	.33159E-01	.317516-01
WPPSS 2	N	• 0	.26920E-02	.22569E-01	.23771E-01	•0	.11239E-02	.29395E-01	.309286-01
WPPSS J + 5	1 M	-11904E-01	.18371E-01	.27064E-01	.319752-01	.14094E-01	1522/E-01	.1950/E-01	·25535E-01
WOLF CREEK		.16991E-01	.12359E-01	.11440E-01	.15201E-01	.85718E-02	-66541E-02	.80877E-02	.13311E-01
YANKEEROWE	, ight	12403E-01	.35226E-01	51955E-01	.67440E-01	.15425E-01	.30277E-01	.44781E-01	.56389E-01
AFTTOM CHEEK	S	.65005E-02	.14117E-01	.22903E-01	25371E-01	.66200E-02	.16426e-01	.25084E-01	.26547E-01
ZI WHER I	M.M.	.2/940E-01	.46397E-01	.936556-01	.205152+00	.20134E-01	.37355e-01	.797002-01	.1/520±+00
ZION	411	.71363E+00	.7.0361E+00	.5HIJ/2+00	.556862+00	.879728+00	.84040E+00	.68575E+00	.65/41E+00
			•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second	1 C C		•

Appendix E: CRAC 2: A Brief Description

王 应伸 昭作 告

The accident consequence calculations presented in Chapter 2 were performed using CRAC2 [1,2], an improved version of the WASH-1400 consequence model CRAC. A number of modifications were made in the upgrade from CRAC to CRAC2. These include changes in the treatments of atmospheric dispersion parameters, plume rise, precipitation scavenging (wet deposition), mixing heights, weather sequence sampling, emergency response (evacuation and sheltering), and latent cancer risk factors. These changes are briefly described below. In addition, several errors found in CRAC were corrected in the CRAC2 version.

E.1 Atmospheric Dispersion Parameters

The values of the horizontal dispersion coefficients, σ_y , obtained from the Pasquill-Gifford curves (and parameterized by Tadmore and Gur [3]) correspond to a release duration of three minutes. To correct the standard dispersion coefficients for releases of longer duration, the summary report of the National Commission on Air Quality's Atmospheric dispersion Modeling Panel [4] endorses the method suggested by Gifford [5]. An adjustment for releases of duration t₂ (minutes) is made by means of the formula

$$\frac{\sigma_{\rm Y_2}}{\sigma_{\rm Y_{\rm PG}}} = \left(\frac{t_2}{3\,\rm min}\right)^{\rm Q}$$

where Q is within the range 0.25-0.3 for 1 hr < t_2 < 100 hr and equals ~ 0.2 for 3 min < t_2 < 1 hr. In CRAC2, Q is equal to 0.2 for release durations between 3 minutes and one hour and 0.25 for release durations greater than one hour. The lower value of 0.25, rather than 0.3, was selected for longduration releases because it results in higher concentrations.

The vertical dispersion coefficients, σ_z , obtained from the Pasquil-Gifford curves (parameterized by Martin and Tikvart [6]) are based on data from releases over terrain with very low surface roughness (grasslands with roughness length of approximately 3 cm). In CRAC2 a more typical roughness length of 10 cm (crops, bushes) is assumed. The vertical dispersion coefficients are adjusted using the following recommended equation [7,8]:

$$\sigma_{z2}/\sigma_{z1} = (r_2/r_1)^{0.2}$$
,

where σ_{z1} is the unadjusted parameter, σ_{z2} is the adjusted parameter, $r_1 = 3$ cm, and $r_2 = 10$ cm. Impacts of these changes in the treatment of dispersion parameters were examined in [9].

E.2 Plume Rise

The WASH-1400 consequence model used plume rise equations recommended in Briggs (1969) [10]. The plume rise model used in CRAC2 is based on a more recent paper by Briggs (1975) [11].

and the second second second second second second

E.3 Precipitation Scavenging (Wet Deposition)

The WASH-1400 consequence model (CRAC) used weather data which reported rainfall in terms of the incidence or nonincidence of rain within any clock hour. To calculate precipitation scavenging, the model assumed that rain reported for a clock hour fell at a rate of 1 mm/hr for half the hour. The CRAC2 code contains a more sophisticated wet deposition model which requires as input the amount of rain falling in an hour. Rain is assumed to occur during the entire hour with a constant rate. The hourly rainfall rate is multiplied by a rainout coefficient to determine precipitation scavenging. A coefficient of 1.0 x 10^{-4} (sec)⁻¹(mm/hr)⁻¹ is used for stable conditions and 1.0 x 10^{-3} (sec)⁻¹

E.4 Mixing Heights

The WASH-1400 consequence model used Holzworth [12] morning and afternoon mixing heights for all stability conditions. In CRAC2, the treatment is somewhat simplified. For stable conditions (E and F stability), the inversion layer is ground based and no mixing depth is assumed. For neutral and unstable conditions, the Holzworth afternoon mixing height is assumed. This change has minimal impact on resulting predicted consequences.

E.5 Improved Weather Sequence Sampling Technique

WASH-1400's consequence model (CRAC) used a stratified sampling technique by which sequences are selected every four days ± thirteen hours to provide coverage of diurnal, seasonal and four-day weather cycles [13]. In this manner, a total of 91 weather sequences were chosen to represent one year of data (8760 hours). Sensitivity studies have shown that considerable variation in predicted consequences result from sampling by this method. Consequences can vary significantly for calculations performed using different sets of weather sequences (see Figure E5-1A). Differences in peak predicted consequences of an order of magnitude or more are not uncommon.

There are several reasons for the large variation in consequences due to the WASH-1400 sampling technique. Given an accident, large consequences are normally associated with relatively low probability weather conditions such as rainfall within a few 10's of kilometers of the site [14], wind-speed slowdowns, or stable weather conditions with moderate wind speeds. Not only is the occurrence of rainfall or a slowdown important, but where it occurs as well. Rain beginning over a densely populated area could result in extremely high consequences. Because of their low probability, such weather conditions will be selected infrequently, if at all, by the WASH-1400 sampling technique. Furthermore, estimated probabilities for adverse weather conditions can be significantly in error. For example, a particularly adverse weather sequence with actual probability of 1/8760 would, if sampled, be assigned a probability of 1/91.

CRAC2 uses a new weather sequence sampling method [15] which produces improved estimates of accidentconsequence frequency distributions. Prior to sequence selection, the entire year of weather data is sorted into 29 weather categories (termed "bins"), as defined in Table E.5-1. Each of the 8760 potential sequences is first examined to determine if rain occurs anywhere within 50 kilometers (30 miles) of the accident site. If not, a similar examination is made for wind-speed slowdowns. If neither of these conditions occurs, the sequence is categorized by the stability and wind speed at the start of the accident. A probability for each weather bin is estimated from the number of sequences placed in the bin. Sequences are then sampled from <u>each of the bins (with appropriate probabilities) for use in risk calculations. In the current analysis,</u> four sequences were selected from each bin. Sampling with this method assures that low probability adverse weather conditions are adequately included.

A comparison of the variation in consequences due to sampling by the two methods is provided in Figure E.5-1. For both methods, early-fatality frequency distributions (CCDF's) for a PWR2 release [15] were calculated with CRAC, using 32 different sets of weather sequences sampled from the New York City weather data summarized in Table E.5-1. Also assumed were a uniform population density of 100 people/mile² and a relatively ineffective evacuation. The results clearly indicate that the weather bin method results in substantially less variation due to sampling than the previous WASH-1400 technique.

E.6 Emergency Response (Evacuation) Model

100

The CRAC2 evacuation model [16,17] is significantly different from the RSS evacuation model. In lieu of the small "effective" evacuation speeds assumed in the RSS model, the revised treatment incorporates a delay time before public movement, followed by evacuation radially away from the reactor. Both an assumed delay time and evacuation speed are required as input to the model. Different shielding factors and breathing rates are used while stationary or in transit. In addition, all persons within the designated evacuation area move as a group with the same delay time and evacuation speed. Therefore, the possibility that some people may not leave the evacuated area is ignored. This latter assumption results in upper bound estimates of evacuation effectiveness, given a specific delay time and speed.* Unlike the RSS model in which persons continue

*The evacuation effectiveness would decrease linearly with an increasing nonparticipating fraction of the population. In actual evacuations, Civil Defense personnel have observed a nonparticipating minority of approximately 5%.

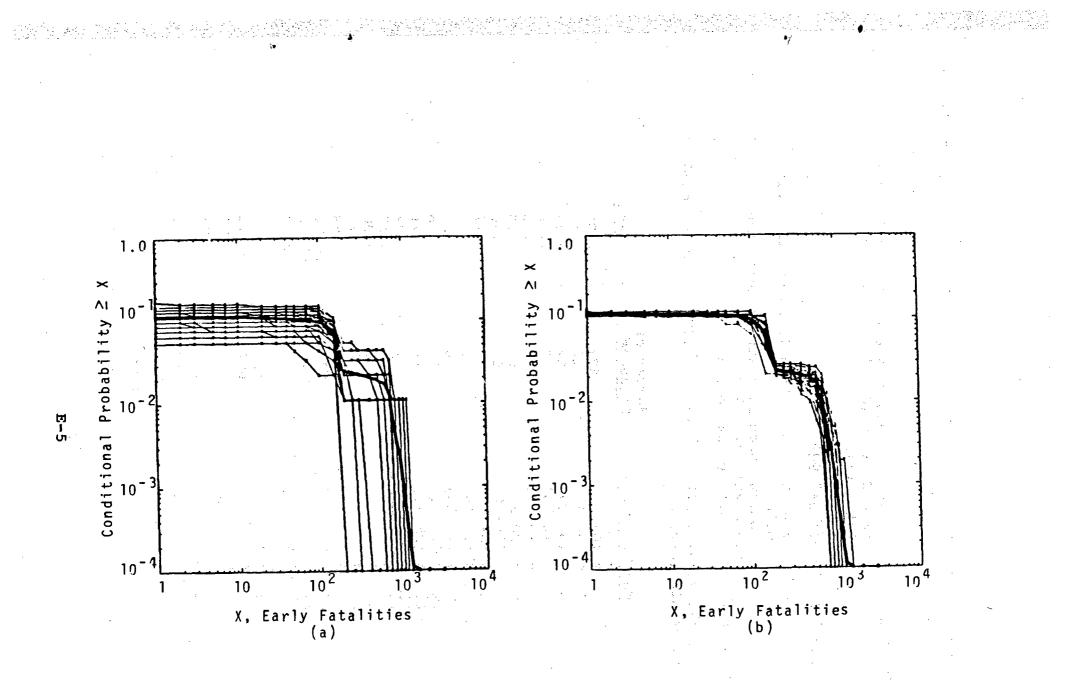


Figure E.5-1. Comparison of Uncertainty Due to Sampling by (A) WASH-1400 and (B) Weather Bin Techniques. For each technique, 32 different sets of weather sequences are used to generate early-fatality frequency distributions for a PWR2 release. A "best estimate" using all 8760 available sequences, is shown by the darkened line.

Table E.5-1 One Year of New York City Meteorological Data Summarized Using Weather Bin Categories

Weather Bin Definitions

R - Rain starting within indicated interval (miles).

S - Slowdown occurring within indicated interval (miles).

A-C D E F - Stability categories.

1(0-1), 2(1-2), 3(2-3), 4(3-5), 5(GT 5) - Wind Speed intervals (m/s).

<i>*</i> .		Number of	
We	ather Bin	Sequences	Percent
	• • •		_ :
1.		697	7.96
2	R (0-5)	12	14
3	R (5-10)	62	.71
4	R (10-15)	102	1.16
5	R (15-20)	75	.86
6	R (20-25)	67	.76
7	r (25-30	61	.70
8	S (0-10)	24	•27
9	S (10-15)	16	.18
10	S (15-20)	18	.21
11	S (20-25)	14	.16
1Ż	S (25-30)	18	.21
13	A-C 1,2,3	168	1.92
14	A-C 4,5	892	10.18
15	D 1	0	0.00
16	D 2	61	.70
17	D 3	226	2.58
18	D4	948	10.82
19	D 5	3325	37.96
20	E 1	0	0.00
21	E 2	27	.31
22	E 3	167	1.91
23	E 4	682	7.79
24	E 5	270	3.08
25	F 1	0	0.00
26	F 2	116	1.32
27	F 3	310	3.54
28	F 4	402	4.59
29	F 5	0	0.00
		8760	100.00

E-6

evacuating until they are either overtaken by the cloud or leave the model grid, all evacuating persons in the new model travel a designated distance from the evacuated area and are then removed from the problem. This treatment allows for the likelihood that after traveling outward for some distance, people may learn their position relative to the cloud and be able to avoid it.

The new model also calculates more realistic exposure durations to airborne and ground-deposited radionuclides than the RSS evacuation model. The RSS consequence model employs an exposure model for an instantaneous point source and thus all released plumes have zero effective lengths. Because of this, evacuating persons overtaken by the cloud in the RSS evacuation model are exposed to the entire cloud at the point overtaken. However, a released cloud of radioactive material would have a finite release duration and a length that depends on the wind speed during and following the release. A person overtaken by the front of the cloud might still escape before being passed by the entire cloud and thus receive only a fraction of the full cloud exposure.* The revised evacuation model assigns the cloud a finite length which is calculated using the assumed release duration and wind speed during the release. To simplify the treatment, the length of the cloud is assumed to remain constant following the release (i.e., the front and back of the cloud travel at the same speed), and the concentration of radioactive material is assumed to be uniform over the length of the cloud. The radial position of evacuating persons, while stationary and in transit, is compared to both the front and the back of the cloud as a function of time to determine a more realistic period of exposure to airborne radionuclides.

The revised treatment calculates the time periods during which people are exposed to radionuclides on the ground while they are stationary and while they

*It is also possible that an evacuating person may travel under the cloud for a long time and thus receive more exposure than if he had remained stationary during the passage of the cloud. are evacuating. Because radionuclides would be deposited continually from the cloud as it passed a given location, a person while under the cloud would be exposed to ground contamination less concentrated than than if the cloud had completely passed. To account for this, the new model assumes that persons completely passed by the cloud are exposed to the total ground contamination concentration, calculated to exist after complete passage of the cloud, to one-half the calculated concentration when anywhere under the cloud, and to no concentration when in front of the cloud. A more detailed discussion of the models is provided in [16] and [17].

The CRAC2 model of public evacuation requires as input estimates of the delay time before evacuation commences and the evacuation speed. Reexamination of the EPA evacuation data used to develop the WASH-1400 model [18] show that, if a constant evacuation speed was assumed, a distribution of delay times could be estimated. For assumed evacuation speeds of 10 mph or greater, delay times were found to be satisfactorily represented by a normal distribution with 15, 50, and 85 percentile delay times of approximately 1, 3, and 5 hours respectively.

The CRAC2 evacuation model can incorporate this distribution of evacuation delay times by calculating a 30:40:30% weighted sum of consequences for 10 mph evacuations after delays of 1, 3, and 5 hours. The weighted distribution of evacuations is denoted "Summary Evacuation", and was discussed in Sections 2.2 and 2.5.

The CRAC2 model is also capable of considering population sheltering as an emergency protective action. Sheltering would involve the expedient movement of people into basements or masonry buildings, if possible, followed by relocation. Table A.1-3 of Appendix A lists sheltering factors for different regions in the U.S. A discussion of sheltering is provided in [19].

E.7 Updated Cancer Risk Factors

The latent cancer fatality risk factors used in CRAC2 are updated versions of those reported in The RSS factors assumed a latency period WASH-1400. during which the risk of cancer was assumed to be zero, followed by a risk period where the individual is assumed to be at a constant risk (risk plateau). Depending on the type of cancer and the age of the exposed individual, the latency periods ranged from 0 to 15 years and the risk periods ranged from 10 to 30 years. Based on recommendations in BEIR III [20], the factors used in CRAC2 were updated to reflect extension of the risk period to the end of an individual's life for all cancers except leukemia and for all age groups (of exposed individuals) other than those exposed in utero. Table E.7-1 compares the updated factors to those from WASH-1400. The 0-1year factors are used for external exposures.

Table E.7-1	Expected Total Latent Cancer (Excluding Thyroid) Deaths per
	10 ⁶ Man-Rem From Internal Radionuclides Delivered During
	Specified Periods

WASH-1400

	Time Period (years) After Accident								
	0-1	1-10	11-20	21-30	31-40	41-50	51-60	61-70	71-80
Leukemia	28.4	27.2	18.7	13.8	9.7	6.8	4.0	1.7	0.5
Lung	22.2	22.2	22.2	14.5	8.1	4.0	1.5	0.2	0
GI Tract ^(a)	13.6	13.6	13.6	8.9	5.0	2.5	0.9	0.1	0
Pancreas	3.4	3.4	3.4	2.2	1.3	0.6	0.2	0	0
Breast	25.6	25.6	25.6	16.8	9.4	4.6	1.7	0.3	0
Bone	6.9	6.7	5.0	2.6	1.6	0.9	0.4	0.1	<u></u> 0
All Other	21.6	19.8	17.1	11.2	6.3	3.1	1.2	0.2	0
UPDATED WASH-	1400 (CR	AC2)							
Leukemia	28.4	27.2	18.7	13.8	9.7	6.8	4.0	1.7	0.5
Lung	27.5	27.5	27.5	15.8	8.1	4.0	1.5	0.2	0.0
GI Tract ^(a)	16.9	16.9	16.9	9.7	5.0	2.5	0.9	0.1	0.0
Pancreas	4.2	4.2	4.2	2.4	1.3	0.6	0.2	0.0	0.0
Breast	31.7	31.7	31.7	18.3	9.4	4.6	1.7	0.3	0.0
Bone	11.1	10.6	7.0	3.0	1.7	0.9	0.4	0.1	0.0
All Other	28.0	26.3	21.1	12.2	6.3	3.0	1.2	0.2	0.0

E-10

References for Appendix E

- 1. Ritchie, L. T., J. D. Johnson, and R. M. Blond, <u>Calculations of Reactor Accident Consequences</u>, <u>Version 2: User's Guide</u>, NUREG/CR-2326, SAND81-1994, <u>Sandia National Laboratories</u> (to be published).
- 2. Ritchie, et al., <u>Calculations of Reactor Accident</u> <u>Consequences Version 2: CRAC2 Model Description</u>, <u>NUREG/CR-2552</u>, <u>SAND82-0342</u>, <u>Sandia National</u> Laboratories (to be published).
- 3. Tadmor, J. and Y. Gur, "Analytical Expressions for the Vertical and Lateral Dispersion Coefficients in Atmospheric Diffusion," <u>Atmos. Environ</u>. 3: 688-689 (1969).
- 4. Summary Report of the NCAQ Atmospheric Dispersion Modeling Panel, Vol. 1, Recommendations (Final Report), M. W. Chandler, et al., Dames and Moore, Bethesda, MD, PB80-174964, pg. 37 (1980)
- 5. Gifford, F., Atmospheric Dispersion Models for Environmental Pollution Applications, <u>Lectures</u> on Air Pollution and Environmental Impact Analyses, American Meteorological Society, Boston, pg. 42 (1975).
- 6. Martin, D. O., and J. A. Tikvart, "A General Atmospheric Diffusion Model for Estimating the Effects on Air Quality of One or More Sources," paper presented at 61st annual meeting of the Air Pollution Control Association (1968)
- "AMS Workshop on Stability Classification Schemes and Sigma Curves - Summary of Recommendations," Bulletin American Meteorological Society, Vol. 58, #12 (December 1977).
- Hoffman, F. Owen (General Chairman), Proceedings of a Workshop on the Evaluation of Models Used for the Environmental Assessment of Radionuclide Releases (Gatlinburg, TN, September 6-9, 1977), CONF-770901, Oak Ridge National Laboratory (April 1978).

- 9. Aldrich, D. C., <u>Impact of Dispersion Parameters</u> on <u>Calculated Reactor Accident Consequences</u>, SAND 79-2081, NUREG/CR-1150, Sandia Laboratories, Albuquerque, NM March (1980).
- 10. Briggs, G. A., Plume Rise, USAEC Critical Review Series, TID-25075 (1969).
- 11. Briggs, G. A., "Plume Rise Predictions" in Lectures on Air Pollution and Environmental Impact Analysis, D. A. Haugen, ed., American Meteorological Society, Boston, MA, pp 59-105 (1975).
- 12. Holzworth, G. C., <u>Mixing Heights, Wind Speeds,</u> and Potential for Urban Air Pollution Throughout the Contiguous United States, Publ. No. AP-101, U.S. Environmental Protection Agency, Office of Air Programs, Research Triangle Park, N. C. (1972).
- 13. <u>Reactor Safety Study Appendix VI: Calculations</u> of Reactor Accident Consequences, WASH-1400, (NUREG 75/014), U. S. Nuclear Regulatory Commission (October 1975).
- 14. Ritchie, L. T., W. D. Brown and J. R. Wayland, <u>Effects of Rainstorms and Runoff on Consequences</u> <u>of Nuclear Reactor Accidents</u>, SAND79-0379, Sandia Laboratories, Albuquerque, NM (February 1980).
- 15. Ritchie, L. T., D. C. Aldrich, and R. M. Blond, "Weather Sequence Sampling for Risk Calculations", Transactions of the American Nuclear Society (June 1981).
- 16. Aldrich, D. C., R. M. Blond and R. B. Jones, <u>A Model of Public Evacuation for Atmospheric</u> <u>Radiological Releases</u>, SAND78-0092, Sandia <u>Laboratories</u>, Albuquerque, NM (1978).
- 17. Aldrich, D. C., L. T. Ritchie and J. L. Sprung, <u>Effect of Revised Evacuation Model on Reactor</u> <u>Safety Study Accident Consequences</u>, SAND79-0095, <u>Sandia Laboratories</u>, Albuquerque, NM (1979).

18. Hans, J. M., Jr. and T. C. Sell, Evacuation Risks - An Evaluation, U. S. Environmental Protection Agency, EPA-520/6-74-002 (1974).

化物 招帮 子的现

- 19. Aldrich, D. C., D. M. Ericson, and J. D. Johnson, <u>Public Protection Strategies for Potential</u> <u>Nuclear Reactor Accidents: Sheltering Concepts</u> <u>with Existing Public and Private Structures</u>, <u>SAND77-1725</u>, Sandia Laboratories, Albuquerque, NM (1978).
- 20. BEIR (Committee on the Biological Effects of Ionizing Radiation), The Effects on Populations of Exposures to Low Levels of Ionizing Radiation, National Academy of Sciences, Washington, D.C. (1980).

Appendix F: Site Availability Maps and Tables

This appendix contains the site availability data that was discussed in Chapter 4.0. Figure Fl shows legally protected and wetland areas in the U.S. where reactor siting would be restricted. Seismic acceleration contours are shown in Figure F2. Figure F4 shows the topographic character of the U.S. in terms of percent land that is gently sloping (gently sloping was defined as less than 8% slope). Figures F3, F5, F6, and F7 show seismic hardening costs, surface, water availability costs, groundwater availability costs, and combined water availability costs (the lesser of surface water and groundwater costs) for the 48 contiguous United States. Associated with these costs are the utility values discussed in Section 4.4.1 of Chapter 4.0. Tables Fl.1-Fl.5 show the fractions of land, by state, that fall within each of the environmental suitability categories shown in Figures F3-F7.

Figures F8.1-F8.13 show land that would be restricted from reactor siting by standoff distances to cities. The cities and standoff distances considered in each figure are tabulated below.

Figure	Standoff Distance (mile)		Cities (Population ≥)
		·	
F8.1	5		25,000
F8.2	10	44 - C	25,000
F8.3	10		100,000
F8.4	15		100,000
F8.5	25		100,000
F8.6	25		200,000
F8.7	30	·	200,000
F8.8	40		200,000
F8.9	50		200,000
F8.10	100		200,000
F8.11	125		250,000
F8.12	18		500,000
F8.13	25		1,000,000

Figures F8.11, F8.12, and F8.13 show the restricted areas for the Northeastern U. S. only.

1.1.1.1.1.1

s 1

Figures F9.1-F9.26 show areas that would be restricted from reactor siting by population density criteria. These criteria restrict the number of people that can reside in an annulus surrounding a reactor site. The population density restrictions and the annuli considered in each figure are tabulated below. The population restrictions are shown in terms of average population density (people within the annulus/ annulus area).

	Radii of the Annulus	Average Population Density
Figure	(mile)	(people/mile ²)
		na an a
F9.1	0-2	100
F9.2 F9.3	0-2	250
	0-2	500
F9.4	0-2	750
F9.5	0-5	100
F9.6	0-5	200
F9.7	0-5	350
F9.8	0-5	500
F9.9	0-10	100
F9.10	0-10	200
F9.11	0-10	350
F9.12	0-10	500
F9.13	0-20	200
F9.14	0-30	500
F9.15	0-30	1000
F9.16	5-10	150
F9.17	5-10	350
F9.18	5-10	500
F9.19	5-20	800
F9.20	10-20	400
F9.21	10-20	500
F9.22	10-20	1000
F9.23	20-30	500
F9.24	20-30	1000
F9.25	30-50	500
F9.26	30-50	1000
	· · ·	

Figures 9.3 and 9.4 show restricted areas for the Northeastern U. S. only.

Figures F10.1-F10.4 show areas in the NE U. S. that would be restricted from siting by composite density criteria between 2 and 30 miles of a prospective site. Each criterion would simultaneously restrict the mean

population densities within six annuli: 2-3 miles, 2-4 miles, 2-5 miles, 2-10 miles, 2-20 miles, and 2-30 miles. The mean population densities in each of the six annuli can not exceed the prescribed density limits for the site to be acceptable. Figures F10.1, F10.2, F10.3 and F10.4 consider density restrictions of 500, 750, 1000, and 1500 people/mile², respectively for the Northeastern U. S.

Figures F11 and F12 show areas in the 48 contiguous United States that would be restricted from reactor siting by the combination of a population density restriction within two miles and a composite population density restriction between 2 and 30 miles of the site. Figure F11 considers a population density restriction of 100 people/mile² within 2 miles and a composite population density of 500 people/mile². Figure F12 is based on a 250 people/mile² density restriction within 2 miles and a composite population density restriction (2-30 miles) of 500 people/mile². The 2-30 mile composite restriction is as defined for Figures F10.1-F10.4.

Tables F2.1-F2.24 show the fractions of land available for reactor siting in each state if sector population restrictions are added to a composite population density criterion. These restrictions would limit the number of people that could reside within any sector in each of the composite annuli (see Section 4.5.4 of Chapter 4.0). For these tables, five annuli were considered: 0-2 miles, 0-5 miles, 0-10 miles, 0-20 miles, and 0-30 miles. The allowable populations in each annuli were calculated assuming 250 people/ $mile^2$ between zero and two miles and from 250 to 1500 people/mile² in the two to thirty mile region. An acceptable site must satisfy the sector population restriction for each of the composite annuli. The sector population restrictions (fraction of annulus population allowed within the sector), sector widths, and the 2-30 mile average population densities (people within an annulus/annulus area) considered in each table are given below. Tables F2.1-F2.12 show the land areas that are uniquely restricted by the specified criterion. Tables F2.13-F2.24 show the fraction of land available for reactor siting based on the specified criterion.

Table Width	Sector Population Restrictions	Population Density (2-30 miles) * (people/mile ²)
F2.1 & F2.13 22.5 [°]	$\frac{1}{16}, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	250
F2.2 & F2.14 22.5 ⁰	$\frac{1}{16}, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	500 *
F2.3 & F2.15 22.5 ^o	$\frac{1}{16}, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	750
F2.4 & F2.16 22.5 [°]	$\frac{1}{16}, \frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	1500
F2.5 & F2.17 45 [°]	$\frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	250
F2.6 & F2.18 45°	$\frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	500
F2.7 & F2.19 45 [°]	$\frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	750
F2.8 & F2.20 45 [°]	$\frac{1}{8}, \frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	1500
F2.9 & F2.21 90 ⁰	$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	250
F2.10 & F2.22 90°	$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	500
F2.11 & F2.23 90 [°]	$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	750
F2.12 & F2.24 90 [°]	$\frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}$	1500
(a) A set of the se	and the second	

Tables F3.1-F3.5 show the environmental suitability of land not restricted by each of 5 population siting criteria. (The environmental suitability classifications were discussed in Section 4.4 of Chapter 4.0). These tables show the fraction of land, by state, that 1) lies within each of the five suitability categories and 2) satisfies the population criteria. The population criteria consist of a population restriction within two miles and a composite population restriction within the 2 to 30 mile region. (The annuli considered by the 2 to 30 mile composite population restriction include 2-3 miles, 2-4 miles, 2-5 miles, 2-10 miles, 2-20 miles, and 2-30 miles.) The population criterion considered by each table are tabulated below.

Table	Population Case	0-2 miles (people/mile ²)	2-30 miles (composite) (people/mile ²)
			<u>+</u>
F3.1	1	100	250
F3.2	2	250	500
F3.3	3	500	750
F3.4	4	500	750
F3.5	5	500	1500

Tables F3.6-F3.10 show the effect of applying different population criteria (the five cases considered in Tables F3.1-F3.5) on land available within each of the suitability categories. The suitability category considered in each table is tabulated below.

Table	Environmental Suitability Category
F3.6	low
F3.7	medium-low
F3.8	medium
F3.9	medium-high
F3.10	high
1940 - 11 - 12 1	

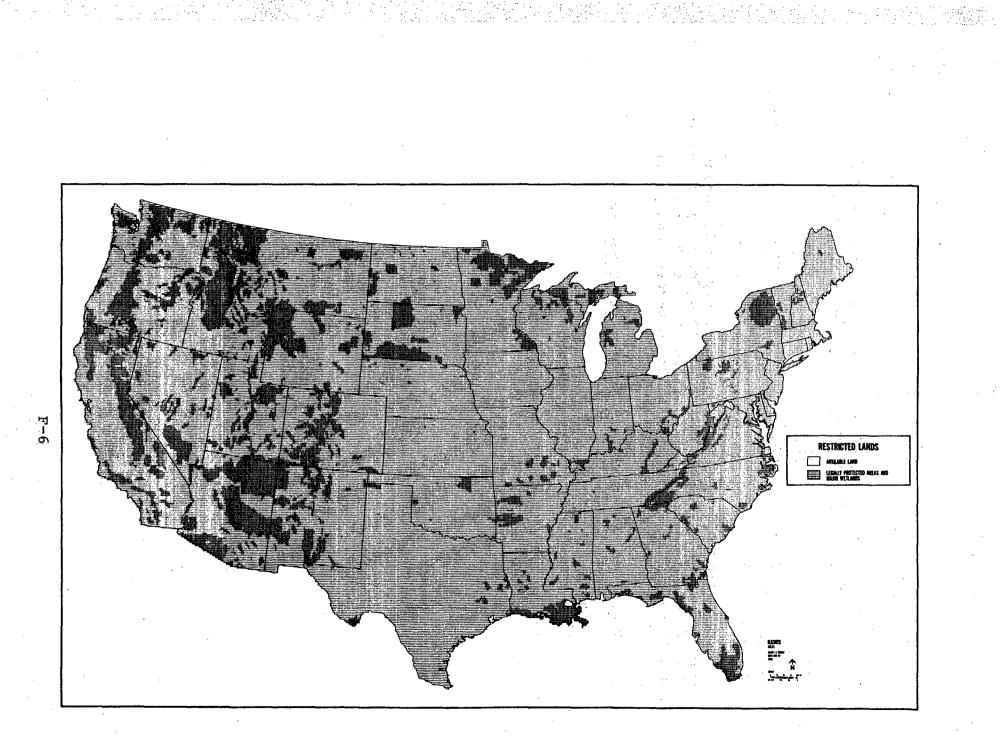
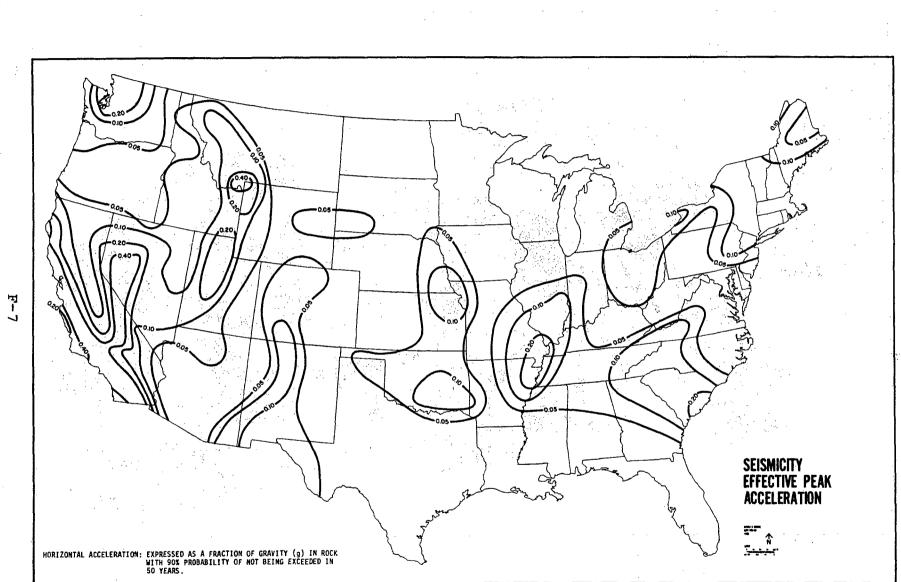
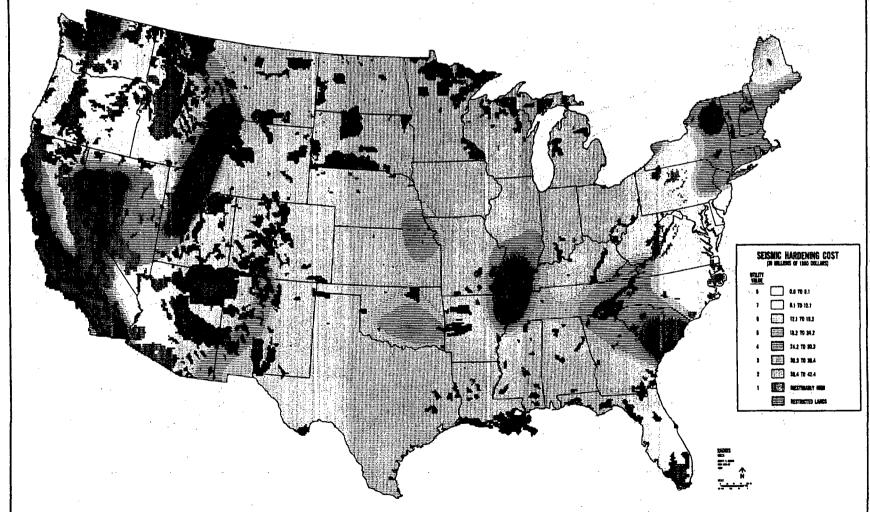



FIGURE F1



W)

FIGURE F2

and the second

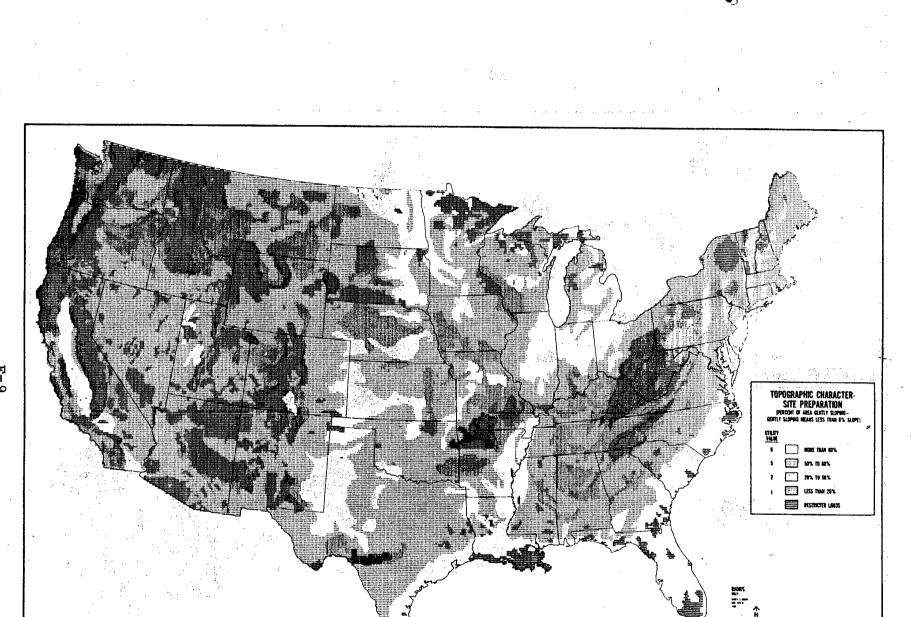


FIGURE F4

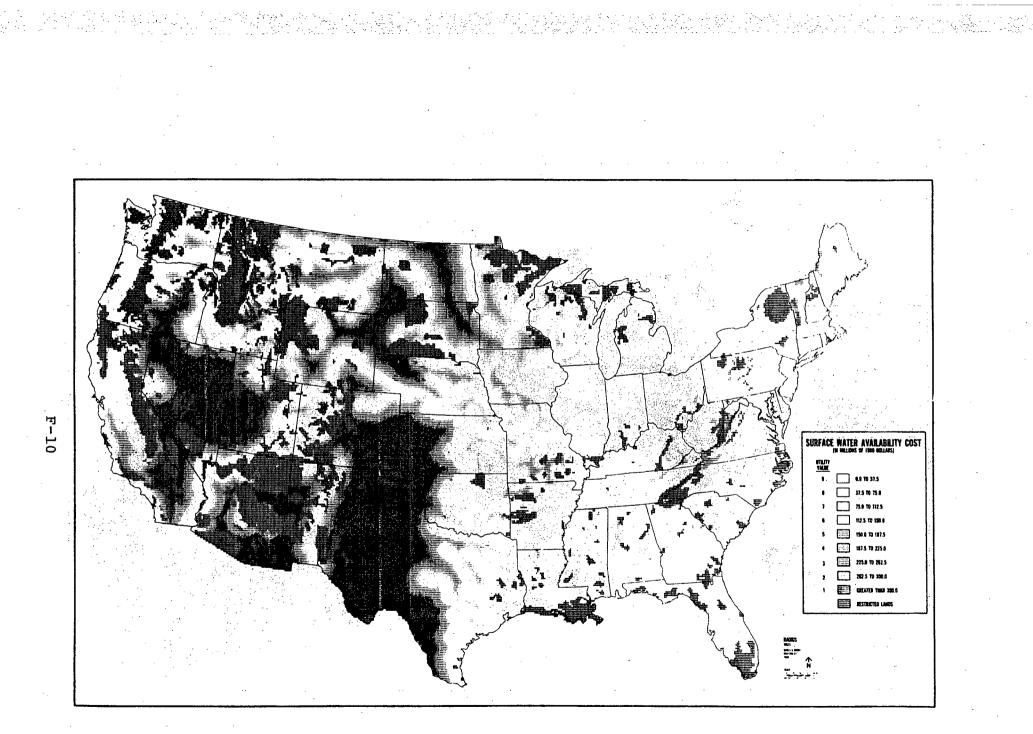
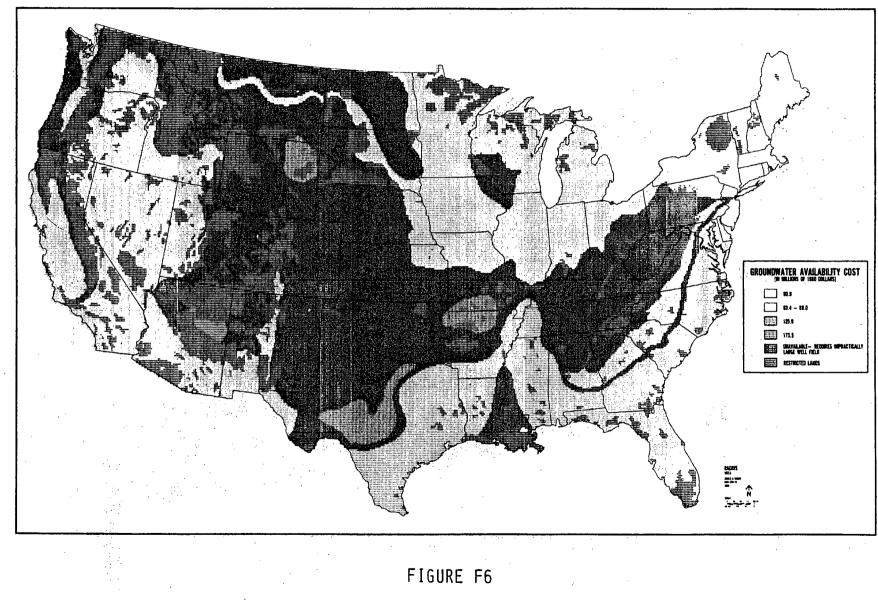



FIGURE F5

F-11.

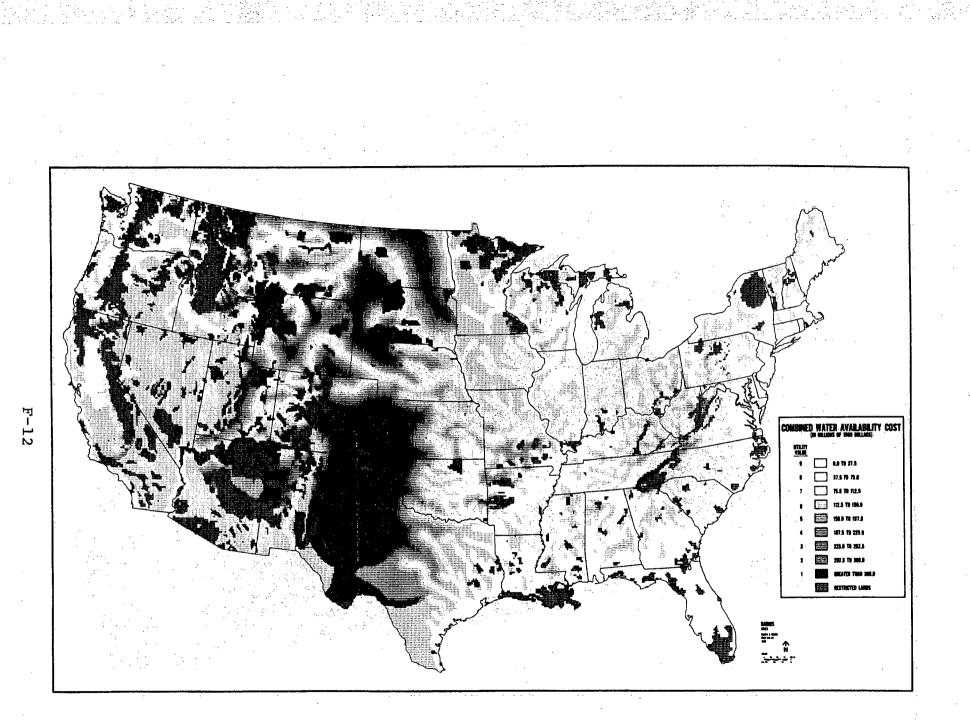
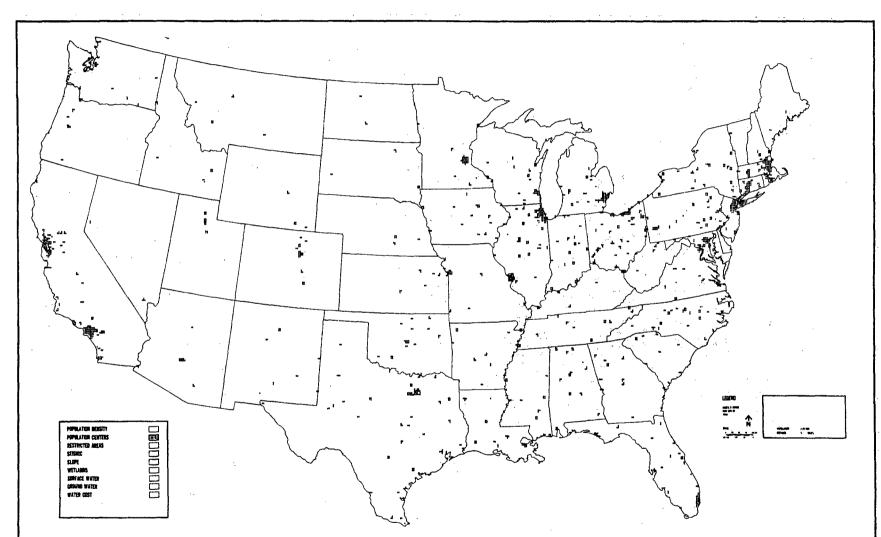



FIGURE F7

آراً:

1. 是正正正是了 4.

FIGURE F8.1

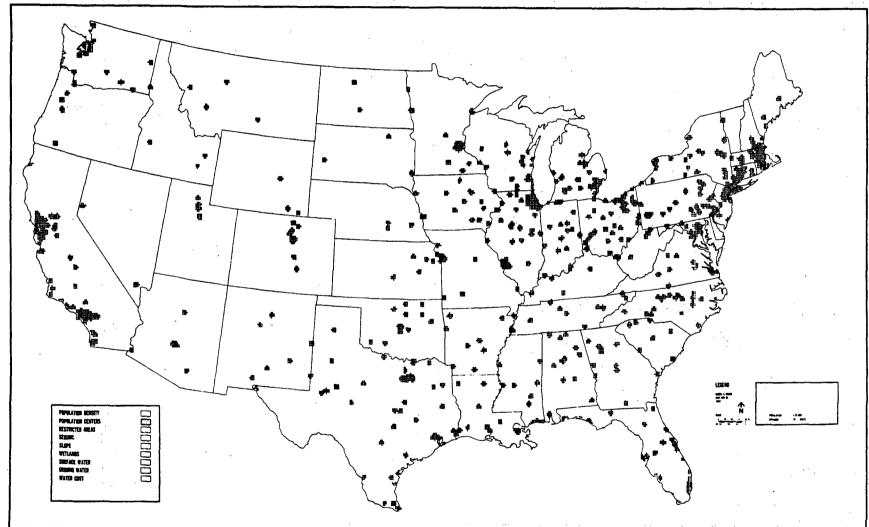
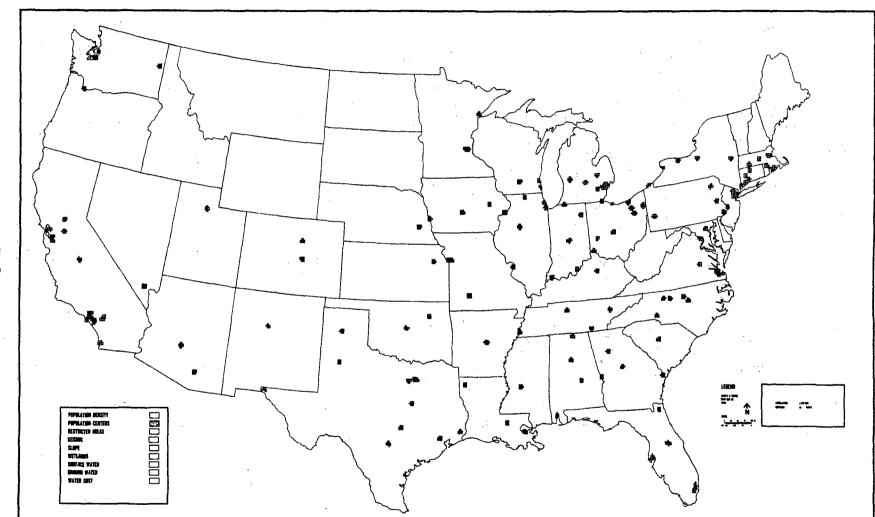


FIGURE F8.2

F-14


41 - 1 2

æ

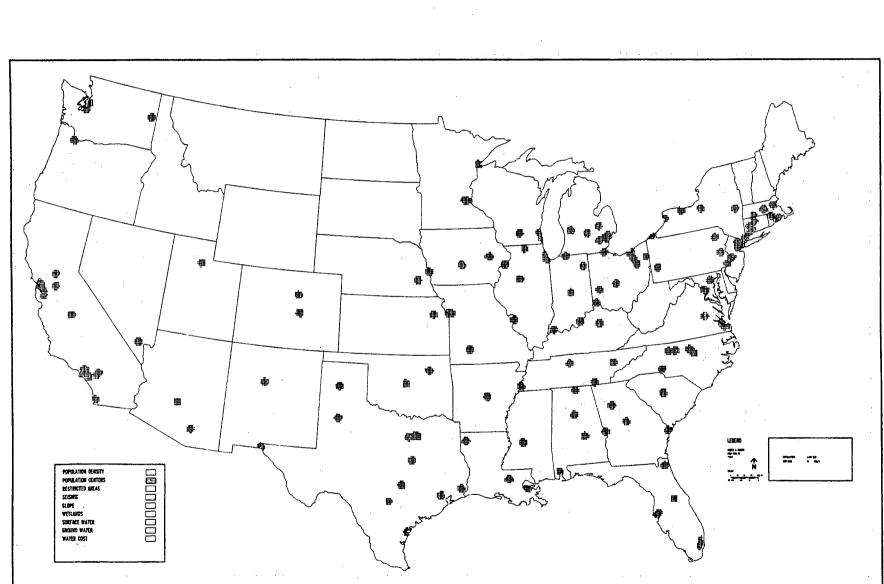
10 1.11

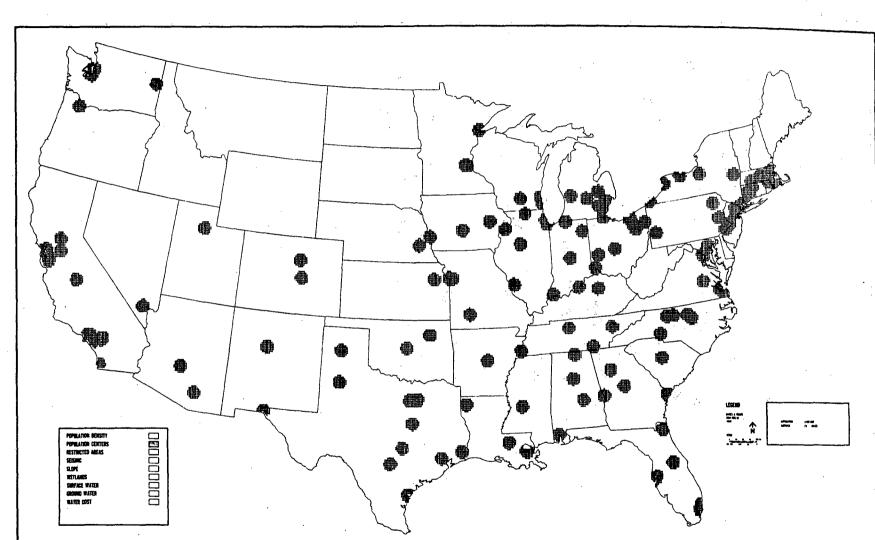
. .

w.

a second seco

FIGURE F8.3




FIGURE F8.4

. 1-

(#

F-16

÷ ...

aG.

1

FIGURE F8.5

F-1.7

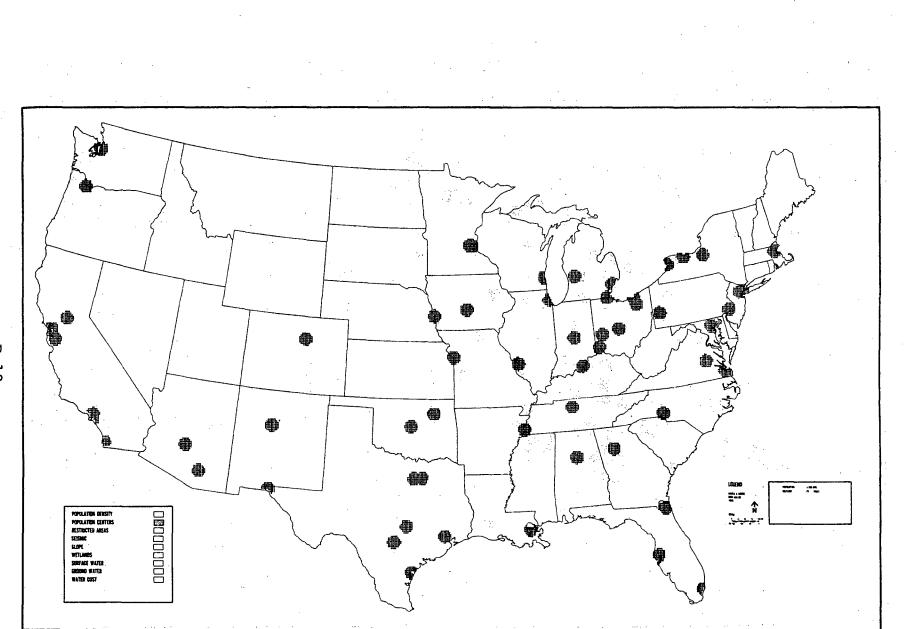


FIGURE F8.6

12

1

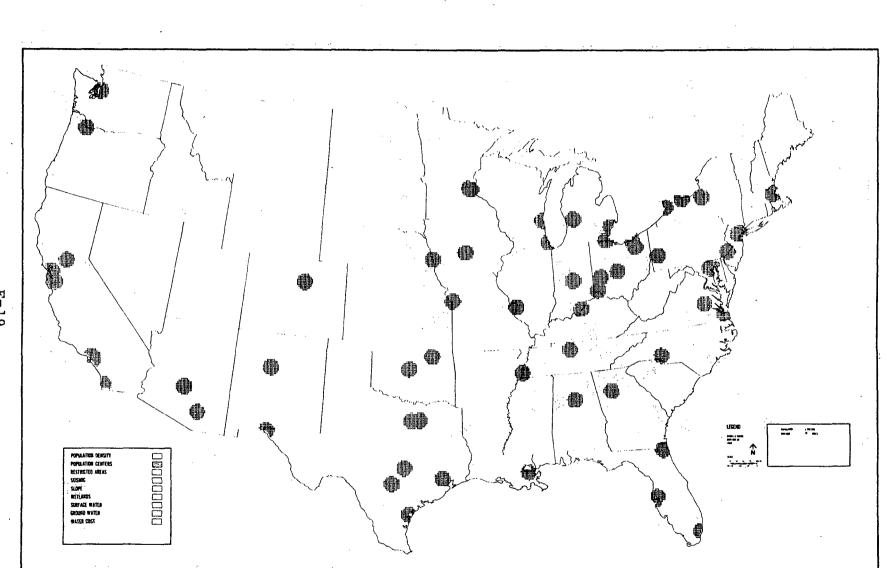


FIGURE F8.7

F-19

2

. . .

1

(Ø.,

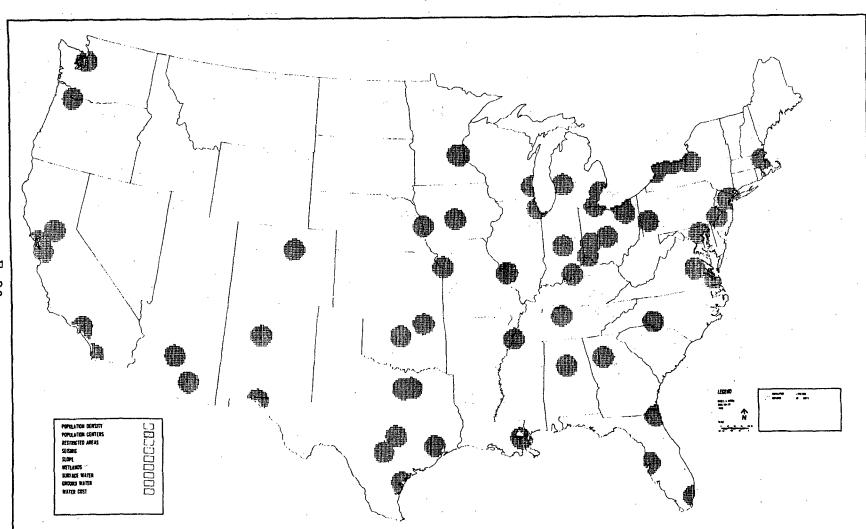


FIGURE F8.8

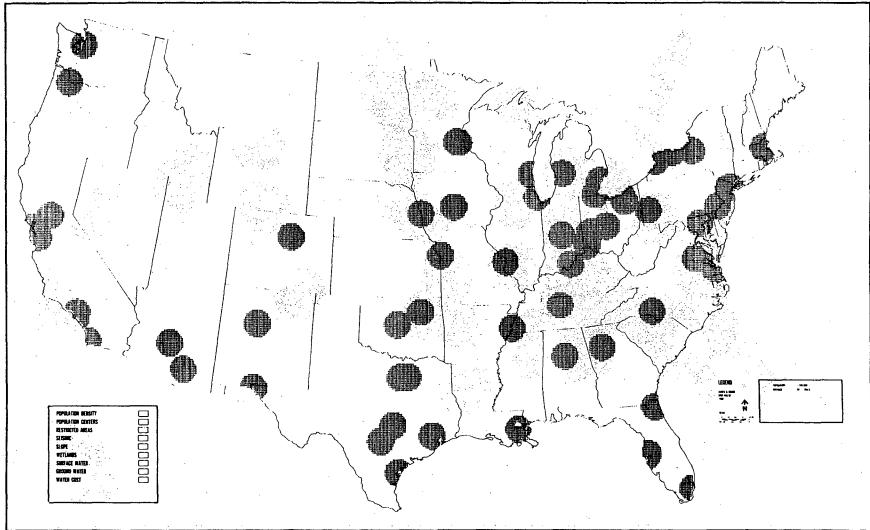


FIGURE F8.9

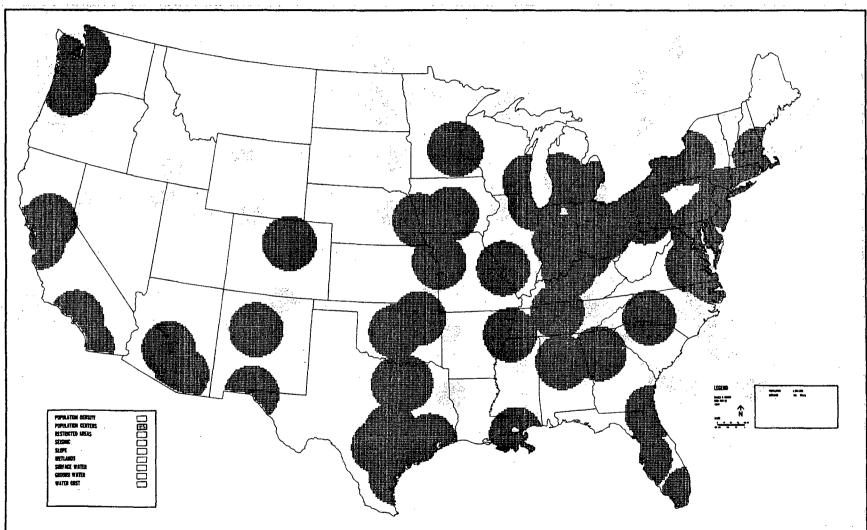
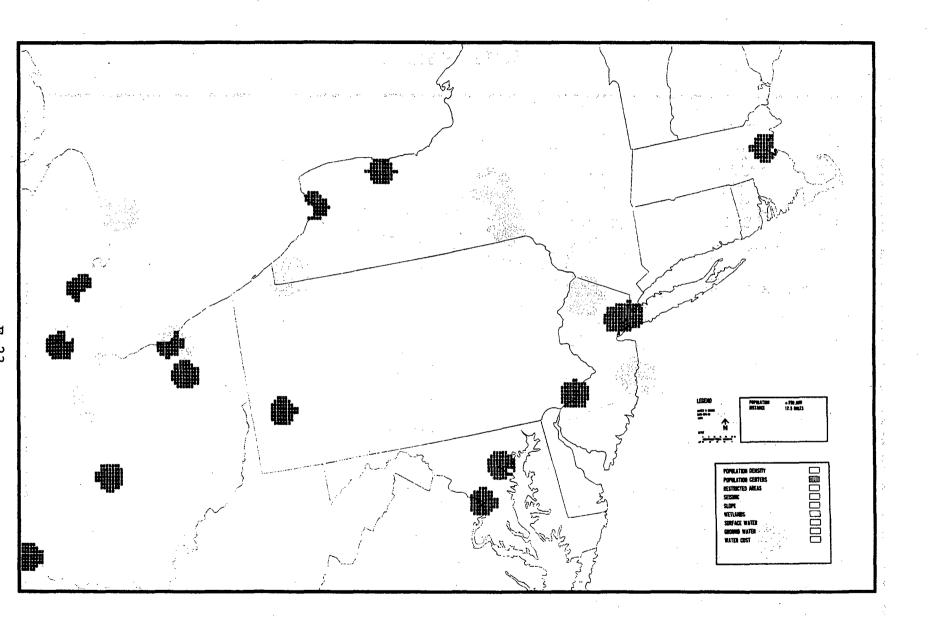
Ľ

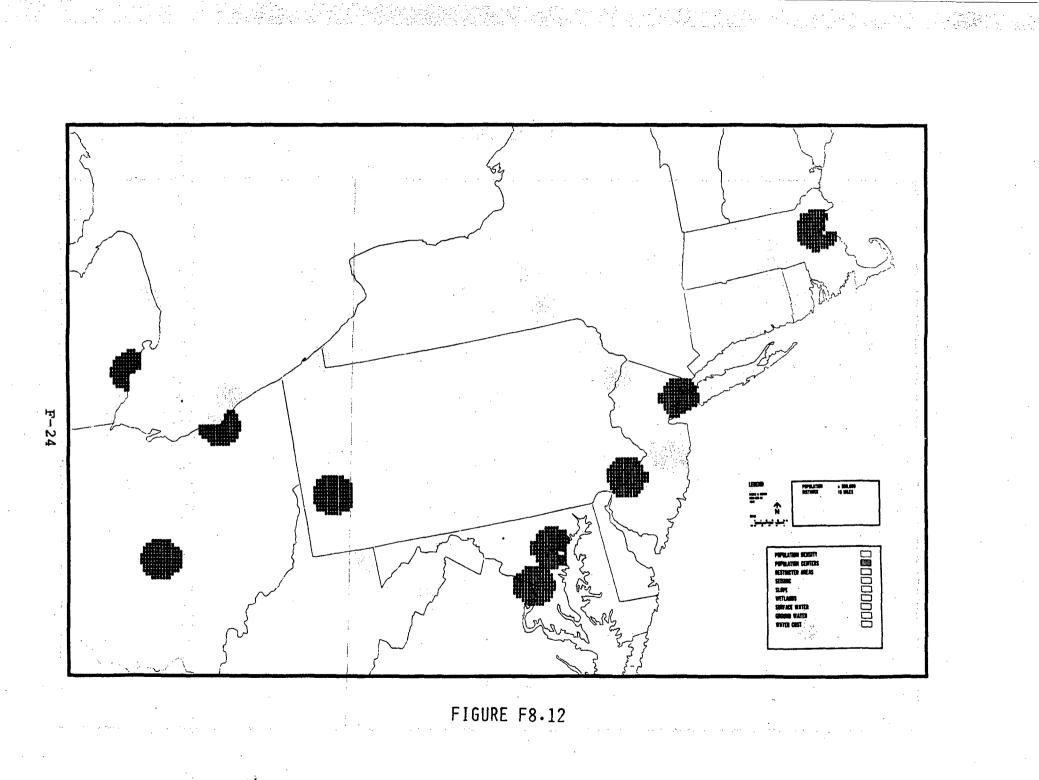
يە،

.

Ĭ,

()


FIGURE F8.10

ų,

FIGURE F8.11

F-23

(

ſ

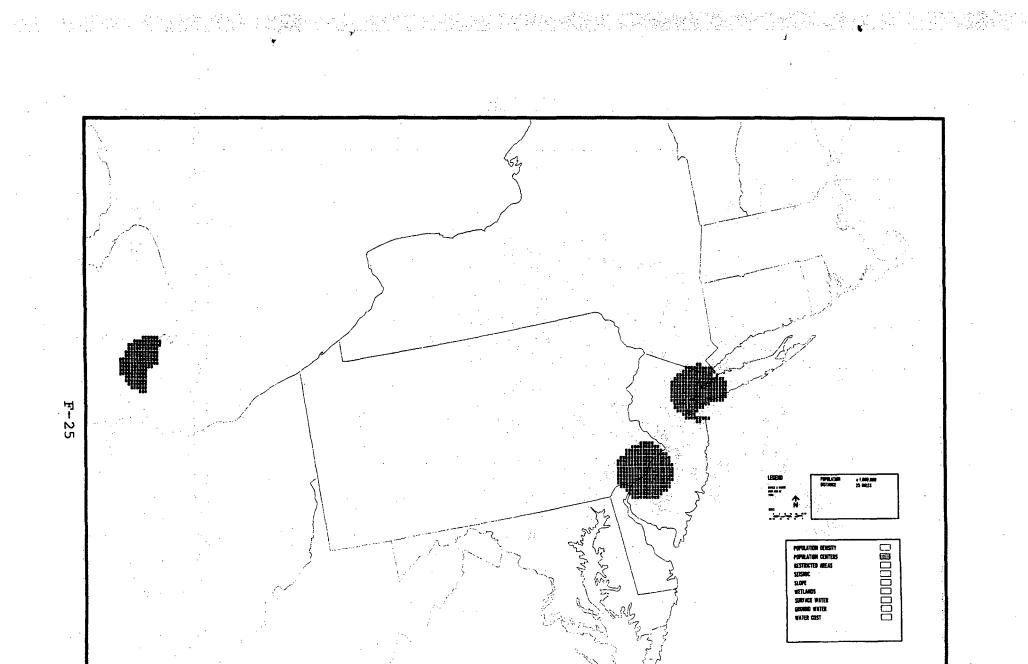


FIGURE F8.13

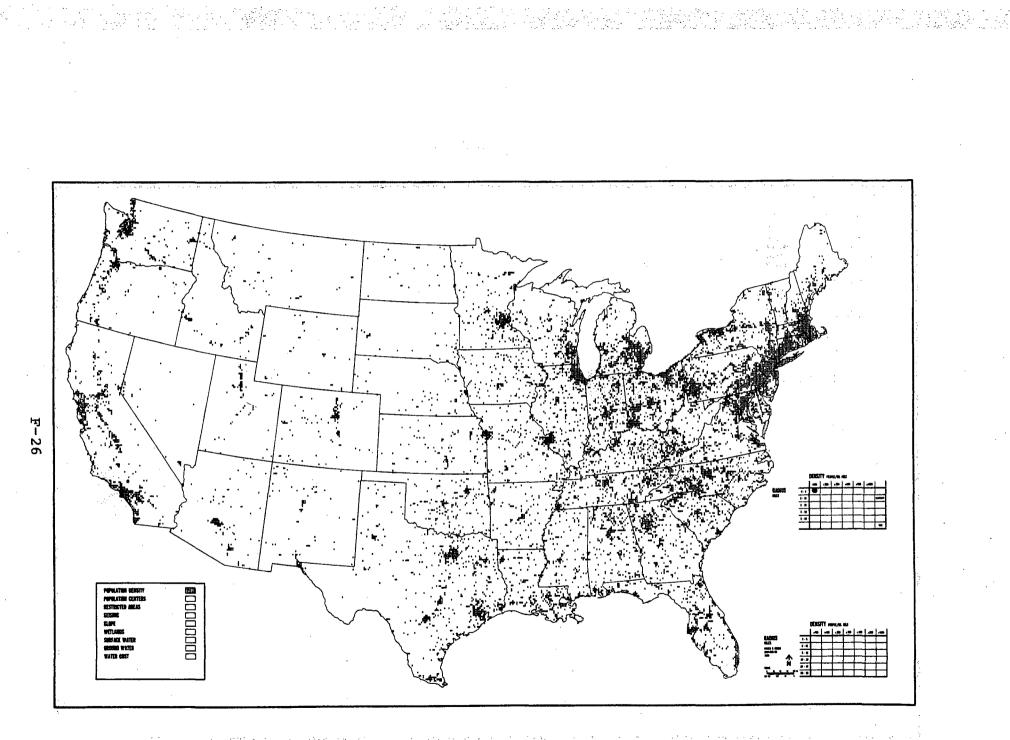
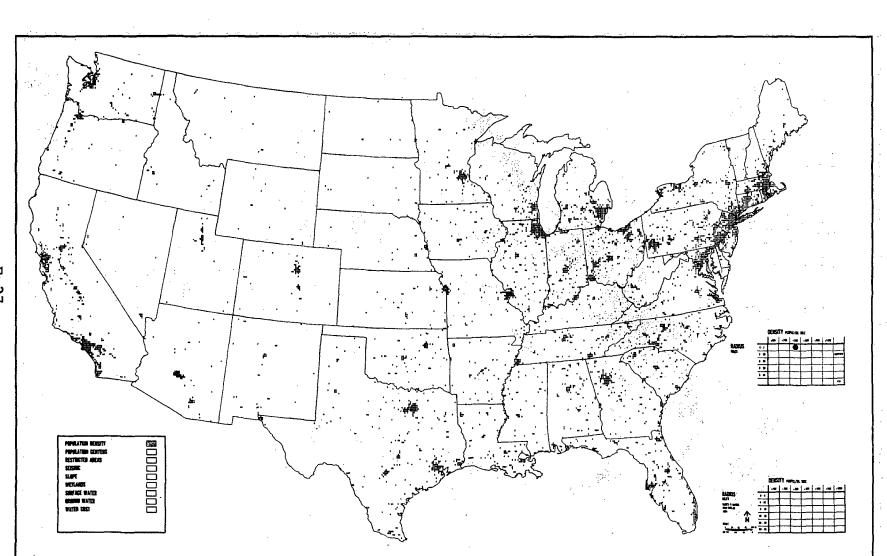
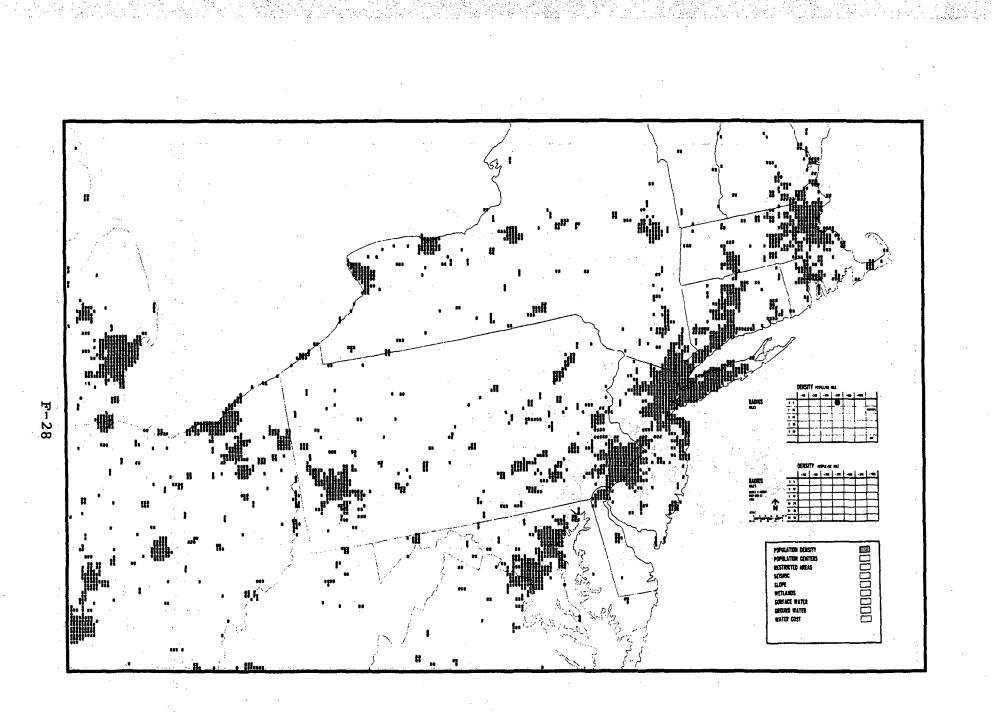



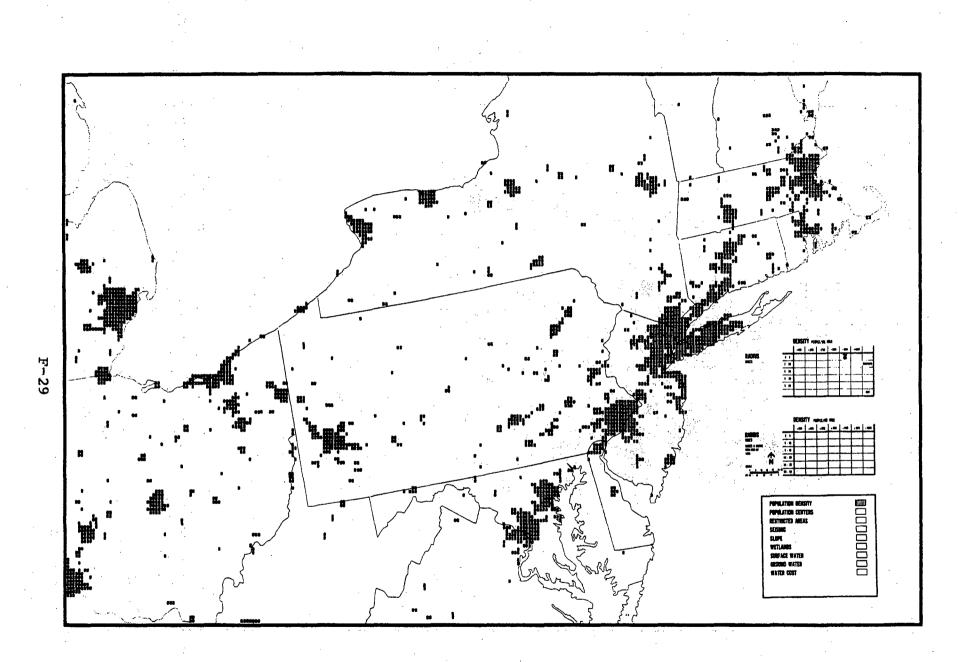
FIGURE F9.1

%.



1

FIGURE F9.2


F-27

'a 7.2. ∙

- (**#**.

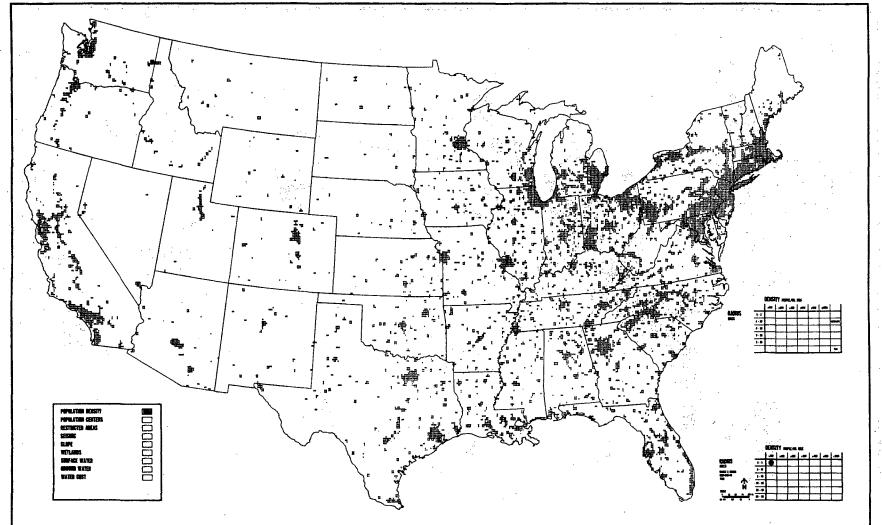
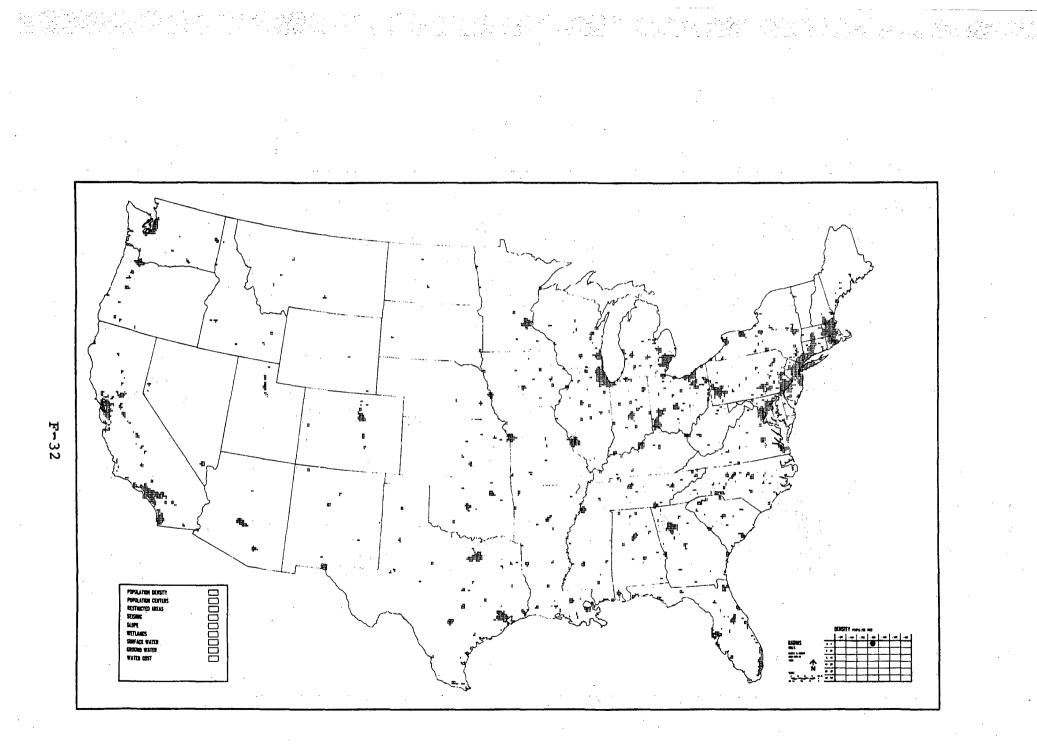
á

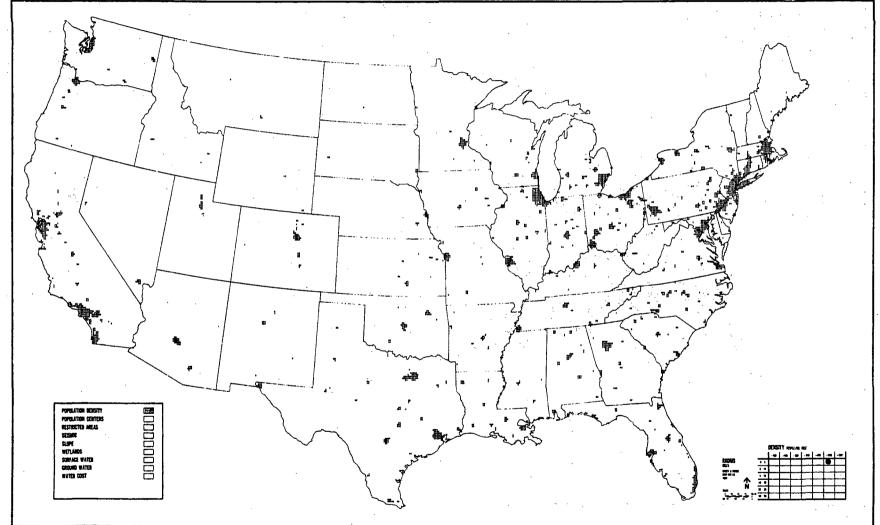
÷i.

FIGURE F9.4

\$

Ť


FIGURE F9.5

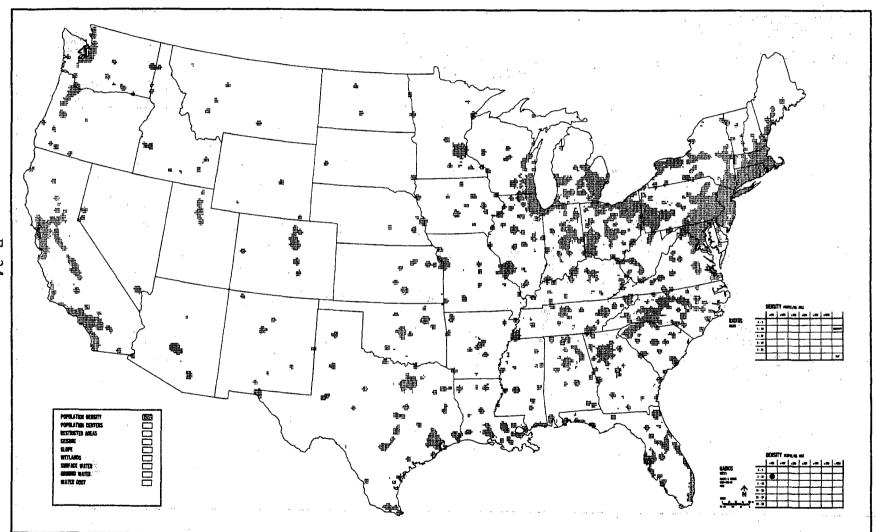


FIGURE F9.6

F-34

(6)

a (a san an Taona a san ar ang

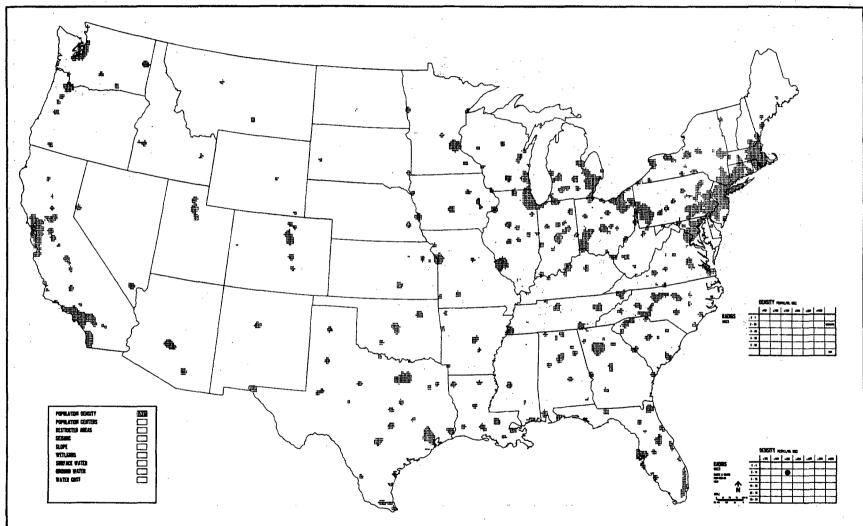


FIGURE F9.10

.

에 있는 것은 것 이야지. 1975년 - 1975년 1975년 - 1975년 -

1

and and a second se The second sec

FIGURE F9.11

31

di ka

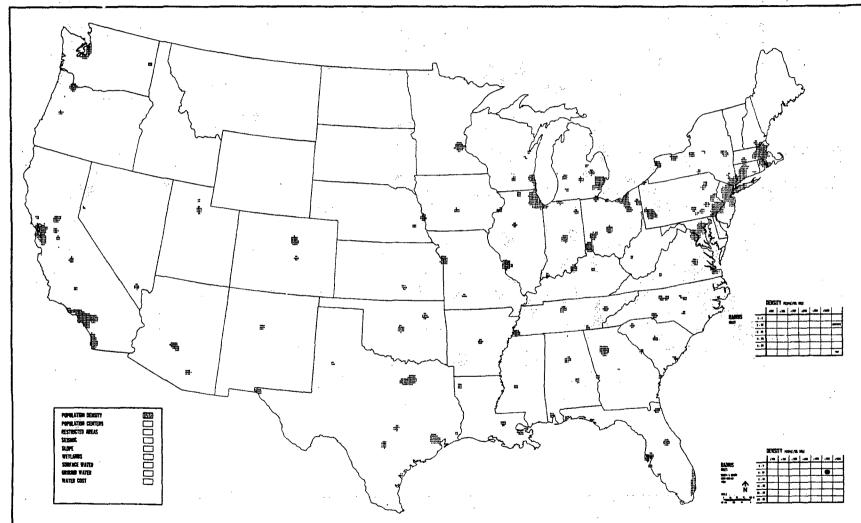


FIGURE F9.12

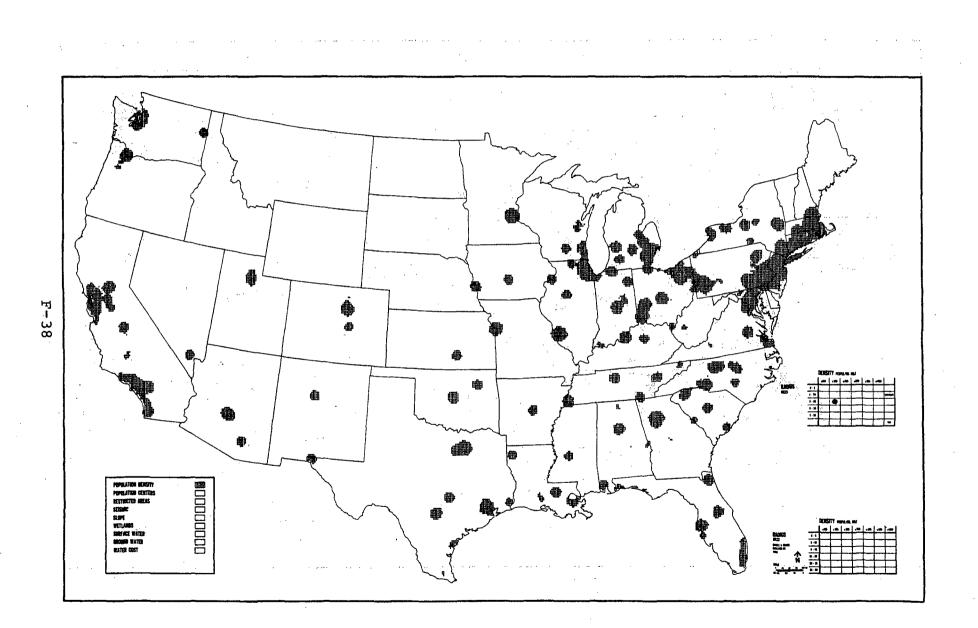


FIGURE F9.13

4

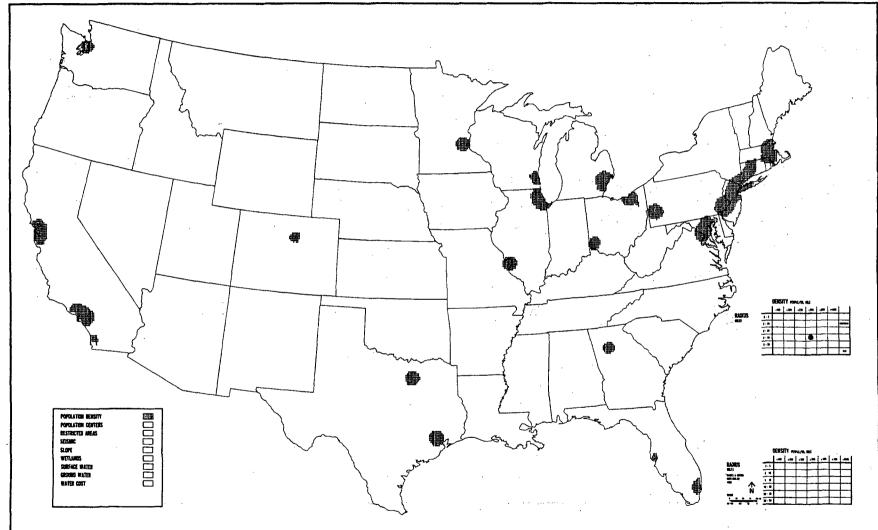
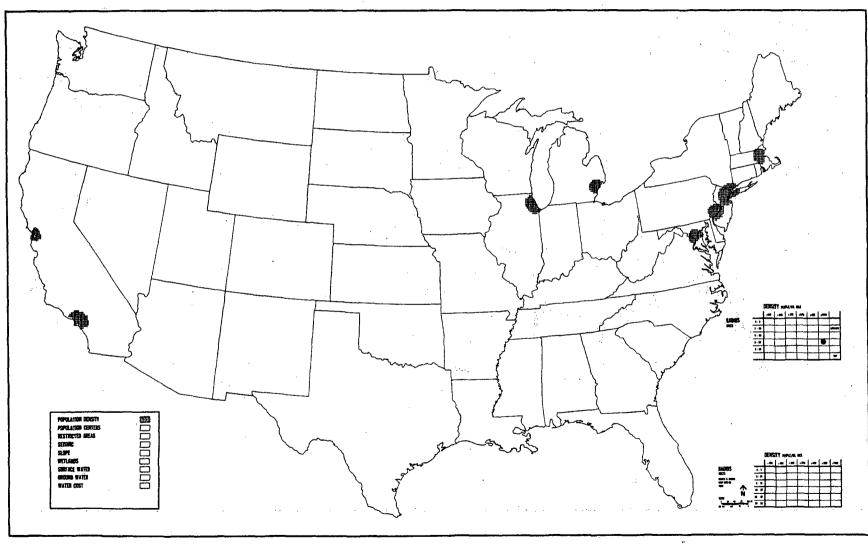


FIGURE F9.14



.

n na da San San

i

i,

¢,

F-40

a xy

.

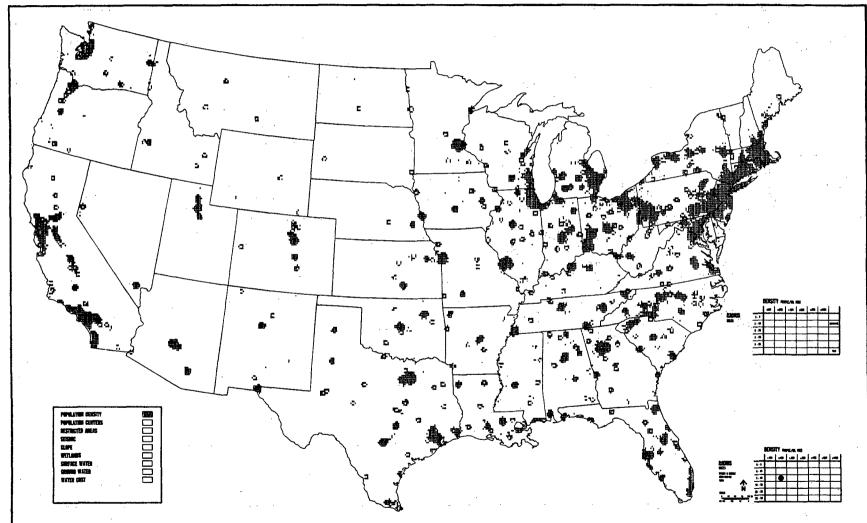


FIGURE F9.16

F-41

.

7

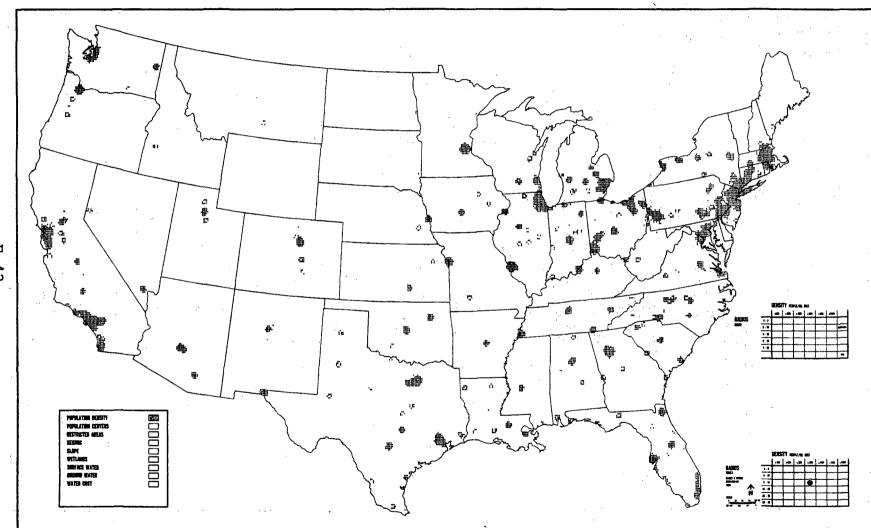


FIGURE F9.17

(ب

4

FIGURE F9.18

F-43

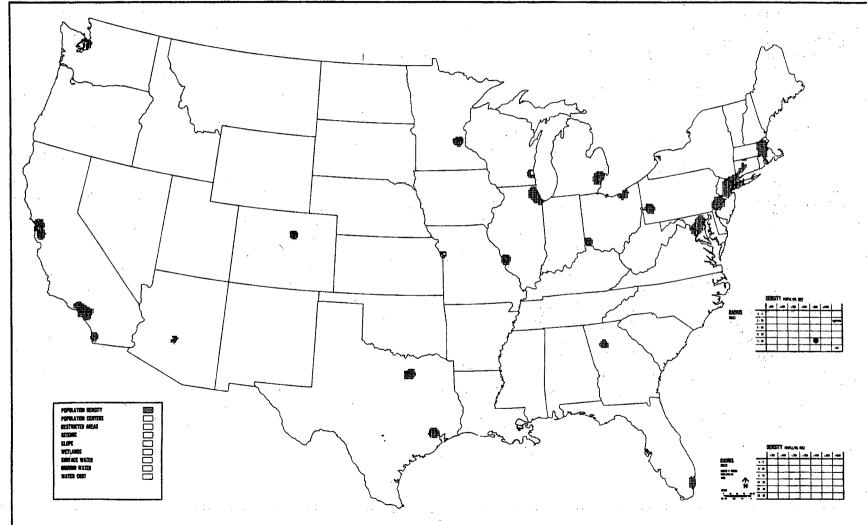


FIGURE F9.19

. 5

FIGURE F9.20

F-45

1999년 2월 1998년 1997년 전 전 1997년 1월 2월 1997년 1998년 1998년 1998년 1997년 1997년 1997년 1998년 1998년 1998년 1998년 1998년 19 1997년 1998년 1998년 1997년 1997년 1997년 1998년 199 1999년 1998년 1998년 1999년 1999년 1998년 199

FIGURE F9.21

FIGURE F9.22

F-47

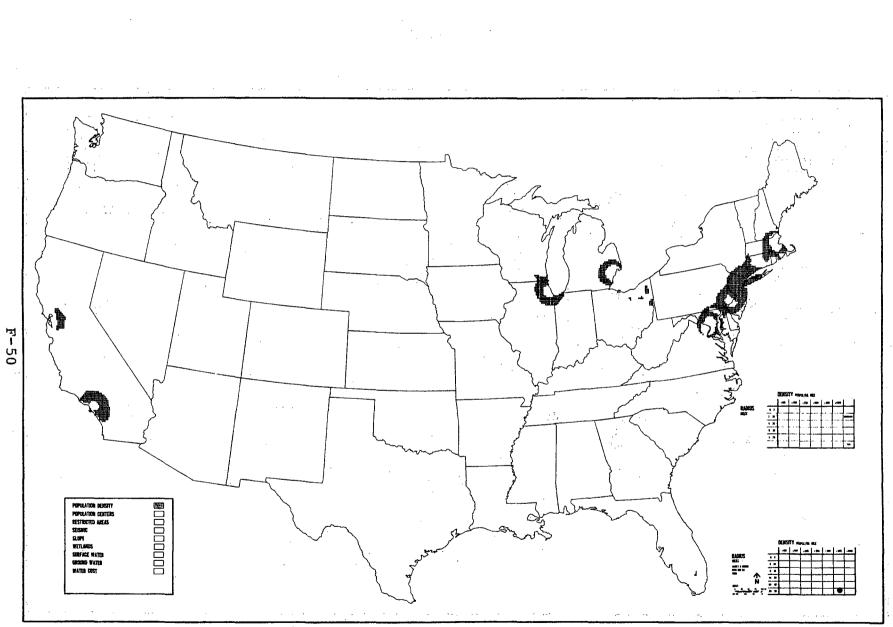
and the second

نې د چې

2

35 S.

FIGURE F9.23


• 7

à

- 192 197 1**8**

FIGURE F9.24

المعر ا

FIGURE F9.25

이는 동안에 가지? 같은 4일에 있는 것이다.

) 11. 11.11

2

FIGURE F9.26

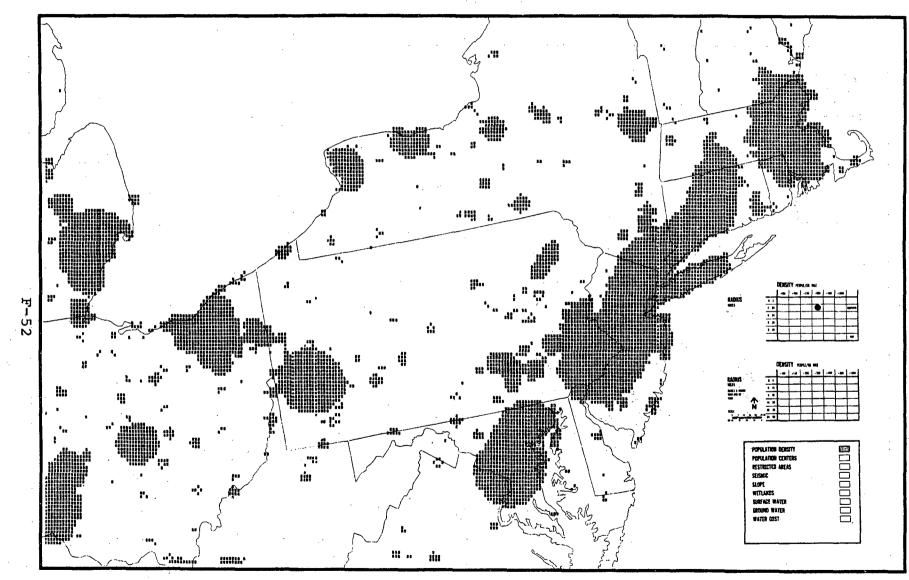


FIGURE F10.1

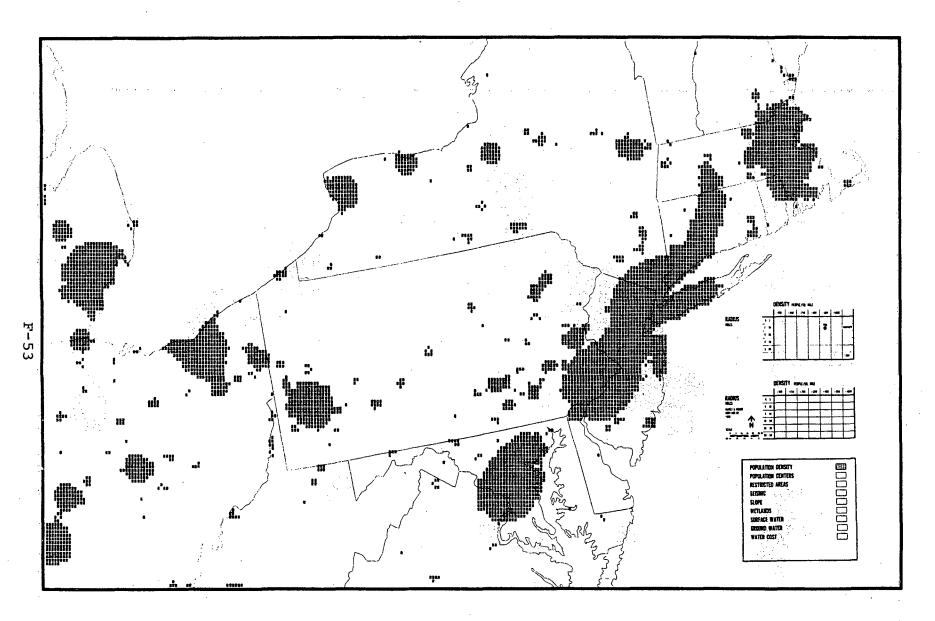


FIGURE F10.2

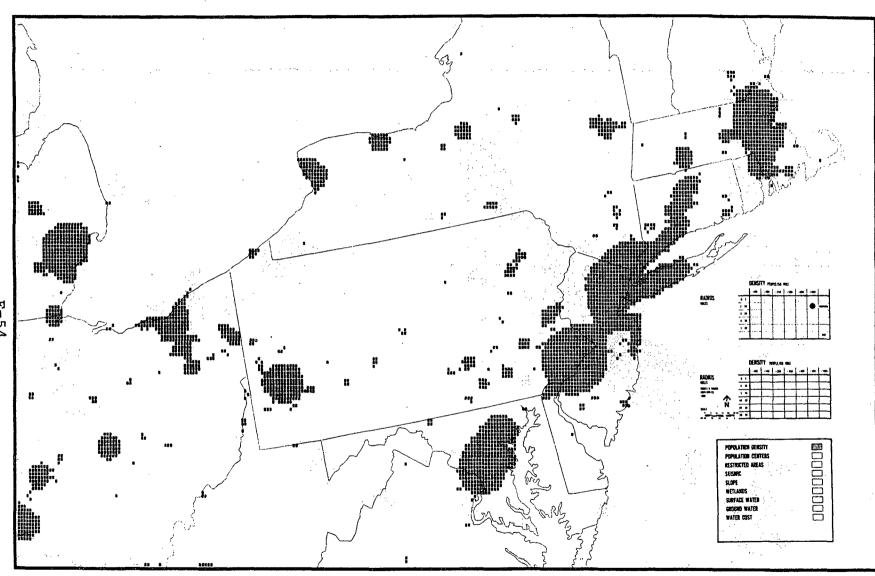


FIGURE F10.3

F-54

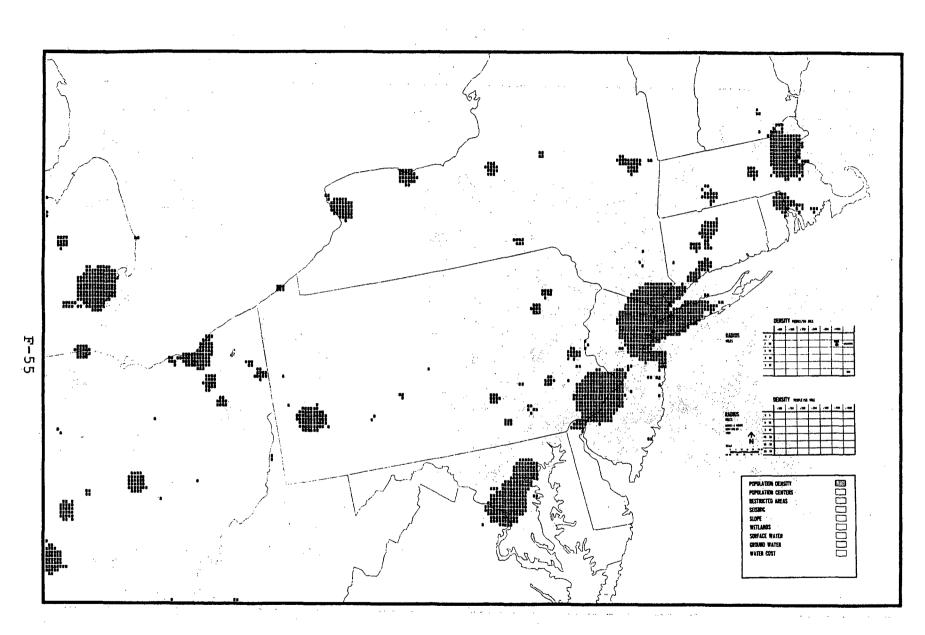


FIGURE F10.4

ార్ సినిమా సాధాని సంఘటను పెంటు సంఘటను సినిమా సంఘటను పెండు సెండు ఉంది. సినిమా సౌకర్యం సాధాని సినిమా చేశాలు సిని సినిమా సౌకర్యం సినిమా సంఘటను సినిమా సినిమా

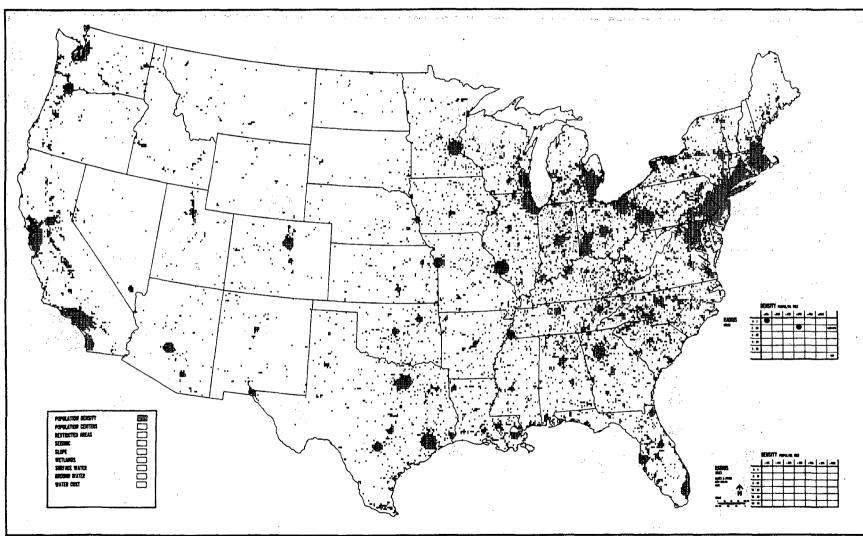
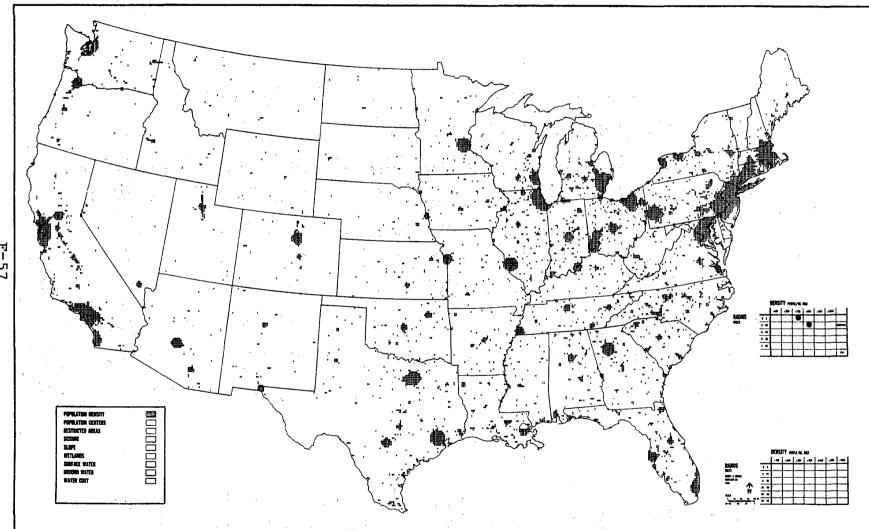



FIGURE F11

TABLE F1.1

.

SEISHIC MARDENING UTLLITY FUNCTION +++ COETS 14 MILLIONS OF DOLLARE (1980) STATE AREAE IN EQUARE MILES AND 2 OF STATE

TABULATION	INES	TINALLY	HIGH • TO 45							
		Ĩ		3 10 36 4		•				
				1	2 TO 30 1 16 1	2 TG 24 ;	•	_		
· · ·		1	ŀ	l		12	1 72 16 6 3			
		[1		** : : FE:	TROTTEL 14401
	1	ł	1	I,	1	1	ł	I		· · ·
UTILITY VAL	UE 1	2	3	14	5	c	•	Ē		
AL 48 474	с о:.	0 02	0 0	· 0	с о с:,	164	5761 11 67			5:40*
AFILONA	0 21	10	48 0 Ct.	e7 C 13	193	5834 5 11	2551		5-405	::-34:
AR- ANSAS	6340	473	521	1 2%	724	1966	3744	32542		53254
CA_IFORNIA	6402E 39 9%	2200	2:42	20*5	3410	8338	14195	11077	51442	lellel
COLOPADO	0 0%	0 0	0	0 02	. 0	926	2152	72587	Zis: J	104325
CONNECTICUT	0 0%	0 0	0 02	0 0%	. 0 0%	5111 100 04	0 0.	:		5211
DELAWARE	0 02	0 02	0 02	0 0%	0 02	0 0%	0.07	2257		2321
FLOFIDA	0 05	0 0%	0 01	0 02	0 02	0 05	. с	46257	11105	5935~
GEOPOIA	0 0%	434 0 72	782	1409	3377	14021	0 0%	25976	96.	56e04
IDAHD	6736 . 81%	649 1 0%	946	1200	965	230e 2 8%	6755 8 1	261c" 31 45	3"***	6354*
ILLINGIS	2364	975	1341		2606	8882 15 72	5845	31391	13e1	5634:
INDIANA	0 0%	0 02	0 02	0 02	0.0%	600 1 7%	2355	3205" BE 74	1322 3 etc	36342
1044	0 0%	0 05	0 02	0 0 0 X	0 01	200	1467	54301	00%	5.0.5
ANSAS	0 0%	0 0 0 2	0 02	. 0 00	. 0	12100	9795	60041 73 0%	153	8226~
KENTUCKY	1283	232	174	212 0 31	415.	2683	4207	28593	2470	4026=
LOUISIANA	0 0%	0 02	0.0%	0 0%	0 01	0 01	0 0%	: 33736 70 1%	14417	48152
RAINE	0 02	0 01	0 01	0 0%	0.0x	10721	7981	- 15015	357	34074
MARYLAND	0 07	0 0X	0 0X	0 0%	0.0%	0 0%	0 01	11011 98 7%	145	11156
MASSACHUBETTS	0 01	0.01	0 0%	0 02	0	8627 100 07	0 01	0 02	0 02	845~
MICHIGAN	: 00	0 0%	0 02	0 01	: 0	0 02	0 0%	52156	9679 15 71	6183~
MINNESOTA	. 0 02	0 0x	0 02	0.0%	0 01	0 01		60988 71 0%	2492e 29 01.	85914
MISSISSIPPI	29	125	193	261	338	1245	2972	. 39885	3841 8 0%	47884
MISSOURI	7981	589 0 81	618 0 91	685 1.01	926	4941 7 1X	: 7324 : 10 5%	42354	4510	69934
	1351	251 0.2%	376	: 521	2036	10895	6272	79593	47160	148452
NEBRASKA	0.01	0 02	0 02	0 42 0 0 0 07	. 1.41 . 0 0 01	5694	4.2% 3628 4.7%	53 61 66665 86 0%	1534	7772:
	31565	2220	2953	4767	14311	17978	10042	5B77	20255	110618
	0 01	207. 0 007.	271 0 0.01	: 4 3% 0	. 12 92	16 3%	9.7	5 31 6 0 01	16 3. 1197	9465
NEL HANPSHIRE	0 02	0.02	0	0 02 0 02	0 0X 0 0 0X	: 90 21 : 3049 : 38 11	7 1% 936 11 7%	4024	12 62 C 10 0	80 0*
NEW JERBEY	0 01	0.02	0	. 0		18210	11792	6020c 49 3X	3153e 25 9%	121744
NEW YORK	0.0%	0 02	0.02	001		: 15 02 : 21037 ·		12101	9930 . 19 8%	5021*
NORTH CAROLINA	: 0.01 : 0 0 01	0 02	0.0%	. 0	154	41 92 10905 21 52	4970 9 B	26113	8627	3076°
NORTH DAKOTA	: 0.01	0 02 3	0	0 0X 0 0	0	0 02	0 0	64433	6572 9 31	71005
0410	0 02	0 02	0 0X 0 0 0X	002	0	0 02	0 01	39507 94 4%	2326	41832
OKLAHOMA	0 01	0 02	0 02	0.00	0	24617	15932	25601	3464	69014
OREGON	0 02	0 02	•	: 0:	0. 0X	: 183	454	66942 68 4%	30340	9792£
PENNBYLVANIA	0 02	0.02	0	0 03	· •	6743	4449	30533 67 4	3551 7 81	45276
RHODE ISLAND	000	0 0%	··• 0	. 0	0	1206	. 0	0.01	0 01	1201
SOUTH CARDLINA	12603	1843 :	2548	2586 .	5037	3908	0.01	0	2063	31188
BOUTH DAKOTA	0 02	0.02	0:	: 0 .		: 0	0	54214 70 43	22793	77007
TENNESSEE	3532 8 41	540 1 3%	569	618 1. 5%	637	12342		5780	2576 ¢ 21.	42122
TELAS	. 0 04	0 -	0	0	0		1168	26218: 97 5.	5491	268843
UTAN	17573 20 62	1274	1206	1766		4873 5 7%	5172	25553	20002 30 01.	00182
VERNONT	0 0%	0 02	0 02	0 0 1	0	6630	0.0.	0 0°.	1023	9852
VIRGINIA	0 02	0 0%	0.0%	0.02	58 U 12	5404 13 11	1983	20456	2063	41165
MASHINGTON	. 7044	396	454	511		2528 3 6%	9037 7 31	27037	24762	6931c
NEET VIRGINIA	0 02	0 02 -	0 02	0 02	0 0%	1148	1139	190"" 79 2".	2771 11 37	24105
WISCONSIN	0 02	0 02	0 02	0 02 0 01.	0 01	0 0	4 7% 0 0%	51064	1025 E 61	57022
WIDLUNGING	904 ·	200 0 3%	270	24: 0 2% ·	299 0 31	1264	3252	91 665.7 67	21221	079E*
10.0	16328F	12710	15141	20207		257403				
	5 41	0 4%	0 5%	0 71	1 3%	8 5%	e 0'.	58 41.	16 S.	

••• UTILITY VALUES ARE DERIVED FROM MAP DF EFFECTIVE PEAN ACCELERATION EXPRESSES AS % (BRAVITY) AND ASSOCIATED COSTS OF BEISNIC HARTENING' COSTS ARE RELEVANT TO IDO PHO PLANT FOR GAFE SHUTDOW: EARTHQUANE THE X3 MAS A PROBABILITY OF LESS THAN 0 3% OF BEING EPECEDE IN 30 YEARS "UNESTIMABLY MION' REFERS TO AREAS UTH GREATED THAN 60%. COSTS FD2 MREAS UTH 20. T(60%, MKRS 2) VIDE INTO EQUAL INTERVALE AND ASSIGNED UTLLITY VALUES 2-6

TABLE F1.2

SITE PREPARATION UTILITY FUNCTION 000 PER CENT OF AREA LESS THAN BY BLOPE (GENTLY BLOPING) STATE AREAS IN BOUARE MILES AND Y OF STATE

TABULATION		UNDE	F 20X DF 20X	TD 50% C			• .
•				30%	TO BOX O	F AREA Than bo	X AREA
	UTILITY VALUE	1	2		9		RICTED LANDS
ALABAMA		. 0	17360	30069	2403	2075	51907
ARIZONA		0X 125	2972			: 4% 59405	114342
ARNANSAS		: 0X	- 3X 7131	45%	. 0%	52%	53258
CALIFORNIA		122	131	: 271	36%	12X	160364
COLORADO		17%	131	22%	16%	322	:
		· 7%	: 13%	: 45%	. 9X	272	
CONNECTICUT	. *	: 0. . 01.	51%	. 49%	: . 0%.	01	
DELAMARE		- 01 - 01		· 31	: 95%	. 21	
FLORIDA		- 0x	: 01	: 6%	: 70%	: 22%	£
GEDRGIA		: 550	5742	: 52%	: 27%		
IDAHD		4362	13809	: 27860	1.5.0	: 37519	83550
ILLINDIS		0	: 1013	: 29461	: 24704	: 1361	
INDIANA		0	21 2557 71	13317 37x	: 19146	: 1322	: 36342
IOMA		0	: 13896 '	37249	4922	: 0	36067
RANSAS	*	0	: 25% : 8502	: 48540	: 25032	: 193	: 92247
KENTUCKY		9783	: 14678	: 13056	: 260	: 2470	40269
LINISIANA		: 24% : 0	: .0	: 9573	: 1X : 24164	: .4%	48154
MAINE		- 0X - 418	: 01 11223	: 21877	1		34075
MARYLAND		. 21	: 333%	: 64%	: .01	: 17	
MASSACHUSETTS		οτ 0		: 52%	: 35%	: 17	:
MICHIGAN	:	: 01	322	681	: 01	: 0%	:
		. 0X	: 01	491	: 36X	: 16%	:
MINNESOTA	<u>.</u>	07	11%	: 41%		: 29%	
M1851851PP1	· · · ·	0 07	4507	29770	201	: 8%	: N
HIBBOURI		: 7662 : 117	: 381	: 271	: 12005 : 17%	. 6X	
MONTANA	1 - A - A - A - A - A - A - A - A - A -	3542	41427	: 36327	: 0	47160	148456
NEBRASKA		0 07	27097	: 31546	: 17344	: 1534	77721
NEVADA		0	2490	87844	: 29	20255	110618
NEW HAMPSHIRE		772	3267	: 2229	: 0	1197	9467
NEW JERGEY		0	: 1013	: 1554	: 5443	: 0	: 8 010
NEN HEXICO	•	5250		19X 62638	: 13471	: 31536	121744
NEN YORK	-	42	: 11292	: 24926	: 975	9930	50219
NORTH CAROLINA	•	2461	: 22X : 2384	: 19454	: 17640	: 8427	50768
NORTH DANOTA		: SX : O	: 5X 2432	: 333370	: 28632	6572	71006
ONID	-	9447	31	: 14449	: 15257		
DILAIDIA		237 1070	4480	: 35%	367	: 6X	47614
GREGON		21	71		167	32	:
			192	: 33%	02	317	
PENNSYLVANIA			53%	227	01	: 81	
RHODE ISLAND		OX	07		OX	OX	
BOUTH CAROLINA		338	376	: 381	511	: 9%	31100
BOUTH DANDTA		1274 21	51	: 31874 : 412	former .		
TENNESSEE			19522 46%	4.72		2596	
TEXAS		8394 21	8106	174906	74942	5491 27 25553	248839
UTAH		1709	8386	43483	6051	29953	85181
VERMENT		1640	3616	1573	Ő	302 302 1023 1023 3665 142 24762 362 362	9852
VIRGINIA	:	2962	5501	22957	4063	3667	41168
WAS:11:070H		102/7	12355	21722		24762	67316
HEST VIRGINIA		15%	18X 4072 17X	312	.01 0	2721	24105
MISCONSIN	. :	70X	10567	33283	6145	5028	57023
HYDHING		01 6253	192 13105	53403	14X 0	: 99553	4/400
	:	61	132	. 55%	: 01	592	
TOTAL		161193 52	142	1383039 432	522176 172	557673 18%	. .

15

è

000 SITE PREPARATION UTILITY IS DERIVED FROM A CONSIDERATION OF AN AREA'S TOPOGRAPHIC CHARACTER SOURCE DATA IS A FAP INDICATING X OF AREA THAT IS GENTLY SLOPING (LESS THAN BX SLOPE) AND CONTAINS & CATECORIES UTILITY VALUES HARE ASSIGNED ON THE BASIS OF RELATIVE DEGREE OF DIFFICULTY FOR ACCESS AND CONSTRUCTION

F-59:

 Induct
 <thInduct</th>
 <thInduct</th>
 <thInduct</th

.

TABULATION

	1			1		1	75	0 TO 11				
		· ·						37	10 72	: 72 37 1		
					1		N 14	/ I	1	PE	ETHICTED L	A.:
UTILITY V	AL 198	1	I.	ļ	1	1	, <u>F</u> .,	1		,		
		-	э	•	5	6 .	7	8	. '			
ALABANA	07.		. 02		87	1370	30364	1968				
ARIZINA.	859	376	- 447 - 12	. 1119	1963	: 0135 71	36303	3636 31				
ARKANSAS	0	. 0	. 0	0	1014	1969	6367	1779	10831	· 626	3 53259	
CALIFORNIA	. 0	: 01	: 01 77	473	926	42	63391	20705			1603e4	
COLORADO	: 01	2441	2490	. 01 : 3069		17. 9462	40% 13406	13:				
CONNECTICUT	291		27	31	: . 41	51	112	.117	42	271	•	
	02	01	: 01	02	01	02	132	40%	47%	0:		
DELAHARE	: oz	i ox	: 0X	01		· 0 01	. 02	637 272				
FLORIDA	: 01 : 01			. 01		o xo	10	20632		1310:		
GEORGIA	: 07	: 0	07	07	: 39	376	+505 16%	24125	18692		55604	
IDAKO	77	: 309	405	724	868	1361	17438	11906	12941	37519	83550	
ILL INDIS			: 01 : 0	12	12	- 21.	212	141 26460		45.		
INDIANA	: 01		: 01. : 0	: .01	: 02	. 01	192 4680	472 18721		132:		
1044	02	: 01	02		01	01 627	131	521	321	41.		
	: 07	: 01	02	: 01	: 01	12		34%	785J	01	•	
NAMEAS		: 3493 : 41	3362	: 3252 43			12825	16473 20%	72	193 0%		
KENTUCKY		: 01	: 01	: 01	360	2171	9322 231	15353 38%	10393	2470	40245	
LOUISIANA		0		0	29	347	4364	12767	16029	14417 30%	48153	
MAINE		•	. 0	. 0	: 0	: 0	1134B	11406	10962	357	34073	
MARYLAND		: 0	: 07. : 0	07	07	01 77	332 1216	33% 2258	321	12		
HABBACHUBETTS	: 07	: 07.	. 07.	: 02	02		111 1698	201	4150	12		
MICHIGAN		07. 0	oz o	07	07	. 01.	201.	327	484	02		
	: 07	: 01	02	20°	: 01	: 01	172	312	362	4074 16%		
HINNERTA	: ox	: 07.	94 07	: 183	: 443 : 1%	: 376 : 01	: 35792· 421.	. 17447	: 6687 · 61	24926	85913	
H1851851PP1	: 01	0 07	07	07		676	9901 21%	18246	. 15131	3941	47684	
#1850JR1	0	0	10	: 978	: 3429	9365 91	19474	20834 301	15508	4510	69933	
HENTANA	: 251	926	3921	6610	: 4344	13327	29013	23382	18422	67 . 47160	148456	
NEBRASHA	: 6211	2133	3% 2037	41	: 47.	9100	172	161	9650	32% 1534	77721	
MEWADA	72	37X :	41	61 0	- 7 2	122	231 86339	24%	127	22	110619	
	01 0	07.	01		01	07	78%	31	312	18%		
	01	01	01	01	: 01	07	222	292	361	1197	9467	
NEW JERSEY	07	07.	07	01	: 01 : 01	07	482 61	2355	- 5172 451	. 0 01	8007	
NEW MEXICO	: 51540 : : 421 :	3030 : 27. :	2277 : 21.	5059	1071 : 21	1460	19686	4523 51	1554	31936 26%	121743	
NEW YORK	0 07.	0	0	0 9 9	0	0		15179	13667	. 9930	50216	
NERTH CARELINA	; 0;	0 :	10 :	. 154	329	. 447	4449	19300	17254	201 8627	30769	
NORTH BANDTA	: 02 : : 11754 :		7131	01 4717	1% 8790	4236	92 11011	38% 6620	· 341	4572	71005	
G H10	: 172 :	•12 : 0 :	107 :	101	81 367	1679	162	91 16492	61 8321	92 2326	41833	
GILANDIA	01 7491	02 :	01 1325	07		41 5336	30% 12767	3972 24366	201 8164	61 3464	69613	
	111	22	an :	31	47	81	16%	351	: 121	52		
ORECON	01	0: 07.:	0: 07:	01	07	425	34752 :	19643 167	16559 172	· 30349 312	97928	
PENNBYLVANIA	. O: . OT:	0: 01:	01	02		2432 :	11307	13662	12053	3551	43278	
INDE TELAD	0	0:	01	0	0	0	17	415	772	0	1206	
BOUTH CAROLINA	0	0 :	0:	0	0 :	203	2760 :	9862	15701	2067	31189	
BOUTH DAKOTA	9139	01 : 4353 :	012 : 3086 :	02 3279	4873	4256	92 9196	327. 7102	501 4709	9% 22793	77000	
TENERSEE	122	4X : 0 :	71 :	72 :	338	1940	127.1	92 16164	6% 11648	302 2596	42124	
TEXAS	01 82295	01 : 3474	OX :	OL	12 :	51	221	282. 42528	28% 18933	6%	248835	
	. 313 :	12 :	12 .	12 :	112 :	371	26%	16.	. 71	2%		
UTAN	: 408 : : 11	376 : 01.	1439 · 2%	2364 . 3X	2924 31	4024	35444	7575	4873 61	25553	65174	
VERHONT	. O	0	0.	0		0.	4613	2837 541	1285	1023	9et2	
VIRGINIA	0 07	0	0	376 :	1129	2142	6456	12487	12891	5661 145	4116	
MAGHINOTON	0 ·	0	0.	10 :	183 .	356	9525	1307e	21433	24702	69317	
MEST VIRGINIA	07	01.: 0.:	OX ·	01. : 2180 ·	669	01 2364	14% 5134	192 7170	311 556P	361. 2721	24105	
WISCONSIN	01	01	OX ·	: 1% -	116	101 1235	212 -	30% 19902	231. 17447	311. 302E	57022	
	01	01 3937 :	0%	02 6196	0% 17438	9905	23.	351	312	91.	9798:	
		41	5317 5% :	6106 61	17438	102	112	10816	6011	26.		
TOTAL	229705	32874	39778	49727						95767÷		
	87.	12	12	31	31	41	24%	221	172	16:"		

SHO ADDREDATE MATER COST DERIVATION LEAST COST ALTERNATIVE MAS BETERMINED FOR COMPOSITE OF GRUNDWATER COST AND SUBFACE MATER COST. ESTIMATED GRUNDWATER COST FOR MAJOR REGIONS OF THE COUNTRY MENE CALCULATED FROM INFORMATION REGARDING GWALITY. MENE CALCULATED FROM INFORMATION REGARDING SUMMITY. ADDRTH AND BETER MAIN SOOD RILLION OF DURFACE MATER COSTS & ADDRESATE COSTS LEDS THAN SOOD RILLION MERE DIVIDED BUTD & SOMAL INTERNALS

. ·

TABLE F1.4

. s ·

SURFACE MATER UTILITY FUNCTION ++ COSTS IN MILLIONS OF DOLLARS (199 STATE AREAS IN SOUNDE MILES AND 1

45

	COUTS IN MILL STATE AMEAS I	10HS OF	PUNCTIC DOLLARS	(1980)							÷ .	•	
TABULATION			THM 93		Preit.								
		1		5 TO 300	0 70 243			. •					•
		1		ī	397.	5 TO 225	50 010 18	, , ,					
		4		- 4		1.		5 10 154	0 0 0 TO 312	5			
		1		-	f	1	1	ł	37	9 TO 73	0	·.	
				- 1						1	RES	WRICTED LANS	55
	DTILITY VALUE	1	1 2	: 5	·	3					'n	•	
ALABANA		: 0	. 0		0		2731		19686			: .81907	
ARIZONA		: 01L : 352012	4777	4364	4333	01 4140	4815	4362	382	2297	99403	. 214243	
ARKANBAS		192	41	: 41 : 77	41 473	1264	8374	4176	17745	16837	4263	33259	
CALIFORNIA		53732 97	4400	6311	1X 7220	8460	41 10567	122 19382	30704	21877	81492	140364	
COLORADO		29905	: .31 : 2490	8415	3034	91 4673	72 3764	102	132	: 4516	28660	104325	
COMPETICUT		0	21 0	37 0	. JI. 0	51 0	61 0	101 436	2104	2451	. 0	5211	
DELAMARE		0	: 0	01. 0		0	01 0 0 0 0	: 13% : 0 0%	401 637 271	1020	34	2324	
PLORIDA		: 01		. 0	0	3 3 S 🗖 .	. 1879	: 4371	19491	23611	13105	99357	
GEORGIA		0		· · · · O1. · · · O1.	0	01 104 01	12	: 71 : 8485	26% 23324 401		566*	58604	
LDAHD		77	.309 01	405	1216	3484	4306	19x 9302	· 11908	12941	37519	. 83550	
ILL INDIG		. Ö		0 OX		- o or	: 01 . 782	9679 17%	471	18237	: 45% : 1361 2%	. 86540	
INDIANA		01	0	0		. 0	304	4574	18721	1161°	1327	36342	
EDMA		0	0 01	0	994 21	4974	8203 15%	13404	19039	9853		54067	
SAMBAE			3473	3042	3232 41	4082	7780	11821	14473 801	9442	. 193 . 01	82267	
MONTUCKY		0	0 01	0	0	840	8171	4322 831	15353	10393	8470	40269	
LOVISIANA		0				330	1945	3030	18767	14029	14417	: 48154	
MAINE		0 01	0	10		907	3078	7112	1140-	50962	257	34073	
MARYLAND		0 01	0	0	0	. 0	370	3004	8250 201	7459	145	\$1106	
MARACHURETTR		.0 01	0	5 S. O.	0 07	0 01	106	1992 181	321	4150	07	8627	
MICHIGAN .		01	01	•	01.	0 01	1909	401g	311	362	147	61837	
NIMEROTA		19 01	812	. 1845 11	3619	7102	10432	14224	17447	4487	24726	. 83913	
(1001101/P)		0	0 91	O OT	0	125	8183	8405	10248	15131	3841	47883	
WIDDON'I		0:	0 : 91. :	164 01	1168	2830 61	121	19414	20834	19308	4516	67934	
NEWTANA.	:	251 : 01 :	924 :	4139	0125 41	11145	14448 101	20197	23392 16%	18422	47.160	: 148455	
	:	3211 : 71::	81333 : 311 :	- 20037 - 4%	4449 61	7450	11291	14890	: 18287 : 241	: 9650 : 121	1534	: 77722	
ME-MADA	:	49871 : 40% :	4767 : 41 :	4024	3010	2011 31	8750	2415	3194	2 697 3 3X	: 80255	110618	
	:	01: 01::	0 : 01 :	0: 101: 1		40 JI	240	1703	2702 	: 3445 : 362	: 1197 . 13X	9467	
NEW JERNEY	:	01	0: 01::	01 : 01 :	01	01 01	0 01	- 482 - 432	2005 27%	9172 651	01	8004	
NEW MEXICO		97793 : 471 :	4234 :	9976 : 1913 - 311 - 1	3840	3850	3148	4806	: 6923 : 51	: 1994	26X	: 121744	
		0 : 01 :	0: 01:		0 191		8343	8437 171	15179	: 13847 : 89%	: 9930 : 201	90218	
NETH CARDLINA	1	01	0X .	01	194 01	329 11	484 11	4439 91	39300	17254	8427	: \$0768	
SUDATH BARDIA	:	31784 : 578 :	4430 :	7886 :	7334	101	6851 101	440) 91	6620 . TX	4410 42	6572 91	71905	
GHID	:	0: 01:	0 01:	0:	0	367 11	8432 61	11696 1893	: 16492 : 391	: 8521 : 201	232+ 41	41034	
OKLAHONA		7471 :	1864 : 31 :	1825 : 	2094 : 31 :	41	1004 11	12767 181	201	: 8164 : 38%	- 3464 37	47415	
CREGON PERMEYLVANIA	:	: 17407 : 17 : 0	.31 : .31 :	3107 : 31 ::	3184	31804 371 -		10/03	19443 161	14989	30349	•7928	
		0: 571: 0:	01	0. 171. :		12		10036 1821	15442 351	: 12053 : 871	: 3551	-45278	
NHORE INLAND		01 : 0 :	01	01				19	.415 -341	772 641	0 01	: .1204	
BOUTH CAROLINA		01 :	0: 01: 4995:	01 : 5084 :	01. 19404	. 01 :	11	19 J. 2 📲 🖬 - 1	321	15701 901	: 9%	31109	
	ŧ	321	4X :	77	77	8455 71 338	:9494 : . 6% : 2101 :	440) 91 9197		4709 61 11440	30%	42124	
TEXAB	:	01 : 113571 :	01	01.	01. 9428	12024	51 19474	871 31449	381 42529	281	10004 101 10004	200040	
UTAH .		421 -	21 : 2441 :	312 :	41	41	71 8192	121	141	71, 4873	21	85179	
VERICHT		341 : 0 :	31.	41	93	51		71	975 97 20037	41 1380	30%	: 9852	
VIRGINIA	i	01	07. : 0 :	- OL :	31	91	121	222	29X	: 14%	: 102	: 41167	
MARMINGTON		01	01. :		1X 174	31	3040	101 ·	301	311	141		
WEST VIRGINIA		or :		5	01.	21	41		192		2721	24105	
MISCONSIN		.01	02	oz	11	41	101	312	1907	231	11%	37022	
ANDHING		01. 7334 :	01 -	01	7430	01 : 1042 :	91 · · · · · · · · · · · · · · · · · · ·	211	397. 10818	312	92		
	:	71	91. :	71	01	92.0	101 :		775	- 61			
TOTAL	:	137	80912 21	14191 22	94117 37	119619	175086 61	384340	47940	822404 171	1857473 181		
										. 7.2			

CAN BE ALL MATER COST DERIVATION BUITABLE BURGES ARE CELANG. GREAT LAKES AND NON-INTERNATIONAL BURGARY STREAMS NITH 7-DAY, 10-YEAR LDW FLOW GREATER THAN 300 LFS WITH ON WITHOUT RESERVOIR STORAGE DISTANCE FROM BURGES COM-PUTED AND COST AFFLIED AS SAMILE WAAVING WITH TERMALE RUG-GEDWESS AND PENALTY ADDED FOR RESERVOIS RECENSITY. (LIAST COST ALTERNATIVE WAS BUTTARING COSTS LESS THAN 8300 RILLION MERE SIVINED INTO ESUAL INTERNALS

F-61

TABLE F1.5 Fl.5

.

5

2011 - 21.

2 + 2 7 - - - 2

SWIRCHENTAL BUITABLITY UTILITY PUNCTION ***

. .

- %

TABLATION			نحن ا	HEDI						4 4 4 4 1 1
•				Ī	HEDI		un-High			
					· .	-1	HI0		TRICTED	LANDS
	WILLITY	VALUE	1	8	ė	•	,9			
ALABANA			: 10 : 01	134		: 391	: 11860 : 201	41	: `	
ARIZONA			: 8220 : 21	4101	: 14040 : 14%	: 30795 : 271	: 1014 : 21		11434	
			: 8211 : 101	7414 141	: 7798 : 15%	10140	: 16173 : 30%		5325	
CALIFORNIA			: 33404 : 3 5x	: 20424 : 13%	10538	13524	839÷	31492	14036	3
COLORADO			: 32144'' : 31%,	14399	11448	13356	4159	28460	104326	bile.
CONTECTION		·	112	2075	: 782 : 19X	1756	0	· · · · · ·	: 9211	n de la
SELANARE	4		. or	0 01	: . 0	0 01	8287 181	27	: 2320	ь :,
PLOR IDA			07	0	0	: 8133	44120	: 13105	5 99356	1 je
GEON 01A		· .	3454	3754	10721	17187	10422 31%	101	1.488405	\$
CHANG .	,		10847	7874	12071	: 10441	4777	37519	83549	•
ILLINDIS	1.001		3607	8345	8084	: 14475	: · 89444	1361	: 84540) da
300 I ANA	.* .		oz		1988	9679	82774 43%	:- 1322	: 36343	R C. M.
2014	4		10 01	: 9476.:	9184 71	80940 821	12514	0 07	. 94044	•
AANDAD	(++*		19824	27902. 341		19131	7353 91	173		1
NENTVCKY	e a trada		4874 11X	10574	12101	8367 211	1978	: 2470	40246	€ ¹⁵
LEVISIANA			.		376	7083	: 84377.	14417	40193) [†]
MAINE			1845	B463 :	4979	17874	1786	357	34074	
MARTYLAND				:	1001	2034- 07.107	7844	:	1-2. 17-31155	٠ ١
MARACHURTTR			01 963	1776	10%	3429	0		19 8427	e di la
MICHIGAN				811 0 01	265% 0	17107	35049	01 9679	1 41837	
NDOCIDITA					1978	297	27454	148	80914	
******			612 10	01. 2423	81L 4170	241 20767	391 19472	: 30 41	47885	é ne
HIBOURI	leg (18704	14417	13749	11985	231 10537	4516		
			10% : 13997 :	813. 17387	30046	171	152	47160	140454	
			14214	181 :	801 16772	14436	41	1934	77721	
			10% : 37982 :	-142 :	87647	8375	84X 811	80233	110414	÷
	1.4.1	1977 - 198 1	34% :	-17E :	1070	1835	01	181	: 	
	4.5		141 :	47% :	- 18% : - 97% :	17L		131		
			41 47430	16383	111 : 19165 :	4073	- 681L -	31534	191745	
			371 3632	19% : 7770 :	18024 :	13964	01	861	80220	
NEWTH CARELINA			71	19% : \$612 :	841 : 4470 :	12348	47	8427	90770	
			41	31 : 18410 :	91 17973	871 : 14370 :	50% 1734	17L	71003	2
840	at at an		121	17% : 5075 :	891 : 3632 :	11317	172	8324	41833	
	· · ·		4X -	121 : 12101. :	81	871	431	- 61 2464		11.
			188 :	178 :	301	. 21%	11% :	51	47613	22
			01.	81194 : : 821 :	14041 : 14% :	89408 :	. 6687 -: 71 :	30349	47458	: ·
	- 1 - C		8740 /: 1941 :	16106 : 36% :	14390 : 32% :	- 4398 : - 114% :	: #113 : SX :	- 3991 - 6%	48276	2 12
ANCIDE INLAND	· .		01	01	- 434 : 361 :	772 : 441 : 1963 :	01	OX S	1204	<u>.</u>
BONNY CARDLINA			1679 :: - 9% :	251	14144 :	1963	1322 :	2663 91	4 31190	
BOUTH BANGTA		:	11937 : 16% :	7917 : 10% :	11980 : 1981 :	18101	41 11078 : 141	301	77004	
TEMEREL			4485 : 19% :	34314	147		454	8074	42123	•.
TEXAS			94320 : 201 :	167 :	11% :	371	141			1
UTAH		- د •	221 :	12220 :	12504 :	10113 :	4835 :	20353	. 85180	12
VERHIGHT	. •			3001 : 301 :	1457 : 18% :	111	on i	102	. 983 3	1
VIRGINIA		:	4535	2787	2480 : 61 :		301 :	14%		•
4448H13H870H			9515 : -141 -	1.424	12227 :	144	4918 71 232	24742		÷.
MEST VINGINIA			4121 : 178 :	10364	4523 : .87% :	145 :	- 1 X ;	. 114 -	24106	:
WINCONNIN		:	116 : OX :	3860 : 7% :	4420 : 12% :	43% :	16781	9028	1.67	
170H1H0			17824 :	13703 : 141 :	20757 : 21% :	10710 : 16X :	. 4767	20225 :	97986	
TOTAL			14 14 14	·· ·	1. 1977	HT173	4.4	837473	2	1 A. A
		•	142	141	192	811	178	18%		

-5

POPULATION BECTOR ANALYBIS - TOTAL U. S. Density = 230 0/30. HI. +++ SINGLE BECTOR (22. 5 DEGREES) Bitte Area in Sourae Hiles and 3 of Sitate

TABULATION

1

WASLABLE LAND

							> 1/3	ALLOHA	S WITCHN		
										ORM DENS	AICTED LA
ALABAMA	. 1.0	: 16330 : 31. 92	3002 7. 31			5289	6388 12. 37	2355	: 5703 : 11.02	: 2075 : 4.0x	51907
AIZONA	2.0	44033 30.5X	830 0.71	1202		1071	1727	0.41	2329		114342
RKANSAB	3.0	23594 44. 31	3444 -	4960	4979 9.32	3667	2345 . 4. 41	820	3145	4263 11.8%	53257
ALIFORNIA	4. 0	52979 33.0%	7160	6417 4.0%	6485 4.01	9369 3.3%	5501 : 3.4%	2142	22803	51492	160363
OLORADO	5.0	- 36527 - 36.1X	2576	2972	2529 2.4x	2200 2.1X	1756	1139	3947		104325
ONNECTICUT	6. 0	10	0.01	10 0. 2%	97	1.37	19	19 0. 4X	4787	0.01	5212
ELAHARE	7.0	309 13.31	77 3.31	241	: 299	366 16.6X	212	135	409 24.1X		2326
LORIDA	. 0	10769	4757	4101		3397 5.71	4034	2297	11397		59357
EORGIA	4.0	14347	4092	5095	7432	\$703 9.71	9008 : 8.91	1824	7014	5067 10.0%	58404
DAHO	10. 0	35686	2123		1718	1322	1322	.444	1204	37519	83550
LLINOIS	11. 0	11599	3881	8154 14.4X	8502		4159 7.4%	1293	11792	1361	56538
NDIANA	12.0	3020 8. 31	1621	3754	5407 15.4%	5008 13.81	3776 10. 71	1484	10547	1322	36341
044	13.0	24230	2529 4. 51	8145 14. 5X	6330 11. 37	4796	3300 : 3.91	917 1.6X	3012 4.9%	0.0%	54046
ANSAB	14. 0	. 34574 72.4%	3001 3.41	5221	4207	2010	2750 :	782	3715	173	82344
ENTUCKY	15. 0	: 11368	2044	20018	3522	4275	4543	8074	4314	2470	40270
OUISIANA	16.0	11455	2123	3127	4391	4545	3300	1071		14417	48154
AZNE	17.0	23334 48.51	1439	1979	1843	14-21 4. 97	1602	570 1.01	1202	2157 1.01	34074
ARYLAND	18. 0	80. 51 994 8. 91	408 5.41	. 636 	984 8. 92	907 8.11	762	357 3.21	51. 5%	145	11155
ASSACHUSETTS	19.0	58 0.72	193	164	425	309 3. 71	374 4.41	3.2%	6774 70.5%	0.01	8429
ICHIGAN	20.0	20024	782	3831	4730	44.32	3522 :	1204	. 13423	9679 15.7%	41837
INCONTA	21. 0	25280	3078	7207	4294 5.01	3107 :	2470	897 1.01	4432 8.43	24924	85913
1881851PP1	32.0	: 41.1% : 10250 : 20,1%	3.41 2345 4.71	4245	5269	3. 4X 9830 12. 2X	4101	1042	2905	2041 8.0%	47884
IBSOURT	23. 0	33254	3715	7305	4907	4410 :	3404 :	1.4 X	3354	4314	47733
ONTANA	24.0	47. 67	2191	10.4%	10.0% 2374	4. 31 735	4. 91 753		2.7.7%. 1920	47140	148457
EBRASKA	25. 0	42.1X	1. 5% 540	2977	1. 4% 3127	0. 4%	0. 5%	0. 2X 390	0,4% 2171 2.9%	1534	77721
EVADA	26.0	82.1X : 85093	0.7%	3.37. 753		2.4% 791	2.0% 11710	241	1177	20255	110617
EN HANPSHIRE	27. 0	: 77.2% : 2010 :	0.3%	878	0.81	0. 71 714	0. 81	0.2%	1901 20.1X	11.47	9466
en Jerbey	28.0	27. 8%. 0	2.91	· · · · · · · · · · · · · · · · · · ·	9. 5%	7. 5%		194	4927 86.5%	0.01	6010
EN HEXICO	29. 0	0.01 80344	0.42		4, 9% 1708	2.41	3.0% 1914	1. 4% 574	: . 1476	: 31536	121744
EH YÖRK	30.0	44.0%	0. 6%	1. 41 : 3184 :	1.41	4719	4342	0. 57	1.27	25, 47	90219
ORTH CAROLINA	31. 0	: 11.4% : . 6919 :	3. 5% 2567	4. 3% 3444	0. 8%	9.4% 4902	8.7% 4794	2.7%	: 27.3% : 9110	19.8% 8427 17.0%	50769
ORTH DAKOTA	32. 0	: 13.4% : 54089 :	1930 :	4.81 3937	11. 4%	9.71	13.4% : 579 :	4. 62	17. 9%	17.01 6572 9.31	71005
NIO	33.0	: 76.21 : : 1972 :	2,71	8. 91 3204	2.7% 4700	1.4% 4403	0.8%	0.71	17775	2324	41833
KLANDNA .	34. 0	4. 5%	5. 3% 3560	7.71	11.21	4178	4130	3.3%	42.5%	: 5.6% : 3444 : 5.0%	47614
REGON	39. 0	56.9% 49794	5.1X 2345	7.4%	3532	6. 0% 1756	9. 9% 2007	1206	4197	30349	97927
ENNEYLVANIA	36. 0	: 30. 6X	2.41 2975	2.8%	3.6%	1. 8%	2.01 4254	1.27	4.21	31.01 3551 7.61	45280
HODE ISLAND	37. 0	7.9%	6 41 0	7.3%	10.0%	9.0X	9,4X : 37 :	3.7%	: 1139	· 7.87	1207
OUTH CAROLINA	38.0	0.02 5742	. 2123 :	2393	0.0% 3339		4403 :		4825	: 2463	31189
OUTH DAKOTA		· 18.4%	· A.81.	7.74	: 10.7%	13.9% 447	14.91 989 :	212	: 15.5% : 618	: 22793	: 77000
ENNESSEE	40, 0	44918 40.9% 11435	2625	2.2% 2918 :	3995	: : 4683 ;	5423 :	0.31	: 4176		42122
EXAS	41.0	: 27.1% :	13354	6.74	: 7 .5% : 19397	: 12477 :	12. 9X 10354 :	3657	: 14.7% 20941	: 3491	248837
TAN	42.0	: 61.8% : 52264	5.01	4.32	7.2%	4. AZ 011	. 3.9% : 1119 :	1.41	7.8% 2084	2.0%	85180
ERMONT	43.0	3999	.0,5% 579	975	: 1.3X 994	1.0X	1.3%.	0. 5%			9854
IRCINIA	44.0	: 37.5% 6774	.5.92 3001	.9.92 3213	10.17	10.1%	5.6X : 5452 :	2,92	: 6601		41147
ASHINGTON	45.0	22090	2750	7.8%	: 10.3% : 3339	: 11.3% : 2676 :	13.2% : 2142 :	1139	: 16.02 : 6301	. 34743	67316
EST VIRGINIA	46.0	: 33.0% : : 5074	4.01	4. 51	: .4.8%	2741	3.1% :	·· 1.4%	9.1%	2721	24104
ISCONSIN	47. 0	: 21.1X : 19590	3754	9.5%	11.9%	31.41	11.4% : 3889 :	3. 62	9,4%	: \$029	57024
TACHER		: 34,4% ·	6.4% : 1833 -	9.7%	12.0%	8.9%	6.8% : 637 :	2 21	: 10.7%	: 23225	97985
		66.7%	1.91	1. 81	1. 6X	: 0. BX	0.6X :			: 25.7%	:

i

THE STATE OF STATE OF STATE OF STATE OF STATES OF STATES

41 m.

 \mathbf{P}_{1}

٢

2

.

POPULATION BECTOR ANALYBIG - TOTAL U. B. DENSITY - 500 0/50, HI. 000 SINGLE SECTOR (22.5 DECREES) STATE AREAS IN BOUARE HILES AND X OF STATE

		> 1/16 ALLOWABLE POP > 1/8 ALLOWABLE POP > 1/4 ALLOWABLE POP > 1/4 ALLOWABLE POP												
					Ī	· · · · · · · · · · · · · · · · · · ·	4 ALLOWA	BLE POP. 3 ALLOWA		•				
			<u>, 1</u> - 1				í "	> 1/	2 ALLOW	BLE POP.				
					} -				1		TRICTED LA			
		•	· •	•	•	· •	•	. •	. '	•				
		: 24038												
NLABAMA	1.0	46.32	: 3990 : 4.92	3098		: 8.3%	4815 9.32	2567 4.92	6. 42	4.02				
AR I ZOMA	2.0	: 44600 : 40. 91	: 926 : 0.0%	1197	1498 1.5%	1062	: 964 : 0.91	444 0.41	2026	59405				
NRKANSAS	3.0	:- 30477 :- 57. 4%	: 466 : 1.3%	: 4661 : 8.9X	3812	: 2866 : 5.4%	: 1737 : 3.3%	820	1756	: 6263 : 11.0X	53258			
ALIFORNIA	4.0	41.52	2 8410	4883	4137	4516	4053	2191	16115	51492	160363			
OLORADO	5. 0	43429	1471	2490	1698	1544	1766	619	2490	28660	104326			
UNNECTICUT	4.0	10	2. 61	135	357	270	309 5.91	251 4.8%	3735	0 00	5212			
ELAMARE	7.0	549 24.31	37	241 10.41	347	339	164	145	425	39	2327			
LORIDA	8.0	: 20149	: 3735	: 3049	4140	2741	2425	2663	7131	13105	59358			
ECROIA	9.0	: 33. 9%	6.3% 3706	3619	7.01 4439	4, 6%	4.41 4410	4 5% 2142	12.0%	22.11	38605			
DAHD	10. 0	: 42.8%	: 6.3%	· · · · 21. · · · 1226	: 7.4% : 1198	8.4%	7.5%	3.7%	7.6%	: 10.0%	82550			
LINDIS	·	: 19370	0. 91 4333	1.5%	1.42	4178	1.2%	0. 31 1013	0.91	: 44.9% : 1361	56540			
NDIANA	12.0	34. 4% 7083	7.72	15. 4X 3860	11.2%	7.41	5.61	1.8%	13.9%	2.41	36343			
044	12.0	17. 5%	6.7X	10. 4X	13. 4X	14. 3X	11.31	5. 51 511	14.61	3. 4X	56045			
-		: 87. 3%	: 4. 23	15.0%	9. 31	3.8%	3.3% 1554	0.9%	3.7%	0.01				
ANEAS .		: 81. 7%	: 1467 1:07	3754 4. 4%	3049	2249	1.9%	540 0.71	2046 2. 5%	0.21	:			
ENTUCKY	1000	: 14839 : 41.8%	: 1487 : 3.6%	2065	2490 4.21	9937 9.81	4080 13.12	2248 9. 6%	2683 6.71	. 4. 12	: 40269			
OUISIANA		15855 32.9%	: 2499 : 8.2%	2731 8.7%	7.22	3735 7.61	2258 4.7%	994 2.1X	2200 4.61	: 14417 29.9%	: 48153 :			
AINE	17.0	24229	: 329 : 1.01 :	1399	1274	1429	1583	427	2.5%	: 357 : 1.01	34074			
WRYLAND	18.0	2123	2.41	567 8.12	1023	877 8.0%	426 8. 31	475	4507	145	11155			
ABBACHUBETTS	19.0	434	: 222	347 4.0%	800 8.4.5	618	492	567	5115	. 0	6627			
ICHIGAN	20.0	22501	2.4X 1341	4374	8134	7.2%	5.7% 3430	6. 61	7672	0.01 9679	61937			
INNEBOTA	21. 0	: 36.3% : 41871	2.21	7.4%	8. 31 3179	7. 61 2733	5. 71 2113	3.91	12.41	15.7%	89913			
1681681691	22.0	24125	1 21	4. 5% : .3136	3.71 4072	3.4%	2.91 :	1.17	3.9%	29 01 3841	47883			
1880UR1	23. 0	: 50.4% : 41563	2:5%	4. 51 :	8. 31 4748	10.9%	7.01	2.4%	3.71	: 8. 01 : 4514	49934			
CNTANA	24, 0	07.4%	2.2%	8. 41 1177	6. 87	6.01 733	4. 31.	1.3%	5. OX 434	: 6.5%	148437			
		: 49. 1% :	: 0.1% :	- 0. ex :	0.02	0. 31	0.4%	0.21	0. 3%	: 31. BX				
EBRASKA	.25.0	: 44527 : 83.41	1197	3.21	2084	1430	1032	347 0. 4%	1052	1534	77721			
EVADA	26.0	: 84059 : 77.81	907 0.67	791 : 0.75 :	0.8%	454	443 : 0.4% :	222 0.21	587 0. 5%	. 18. 3%	: 110618			
en handentre	27.0	: 3619 : 38.2%	434	676 : 7, 12 :	4.7%	7.02	801	347	1090	1197	: 9467			
EN JERBEY	28.0	: 135	328	4.71	270	241	240 :	454 5.71	5876 73. 6%	0.01	8010			
EN MEXICO	27.0	83801 68.91	425	1130	1842	917 0.97	791 : 0.41 :	309	946 0. 8%		121745			
EN YORK	30. 0	9449	2208	3223	4111	4835 9.45	4864	2528	8801 17. 5%	9730 19.81	50219			
DRTH'CAROLINA	31, 0	12902	2740	3107	4140	4343 :	6494 :	3358	5037	8627	30748			
DRTH DAKOTA	32.0	: 25.4% : : 58315 :	5.4Z :	4.1% : 2304 :	8. 2% : 1476 :	917	12. 8% 425 :	6. 62 134	9.92	17.01	71004			
HIO	33. 0	: 82.1% : : 7140 :	0.7%	9.2% : 3136 :	4034	1.2%.:	0.6% : 4930 :	2509	0. 5%	9.3% 2326	41832			
KLAHOHA	34. 0	17.12 47393	4.1%	7.5% 3783	9. 6%	3001	11.02 : 2538 :	6. 07 : .1197 :	23.11	3. 6% 3464	49616			
REQUN	35.0	48.0%	2.8%	5.41	5.7% 1949	4.3%	3.6%	1.7%	3.41 2413	5.01	97929			
EDORSYLVANIA	34.0	9090	2.17	1.41	2 0% 4256	1.37	1. 3%	1. 67	2.51	31. OX 3551	43278			
-					9.42	. 9.62 :	10.1%	. 5. 6% :	24. 62	··· 7. 81				
COE ISLAND	37.0	20.1% 0 0.0% 4756 31.3%	0.02	0.91	39 3.21	7.2%	106 : 0.07 :	4 81 -	75. 21	0. OX				
OUTH CAROLINA	38.0	9754 31.3X 50759	4.81	2519 : 0.1% :	2461 7.92	10.71	4169	4. UX :	0. 5X	0. 5x	31189			
WTH DAKOTA	39.0	65.9%	39 : 0 1X :	1197 :	640 : 1.1% :	521 : 0.7% :	280:	0.22 :	415	22793 29. 41	:			
ENNERSEE	40. 0	65. 7% 16636 37. 5%	1370 :	2577 :	- 3406 : - 8.1%	4304	4844 : 11. 5x :	6.5%	8.71	2596 6.2%	42122			
BAX	41.0	:174334 :	10605 :	12343 :	. 12140 ;				12702	5491	268839			
AH	42.0	53480 42.91	3.9%		1226	733	647 0.82		1074	25553 30. 01	05181			
RHONT	47 0	- 530Q ·	• •	772 .	A 19 4	970	492	347	347	1023	.9892			
RCINIA	44.0	53. 97 12120	2133	2277	7.0X : 3931 :	4564	4507	J. 31 1	4072	5665	41167			
SHINGTON	44.0 45.0	29.41	5.2% :	3.52 :	7.3%	11.1% : 2451 :	10.9%	4.92 :	9.9% : 3744 :	13.8% : 24762 :	69316			
ST VIRGINIA		41.52			1720	2673	2818	033	1467	2721	24105			
BCONSIN		39.01 26566					11.7% 3194 :	4.02	6.1% :	11 3x 5028				
	:	46.6% :	3. 7% :	·	8.7%;	. 7.7% :	5.6% :	2.8% :	6.9% :	8.8% 25225				
/OHING		49663 : 71.12 :	0:01:					0.2%		25.72				

NOTE: "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE MOST CON-STRAINING CRITERIA (1.0. IF) 1/16 OF THE POPULATION ALLOWED BY A UNIFORM DENSITY CRITERION IS FOLND IN A SINGLE SECTOR OF 22.3 DEGREES.) MUMBERS IN THE COLUMN SEPREMENT THAT LAND UNIQUELY CONSTRAINED BY THE OIVEN FRACTIONAL CRITERION. THIS LAND IS CONSIDERED AVAILABLE IF THE CRITERION MERE RELAXED. IF GECTOR CRITERION IS APPLIED. ASSUME THAT UNIFORM DEWSITY CRITERION IS ALSO IN EFFECT. 40 COMPOSITE OF 5 RADII 40

F-64

.

POPULATION SECTOR AMALYSIS - TOTAL U. B. DENSITY = 750 0/50 HI. +++ SINGLE SECTOR (22.5 DEGREES) STATE AREAS IN SQUARE HILLS AND X OF STATE

 $\Gamma^{*} \stackrel{\mathrm{def}}{\to}$

TABULATION

AVAILABLE LAND

46.7

		{		1	> 1/	ULE POP. 14 ALLOW > 14	UNLE POP. 14 ALLOHA	BLE POP.			
		1		1		ĺ		3 ALLOW	BLE POP.	BLE POP.	
	•	· · ·			1					ORH DENS	SITY TRICTED LA
		•	•	•	•	•		•	•	•	
ALABAMA	1.0	27435 52.91	: 2972 5.71			: 3667 : 7.1%	4993		: 2956 : 5.5%	: 2075 : 4.0%	51907
ARIZONA	2. 0	47459	1419	1255	: 1554	589 0.5%	531	454	1479		114349
RKANSAS	3. 0	: 31845 : 59.9X	1062	4217 7.9%		2386	1467	630 1. AZ	1954	. 4263 11.8%	53259
ALIFORNIA	4.0	: 71993 : 44.61	4300 2.7%	: 4739 : 3.0%	4573	: 4448	: 2513 : 2.21	2306	: 13327	51492	140363
OLDRADO	5.0	45388 42.7%	1573	1479	: 1764 : 1.7%	: 1471. : 1.4%	1071	704 0.7%	1842	20440	: 104324
OMECTICUT		: 87 : 1.7%	270 5.2%	270	: 309 : 5.91	: 3866 : 7.4%	501 10.21	415 8. 0%	2943	: 0	: 5211 [°]
ELAHARE	7.0	637 27.41	105 4.61	: 10.0%	: 13.3%	: 290. ; 12.4%.		164 7.1X	: 376		:
LORIDA		25013	2248 3. 8%	3175 5.32	: 2615 : 4.4%	: 1499 : 2.91		2770 4.71	: 4465 : 10. 92	: .22.1%	: 59357
EDRGIA		29913	2374 4. 11	: 2095 : 4.9%	3706 6.31	: 4468 : 7.4%	: 4323 : 7.4%	2345 4.02	: 3812 . : 6.5%	: 10.0%	: 99605
DAHD	10.0	: 40839 : 48.9%	0. SZ	: 1081 : 1.3%	: 733 : 0.91	: 965. : 1.22.	1.0%	444 0. 51	: 485	37519 44, 91	: 83550
LLIN015		: 25167 : 44.51	2490 4.41	: 13.7%	5201 9.2%	:" 4198 : 7,4%	1. 2731 1. 4.8%	: 1216 2.2%	: 4417	2.4%	36339
MIANA	12.0	7043 27.11	1814 5. 07	3879 10.7%	4902	4497	9580 9.9%	2345. 4. 51		: 3.4%	36341
DMA		: 33647 : : 43.41	1054	8019 14, 3%	4314	: 2508 : 5.0%	1390	340 1.01	1795	: 0.07	: 36067
ANGAS	14.0	: 84 AZ :	1554 1.9%	: 3201 : 4.0%	3.01	: 1727	1150 1.41	0.7L	1747	: 0.2%	82267
ENTUCKY	15. 0	: 45. 7%	1197 3. 0%	1727 4, 31	2220 5. 51	: 3715 : 9.21		2393	2152	: 2470. 6. 1%	40247
DUISIANA	16.0	: 18743 : : 39, 31	1494 3.11	: 1970 [°] : 4,1%	3049	3145	2220	1042 2. 21	1853	: 14417 : 29.9%	48153
AINE	17. 0	: 79.22	10 0. 01	: 1148 : 3.41	: 1235 : 3. 41	1391 4.0%	1543	647 1. 9%	2.3%	1.0%	34074
NYLAND		: 2400 : : 22.2%	232	419 5, 5%	878 7.9%	1004	1214	984 8. 8%	3099	145 1.31	11136
ABBACHUSETTB	19.0	: 456 : : 7.6%	405	: A18 : 7,23	: 540°	419	: 578 : 4.9%	743 8. 61	4432	0.01	: 8627
ICHIGAN	20.0	: 24047 : : 39, 91 :	1911 3. 1X	: 4555 : 7,41	4514	4304 7.01	3542 : 9.71	2731 4.41	4533 10.41	15.7%	41838
INNESOTA	21.0	43637 : 50.82	261 0.31	5472 6.41		: 2874 : 3.32	2.32	1140	2957	24924	69715
1881851PP I	22.0	: 25001 : 52,9%	1323	: 2613 : 3.5X	: 3484 : 7,71	: 4402 : 10.2%	3242	2.4%	1983	3841	47980
1680UR 1	22.0	: 42415 : 42.11	1042		4574	4121 5.9%	2577	934 1.3%	2854 4.11	4514	49930
DNTANA	24. 0	: 97494 : 45.7%	0.01	917 0. 41	1023	: 475 : 0. 5%	434			: 47140 : 31.8%	140456
BRASKA	25.0	40033	848	2,204	1727	1312	676 0, 91		849 1.11	1534	77721
EVADA	26. 0	84754 78.43	801 0.7%	733	544 0.5%	347	307 0.31	144 0. 13	443		110617
DH HANPSHIRE	27.0	4169 44.0%	164	930 5. 81	547 6. 01	714	782	374 4. 0%	10.01	1197	9467
EN JERSEY	28.0	482	38L	241 3.0%	347	174	405	540 4.7%	5433 47.82		8008
EN MEXICO	29.0	04544 47,42	772	1544	854	732	549 0.52	318	849 0.72		121744
EN VERK	30. 0	12091	1737	3145	3783	4413	4449 8.92		7423		30218
ATH CAROLINA	31. 0	15394	2268 4. 51	2415		4043 8. 01	4736	3542	4333 8. 5%	8427 17.01	80749
RTH DANDTA	32.0	57183 83.42	0.07	2239	1954	. 485 1.01	128 0.51	145	299 0.41	4972	71005
01H	33. 0	· 7235	1428	3194	4767	: 3086 : 12.2%	4507	3184		2324 3. 41	41833
KLAHOMA	34.0	: \$0180 : 72,11	1833	3397	2919	2451 3.51	2461 3.51	1226	2094	: 3464	47615
TEGON	35.0	57399 39,41	1.4X	1496 1.91	1573	1081	1090		1998		97928
DINSYLVANIA	36. 0	: 11368 : 25, 11	2267	3233	2992	4344	5096	3184	9013	3351 7.8%	45278
ODE IBLAND	37. 0	. 0 0.07		27		: 10.11 : 77 : 4.41	125	125		0.01	1205
DUTH CARDLINA	38. 0	11754 37.71	2297	1450	1402		: 4178 :	1440	: 2297	2643 8. 51	31189
NTH DAKOTA		51193	•	: 1100	· 733 ·	: 434 /	: 212 :	144	374		: 77005
INNESSEE	40. 0	: 18142 : : 43, 11	1814	·· 2094 ··	2702	3956	4777	2927	3213	: 2576 :	42121
EXAG	41.0	: 208642 :	5566	9757	10914	: 8675	4205	3175	: 10171	3491	268940
AH ·		: 54629 :	611	: 1100	1052	251	: 502 :	357	926	: 29953 :	65101
RHONT	43.0	: 44, 1X : : 5481 : : 55, 4X :	10	: 714	409	849	: 472 :	338	339		9853
IRCINIA	44. O	: 14552 :	1486	: 2200	: 3213	: 4101		2104	3445	3665 13.8%	41166
SHINGTON	45. 0	: 35.3% : : 30774 :	1969	: 1911	: 2297,	: 1737	: 1448 :	1341	3068	24762	47317
EST VIRGINIA	46.0	44 41 : 10721 :	145	: 2.8% : 726	1843	2615	: 2837 :	994	1312		24104
ISCONSIN	47.0	44.5% 29075		3.8% 4777	4207	: 4352	: 3184 :	1679	3146	5028	57022
YOHING		: 51.0% : 70262 :	0	: 011	: 492	: 347	: 251 ·	232	- 367	: 25225	4796 7
		: 71.7% :	0.01	: 0. BX	0.5%	: 0.41	્ય ચર				

D7.42 2.02 4.02 3.92 3.92 3 NOTE: "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE MOST COM-GTRAINING CRITERIA (1.6.15) 1/14 OF THE POPULATION ALLAND BY A UNIFORM DENSITY CRITERION IS FOUND IN A SINGLE SECTOR DF 22.9 DEGREES) AUMERES IN THE COLUMN REPRESENT THAT LAND UNIQUELY CONSTRAINED BY THE GIVEN FRACTIONAL CRITERION THIS LAND IS CONSIDERED AVAILABLE IF THE CRITERION MERE RELATED. LAND IS CONSIDERED AVAILABLE IF THE CRITERION MERE RELATED. LAND IS CONSIDERED AVAILABLE IF COLUMN STATE THAT UNIFORM DENSITY CRITERION IS ALEO IN EFFECT. ** CONPOSITE OF 5 RADIL **

TABLE F2.4 POPULATION SECTOR ANALYSIS - TOTAL U.S. DENSITY = 1500 S/GA HI. +++ SINGLE EXCTOR (22.5 DEGREES) STATE AREAS IN BOUNDER HILES AND A OF STATE AVAILABLE LAND > 1/16 ALLOWABLE POP. 1 > 1/26 ALLOWABLE POP.

TABULATION

...

			1 I.	· •		, í	/4 ALLOW	3 ALLOW	ABLE POP		
	1 ^{- 1} -								UNI UNI 	FORM DEN	SITY TRICTED LA
LABAMA	1.6) : 32482	· . 704	: 1438	: 1756	3 344	: 4573	: 2702	2472	: 2075	: 51906
MIZONA	2.0	47444	1.41 1421	2. 8%		: 4.7% : 241	: 0.8% : 473	: 5.21 : 482	5.2%	4.02	
	3.0	43.31	L 42	: 0.4%	0.4%	0.21	0.42	0.4%	1. 3%	52.01	
CAL IFORNIA		63.42	. 0. 87	: 7.0%	5. 32		2.7%	2548	2.87	11.8%	:
COLORADO		: ·49. 62		2.2%	2.01	2.01	1.9%	1.6%	4. 91	32.11	
CONNECTIONT	6.0	: 45.42		1.71		0. 8%	0.92	0.72	1.41	27.5%	. :
	7.0	7.4%	3. 92	2.2%	2.51	7.81	12.01	9.81	51.3%	0.01	
		: 34.9%	2.11	: 8. 31	10.01	11.42	7.9%.	7.11	15.8%	1.71	:
		49. 51	: J. 4%	2.01	1. 82	1341	: 2258 : 3.8%	4.8%	10.1%	22.1%	
ALORDIA	9.0	: 59.1%	1.4%	2104 3.4%	2873	4371 7.9%	: 4294, ; 7, 3%	2394 4.1X	. 4. 21	3867	38604
IDAND	10.0	50.0%	0.01	830 1.02	987	1.01	1.0%	- 444 - 0. 51	674	37519	83551
11.14018	11.0	82.4%	714 1. 31	7344 12.91	4449 7.91	. 3503 . 4.2%	: 2394 : 4. 6%	1303	: 9445 : 10.0%	2.4%	36339
	12.0	36. 62	1534 4. 2X	2145 8.71	9.01	3765	2051 9. 81	2413 A. 6%	: 3012 : 10.5X	1322 3.41	: 36342
	13.0	- 49. OZ	473 0.81	7488	3445 6.12	2403	1361	549 1.07	1440 3.01	0.01	
(ANGAS	14.0		902 0. 41	2784	1915	1448	1100	989 0.7%	1431	193	82267
ENTUCKY	18.0	30.71	647 1.6%	1361 3.4%	1431	3397	5827 14.5%	2441 4.1%	2045	: 2470 : 4.1%	40270
DUISIANA	24. 0		. 1X	1399	2247 4.81	2972	2210	1062		: 14417 : 29.91	48154
MINE	17. 0		0. 01	1033	1148	1351	1854 4. 4X		702	357 1.01	34075
WAYLAND	18. 0	2779		950 4.91	1224	1071	1042	1216			11155
MOGACHLIBETTS	19.0		: 473	241	384 4. 72	443	647 7.5X	975		0.01	8429
1CH10AH	20. 0	27438	: 782	: 3793	3561	4092	· 3942.	3020	6742	: 947 9	41839
INDESTA	21.0		1.31	6.1¥ 5414	3. 8% 2606	2422 2422	8.7% 2007	1255	2191. 2.5%	: 15.7% : 24926	83716
INSIDDIPPI	22.0			6. 31 2094	3.02 3136	4784	3513	: 1.5% :- 1387	1515	: 29.0X	47862
INCOURI	23.0		0.7% 743	1: 4.4% 1: 5742	4. 51 3879.	: 10.01. : 3706	2432		: 3.2% 2557	8.0% 4314	49933
CHITANA	24. 0		1.1X 0	: 8.2% : 840	9. 5% 878	540	3. 5% 367	. 318-	3 7%		148456
ethacka	25.0		0. CX 550	0.41 2133	: 0. 6%	: 1023	0.2% 550	0.2% 339	: 0.371 : 801	: 31.81. : 1534	77721
	246.0	: 07.4X	: 0.7%	2.7% 576	1.91 1.91	222	183	0. 4X-	1 01 376		110617
	27.0	79.91 4420	: 0.3% : 10	: 0.3% : 540	: 0.3% : 531	0.271 676	0.2%	0.11.	: 0.372	: 18.3X : 1197	9469
U JERREY		: 46.7%; : 1042	0.1X 280	: 9.9% : 261	:: 5.4% . :∀ 386 9		8.31 540	4.31	• • 41 • 4160	: 12.61	8010
EN MEXICO	29.0	1. 13.0%	3 51	3.31	: 4. 61 : 443		7.0%	12,7% 310	: 52.31 762	: 0.01 . 31534	121744
	30.0	: 70.81	1449	2957	2847	0.81	0.41	0.31	0. 6%	25. 91	30219
DITH CARGE INA	31.0.	: 39.41	2.91	5.1% 1774	3.72	8. 41	8.41	5. 91 3513	13.92	19.8L 8427	30749
	32.0	: 37. 4%	0.21	3. 51	8.21	7.81	13.11	4.91	8.3%	17.01	71005
	33.0	: 84.2%	0.01	2.92 3146	1.72		0.41	0.21	0.41	9. 31	41834
		- 28.2% - 53200	1 4.872 1 1119	7.5%	7.5%	10.31	10.5%	0.4%.	17.01	5.6X	. 47613
	34.0	: 76. 4%	1.62	3.01	2.7%	3.4%	3 41	1.01 1.01	2.71	9.0X	97927
	,	1 - 41. 1% :	0.41	0. 91 2422	0. 71	0.91	1.1% :	1.7%	: j. 92 -	31.01	45279
ENNEYL VANIA		: 15102 : 33.42	241 0.41	3.31	2731 . 4.0%	4448 7.72	5124 : 11.31 :	3532 : 7. 8% :	\$087 17. 71	7.8%	
GUE ISLAND	37.0	10 10 10	12.01	7.21	29 241	4.01	134 9 41.:	164 13.6X	47.61	0.0Z	
DUTH CAROLINA		15083	0.1%	3.3%	4. 18	. 9.9% :	13.3% :	5.3%	7.12	8. 5%	31187
SUTH DAKOTA		51399 : 47 01	0.01	1.22	579	376	515	164 : 0.22 :	0 5%	22793	77007
DINERSEE		: 20931 ·: : 49.7% ·	1 4%	3.1%	5.21	··· • • • • • • • • • • • • • • • • • •	4719	2864	7.4%	. 6. 2%	42123
EXAB.	5	:219402 : 81.6%	. 3879	3.3%	2.71	4359 2.4%	5597 : 2.1X :	3455	3.2%	8491 2.02	268939
TAH .	42.0	99816 65.9%	: 1119 :	473	347 0.42	193 :	302 ·	376 0 41	901 :	29553 - 30 0% -	85190
CRHCHT	43.0		10 0.11	656	569 :	- 830 :	482	. 338 :	338 :	1023	9853
RGINIA	44. 0	14704 40 61	1148 :	1534 :	2441	3985 :	4371 10 6%	2142	3136 :		41166
AGHINGTON	45.0	: 33920 .	1224	- 1197 :	1206	1466 :	1380	1448	2692 :	24762	49317
IST VIRGINIA	46.0	: 48.9% : : 11126 :	10 :	1.7% 811	1.7%	2615	2827 :	. 484	1303	2721	24105
ISCONSIN		44.2% 31932		3.4%	7.1%	4063	3040 :	4.1% :	2908 .	11.3% 5029	57023
/(2H151402	48.0		0:		4.7% : 329 :	7.1%:	5. 3X : 193 :	9.11 : 222 :		25225 :	
		: 72.3%	O OX :	0. SX ;	0.31.	0.3%	02%	0.2%	Q 4% :	25 71 :	

1835831 22521 99456 87423 104450 10 61.0X 1.1X 3.3X 2.9X 3.4X HOTE: "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE POST COM-STRAINING CRITERIA (J. C. IF > 1/16 OF THE POPULATION ALLOWED BY A UNIFORM DENSITY CRITERION IS FOUND IN A SIMPLE SECTOR OF 22.3 DECREES. INJUSTS IN THE COLUMNS REPRESENT THAT LAND UNIOULLY CONSTRAINED BY THE GUIVEN FRACTIONAL CRITERION IS CONSIDERED AVAILABLE IF THE CRITERION NERF RELAXED IF SECTOR CRITERION IS APPLIED. ASBURE THAT UNFORM DENSITY CRITERION IS ALBO IN EFFECT. => COMPOSITE OF 3 RADII == 87423 104430 104528 2.9% 3.4% 3.4%

F-66

5

• •••

POPULATION SECTOR ANALYSIS - TOTAL U. S. DENSITY = 250 0/50. HI. +++ DOUBLE SECTOR (45.0 DEGREES) STATE AREAS IN SOUARE HILES AND X OF STATE

14. ¹

TABULATION

AVAILABLE LAND

1 m

TABULATION			LABLE LA > 14	B ALLOW	6 ALLOW	ABLE POP.					
				1		4 ALLOH	ABLE POP.	ABLE POP.			
		1				l'	> 1	2 ALLOWA	BLE POP	SITY	
		.						Ĩ		RICTED LAND	s
							4				
ALABAMA	1.0	: 19647	: 1554		: 5944				2075		
ARIZONA	20	37.92 44969	: 3.0% : 338	1949	1110	: 1361			59405	. 114343	
ARKANSAS	3.0	: 39.3% : 29767		: 5616	: 1.0% : 3426	: 3397	: 1972	: 3165		53258	
CALIFORNIA	4. 0	54 0X		7604	5713	: 6485	: 5124	22803	51492	160364	
COLORADO	9.0	37.2% 61702	0, 9X 1004	: 2625	· 3.6% : 1360	2953	: 2055	: 3947		104326	
CONNECTICUT	a . 0	59.1X 10	. 0	: 29	: 1.3%	97	: 19	4989	27.5%	: 5212	
DELAMARE	7.0	0.21	. 0			: 376	: 203	: 408	: 39	: 2326	
FLORIDA	8.'0	19.12	2413	: 5221		: 16.2X : 4738	: 4642	: 11397	: 13105	: 59359	
GEORGIA	• . o		1399	: 7218		: 5944	: 3542	: 701a	: 5867	: 58604	
IDAND	10. 0			2972	: 975	: 10, 1% : 1679	: 659	: 12.0%		: 83549	
ILLINGIS	11.0	: 45.7% : 17138 :		3.4%	: 1.2%	: 2.0% : 6749	: 3522	11792		: 56538	
INDIANA	12.0		1303	14.2%	5240	11.9%	: 3271	: 10547		: 36341	
IONA	13. 0		1361		: 3960	13 6X 5414	: 2654		: 0	: 56068	
KANGAS	14. 0		415	: 11.0X : 4993	2384	3300	: 2499		: 193	82265	
KENTUCKY	15.0	: 79.2% : : 14272 :	350	: 5.6% : 4140	: 4536	4.0%	: 3329	: 4314	: 2470		
LOVISIANA	16. 0	35, 4X : 12931 :	1448	4593	: 3870	: 14.3% : 4757	: 2413	3725	6.1X		
HAINE	17.0	26.9%	6 9	• • • • • • • • • • • • • • • • • • •		: 1901	: 830	1 1 2 0 3	: 357	34075	
MARYLAND	18.0		48	: 7,2X : 1255	3.21 772	: 1091	: 540	: 5742	: 145	: 11156	
MABBACHUSETTS	19.0	14,1% : 174 :	87	: 11.2%		: 473	482	: 51.5% : 6774	: 1.3% : 0	: 8627	
HICHIGAN	20. 0		338	: 4189	: 4342	: 4729	: 2337	78:5% 13423	: 9679	61938	
MINNEBOTA	21.0		1023	: 4.8X : 9143	: 3001	2905		: 4632	: 15.7% : 24926	85915	
HIGE1891PP1	22.0	: 49,3% : 21954 :	1.2X 444	6.01 3462		: 3,4% : 4613			: 29.0% : 3941	47885	
MIRBOURI	23. 0		704	: 11.4% : 7344	: 4314	9.4X 4169	5.4%	: 5356	: 8.0X : 4516	69934	
HONTANA	24.0	38 , 7%, 1 94744	1.0X 111			: 60% : 897	: 3.5%	: 7.7% : 820	: 6.5% : 47160	: 148437	
HEBRASKA	29. 0	: 43.8% : : 45475 :	0. 5%. 415	: 2377	: 1.0X : 2441	: 1515	: 1992			77720	
NEVADA	24.0	84.2% : 95685 :	0. 3X 135	: 3.3%	: 3.1%	: 1. 41 : 475	: 2.0% : 782	: 2.9% : 1177	2.0%	110618	
	27.0	77.6% : 3194 :	0. 1X 116	: 1090	: 934	: 475	: 339,	1901	18.3% 1197	: 9467	
NEH JERSEY	28.0	33.7%;	1, 2X. 19	: 97	: 290		: 241	20.1%	: 12.6%	: 8010	
NEW MEXICO	29.0	0.0%	0. 2X 125	1882	1013	: 1709		: 86.5% : 1476	0.0X	121743	
NEW YORK	30.0	67.71 : 7469 :	0. 1% 762	4246	: 4438	: 1.4%		1.2%	25. 9X	50218	
NORTH CAROLINA	31. 0		1.5%	: 8, 5%	: 4861	: 9.91 : 7469			. 19.8X : 8627	: 50769	
NORTH DANDTA	32.0	14.7% : 58209 :	2. 4X 610	: 10,1%	: 13.5% • 763	: 147% : 647		: 17.9% : 473	17.0% 6572	71006	
DH10	323.0 :	82.0X : 3551 :	0.91		: 4999	0.9% 4487	: 3059	: 0.7% : 17775	2326	41833	
OKLAHONA	34.0	8,5% : 44081 :	2. 6%	: 10.9% : 4526	: 11.9% : 3677			: 42 5% : 4043			
DREGON	35.0		2.5% 907	: 6.5% : 3168	: 2596	6.4X 2229	: 5.2%	5 8% 4159	30349	97928	
PENNSYLVANIA	36.0	53.3%	0.9%. 1052	3.2X 4854			2567		31.0X 3551	45278	
RHODE ISLAND	37.0	12.6%	2.32	: 0	: 10	: 11.7% : 48	: 10	: 1139	: 0	1207	
BOUTH CAROLINA	38.0	0.01.: 7537:	0. 0X 454	: 3426	3735	: 6031	: 2519	: 4825	2663	31190	
BOUTH DAKOTA	39.0	24.27. 48655 :		11. 0X 2036	: 907	: 627	: 647	15.5%	8 5% 22793		
TENNESSEE	40.0	63.2X 14050	0,9% : 876		: 1.2% : 4314	: 0.9X	: 0.8% : 3773	: 6176	29.6%	: 42123	
TEXAS	41.0	33.4% :		9,9% 20091		12777		14.7%	5491	268841	
UTAH	42.0	67.4% : 53220 :	203	: 1071	: 714	: 1226	: 1110	: 2084	25553	85181	
VERMONT	43. 0	62.5% : 4420 :	0.2X 311	1.3%	: 0 81 : 1177	: 1.4% : 666	: 1. 3X : 405	2 42	30 0%	9832	
VIRCINIA	44.0	44. 7% : 9525` :	5.2%	11 1X 4178	11.9%	: 6.8% : 5722	4.1X 3368	5.7% 6601	10.4%	: 41169	
MASHINGTON	45.0	23.1%	2.7%	10.2%	12.1%	13.9%	: 8.2X	. 16.0%	13 ØX	:	
MEBT VIRGINIA	46.0	36.0% : 7141 :	2.3%	A 6X	4. 41	4.2%	: 3.6% : 1235	9 1% 2277	2721	:	
WISCONSIN	47.0	29.4%	2.9%	15.9%	4603	13.7%	5. 12	: 9 42 1	11.32	:	
WYOMING	:	43.6% : 67637 :		. 13.2%	. 8.1 %	: 0.8%	: 5,0%	10 7%		:	
		49.01		2. 41	0 71				25 7%		
TOTAL	1	544002 50. 8%	37898 1. 3%	189101 6.21	152051	166674 5. 5%		282611	5576/J 18.3%		
									- /		

NOTE: "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE MOST CON-STRAINING CRITERIA (1.8. | F) 1/8 OF THE POPULATION ALLOWED BY A UNIFORM DENSITY CRITERION IS FOUND IN A DOUBLE SECTOR OF 43.0 DEGREES) NUMBERS IN THE COLUMNS REPRESENT THAT. LAND UNIQUELY CONSTRAINED BY THE OIVEN FRACTIONAL CRITERION. THIS LAND IS CONSIDERED AVAILABLE IF THE CRITERION WERE RELAXED. IF DECTOR CRITERION IS APPLIED. ABBUNK THAT UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. ... COMPOSITE OF 5 RADII ...

٠,

9

*

POPULATION SECTOR ANALYSIS - TOTAL U. S. DENSITY = 300 #/S0 MI +++ DDUBLE SECTOR (45.0 DEGREES). STATE AREAS IN BOUARE MILES AND X OF STATE

TA	BUL	ATI	ON .

. *

AVATI ARE C. LAND

				1	>_1 i	/4 ALLOW > 1		ABLE POP		
						- 1	> 1	12 ALLOH	ADLE POP	
				1]	Į.,	1		TRICTED LA
	10	: 26653	: 1718	: 3937	: 5192	: 3858	: 3146	: 3329	2075	. 51908
AR 1 ZONA	2.0		: 454	: 1312	: 1255	: 1351	6.1X 1307	2026	59405	:114343
RKANSAS	3.0	41 4%	0 41	1.1%	2799	: 1.21	1.0%	1756		
ALIFORNIA	4. 0	: 63.7%	0.6%	: 8.1X : 5549		: 4.72	2 6%	3.32	. 11.8%	
OLORADO	5. 0	: 43. 3% : 65224	1.6%	3 5%	: 3.7%	3.3X 1824	: 2.5%	10.0%	. 32.11	:
ONNECTICUT	6.0	: 62.5%		2.61		1.7%	1 67		27. 5%	
ELAWARE	7.0	0.6X	0.9%	4.47	: 7.2% : 347	9 32	5.92		: 0.0%	:
LORIDA	- 6. 0	28 21 23170	: 1 2%	16.61	14.91	12 01	7.1%	18 3%	: 1.7%	:
EDROIA	9.0	39 01 28342	1.4%	: 6 4%	6 31	: 6.4%	6.4% 2914	: 12.0%		:
DAHO		48.42	: 3,.1%	8.2% 1457	8.8% 1033	8.92	5.02	: 7.6%	10.02 37519	4
LLINOIB	11.0	49,22	0.11	1.72	1.2%	1.02 4053	1.02	0.92	449%	
NDIANA -	12.0	: 48.5%	: 2.4%	13.32	7. 8%	7.21	: 4.7%	: 13.91		
DuA	1.	: 29.5%	: 2.4%	: 12.8%.	: 12.5%	: 5520 : 15,27	3406 9,42	5298 14.67	3 62	:
		39652	: 0.7%	: 6427 : 11. 3X	2885	2982 5.3%	1631	2075		56067
ANSAS	. 14. 0.	85.62	290 0.4%	: 3349 : 4.1X	2133	2277	1.9%	2.5%	: 193	
ENTUCKY	19.0	18383	: 917 : 2.31	2586 6. 41	: 3937 9.8%	6369 15 8X	2924	: 6.7%	2470	40269
DUISTANA		: 18653 : 38.7%	: 338 : 0.7%	4043 9.0X	: 3358 : 7.0%	: 3368 : 7.0%	: 1476 : 3.,1%	: 2200	: 14417 : 29,92	
AINE	17.0	: 27474 : 80.61	: 0.0X	1580 4.67	: 1341 : 3.9%	: 1679 : 4.'9%	: 791	: 1849 : 2.5%	: 357 : 1.0%	34074
ARYLAND	18.0	2519	: 106 1.0X	: 946 : 8.5%	926 8.31	1091 9,7%	: 926 : 8. 31	: 4507 : 40, 4%	: 145	11156
ASSACHUSETTB	19. 0	587 6.8%	106	454	-868 10.11	: .753 : 8.7%	743 8.61	: .5115 : 57.3%	0.01	8628
ICHIGAN	200	25650 41 51	907	4989	4931 8. 0%	4864	: 3146	7672	9679	61838
INNESOTA	81.0	47430	: ,145	3242 3 81	2400	2.8X	1718	3329	24724	85714
1551681 PP1	22.0	26055	579 1.2%	4815 10.12	5443 11.42	3686	: 1679	1785	3841 8.0%	47883
ISSOUR I	23. 0	47169 67, 41	376	5105	3783 5.41	3339 4. 8%	2181 3.1X	3464 5.0%	4516	69933
DNTANA	24. 0	97803 65 91	0.01	1081 0.7%	636 0.42	772 0 51	.931 0.41	434	47160 31.8%	148457
EBRASHA	25. 0	48943	482	1766	1710	1187	1139	: 1052	: 1534.	77721
EVADA	26.0	88 61 87072 78 71	0. 6X	907	2.2%	1.5%	1.52	1.42		110618
EN HAMPSHIRE	27. 0	4256	0.12	820	0.6X 724	0.4% 762	0.6X 463	0.52	: 18 3% : 1197	
EW JERSEY	29. 0		1.6%	482	7.61	0.1X 434	4.92	11.5% 5896	15.97	8009
EN METICO	29.0		1.41	6.01 : 1505 :	3.9% 1383	5.4% 926	6. 3% 685	: 73.6% : 946'	31536	121744
EN YORK	30. 0		0.2%	1.2%	1.3%	0.8% 5105	0.6X 4169	: 0.9% 8801	25.9%	50220
RTH CAROLINA	31.0		2.3%	8 0%	10.1%	10 21	8.3% 3831	17.52	: 19.8% 8627	50767
ATH DAKDTA	32.0	27 51 60698	3.7%	B 01 1505	10.5% 878	13.8% : 618 :	7. 52	9.9% 357	17.0X	71004
10	33.0	85.5% 9747	0.0X 482		1.21	0.9%	0.51	0. 31 10490	7 31	41834
	34.0	23 3% : 90383 :	1.22	8.5% : 3763 :	12 41	13.42 :	10.62	25.11	5.:6X 3464	69613
EGON	35.0	72.42	0.62	5.42	5.1%	5.4%	2.81 2239	3.42	3 01 30349	97929
NNSYLVANIA	:	57 8% : 11397 :	1 17 1206	2.02	1.7%	1:7% :	2.31	2 51	31 OX 3551	45278
ODE ISLAND		25.21	2.71	9.8X :	11.42		7.0%	24:61	7 91	
UTH CARDLINA	349.0	0.0%		0.87.	4 01		B. 01 1911			31189
UTH DAKOTA	319.0	35 42	3.4%	10.6%	12 71 :		6. 1X 290	8.5%	0.5%	77007
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	51608 67 01	0.02	811 :	521 : 0.71 :	569 : 0.71 :	0:4%		29 62	: '
NNESSEE	40.0	42 8%	550 : 1. 3% :	3792 : 9.02 :	4786 :		7 4%	3648	2596	42123
145	:	207629 77, 2%	2056 :	13182	9963 : 3.6% :	9322	7894 2.9%	12902		:
AH	42 0	543B7 : 63.8% :	434 . 0. 5% :	1090	427 : 0.7% :	1293	724 0 81	1071	25553	85179
RMONT	43 0 .	5954 : 60.41 :	0.01	695 . 7.11	897 : 9 1% :	511 5201	425 . 4 3% :	347 3 5%	10 42	
RGINIA		14195 34 5%	782 : 1.9% :	3551 8.67	5008 · 12 2X ·		2692 : 6. 5%	4072 9 92	9665 13 81	
SHINGTON	45 0	30571 44 11	540 0 8%	2663 3.8%	2374	2557	2104 3 0%	3744 5 42	24762	69315
ST VIRGINIA	46.0	10673 : 44 3%	174	2374 9.8%	2406	2963 12 3%	1127	1467 6.1% :	2721 11.3%	24107
SCONSIN	47 0	31334 55 0X	685	5423 9. 5%	4593 - 8.1%	3648 6 4%	2403	3908 6 9%	3028 8 81	57022
DHING	48.0		0.0X	743 :	540 0 6% :	502 0 5%	339 0 31	405 0 4%	25225	
	•	· · · · ·	V. VA _ :	0 81 :	- 0A :	U JA	V 34	V 44		

NOTE "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE MOST CON-STRAINING CRITERIA (1 @. IF > 1/8 DF THE POPULATION ALLOWED BY A UNIFORM DENSITY CRITERION IS FOUND IN A DOUBLE BECTOR OF 45 0 DEGREES NUMBERS IN THE COLUMNS REPRESENT THAT LAND UNIQUELY CONSTRAINED BY THE GIVEN FRACTIONAL CRITERION THIS LAND IS CONSIDERED AVAILABLE IF THE CRITERION WERE RELAXED. IF SECTOR CRITERION IS APPLIED. ASSUME THAT UNIFORM DEWSITY CRITERION IS ALSO IN EFFECT ++ COMPOSITE OF 5 RADII ++

POPULATION SECTOR ANALYSIS - TOTAL U. S. DENSITY = 750 #/SQ HI +** DOUBLE SECTOR (45.0 DEGREES) STATE AREAS IN SQUARE HILES AND X OF STATE

	STATE AREAS	IN SQUARE	HILES A	ND X OF	STATE	-	• •			
TABULATION		AVAI	LABLE LA	ND 8 ALLOHA	BLE POP		·			
			í		6 ALLOHA					
					3 1/	4 ALLOHAI	ALLOWA	BLE POP.		
							> 1/	2 ALLOHA UNIF	ORM DENS	ITY
			[.					1		RICTED LANDS
		-	-	•	•	•	·	-	•	
		: 29934	. 830	4024	4150	: 5143 :	2895	. 2856		: 51907
ALABAMA		57.7%	5.6%	1. 7.8%	8.0%	9.9%	5. 6X	: 5.5%	: 4.0X	:
ARIZONA	20	48308	998 051	1505	: 877 : 08%	: 1293 : : 1.1X :	656 0. 63	1679	: 52.0%	114341
ARKANSAS	3.0	: 35531 : 66 7% :	492	: 3620 : 6.0%	2712 5.11	1959 : 3.7% :	1119	1554	6263 11.8%	53258
CALIFORNIA	4.0	75270 46.91	1197	5732 3 6%	4526	: 5134 : : 3.2X :	3686	: 13327 : 8.3%		: 160364
COLORADO	5. 0	67174	511 ' 0.5%	1698	1361	1843 1.8%	1216	1862		104325
COMMECTICUT	6 . 0	: 154 :	106	376	: 502 -	: 685 :	444 "	2943 56. 5%	0.01	5210
DELAWARE	7. 0	3.0X 762	2.02	7.2% 376	9.61	13.1%	8.5% 174	: 396	39	2326
FLORIDA	B. O	: 32 8% : : 26422 :	3 32	16.2% 3763	12 41	: 9.1% : 3136 :	7.5%	: 17.0%	1.7% 13105	59357
CEORGIA	9.0	: 44. 5%	1 31	6 3X 4246	4.31	: 5. JZ :	5. 31 2731	: 10.9%	: 22.1% : 5867	58604
IDAHO	10. 0	41920	0.61	: 7.2% : 830	8.1X 917	: 8.3% : : 869 :	4, 72	: 4.5% : 685	: 10.02 : 37519	83550
		: 50.2%	0.2%	1.0X	1.1%	1.1% 3941	0.81	0.8%	44.92	:'
ILLINOIS	11.0	32134 56.8%	1.6%	10.02	6.8%	: 6.8% :	. 4	11.4%	2.4%	1
INDIANA	12.0	13066	540 1. 52	4767 13, 13	4786	4584	8. 6X	11.42	: 1322 : 3.61	36341
IDHA	13. 0	: 42547 : 75.9%	1062	4574 8.2%	2827 5.0%	2065	2.1%	1795	0.02	
KANSAS	\$4. 0	72009 87.5%	965	2549 3.1%	: 1911 2.3%	2.1%	1148	1747 2.1X		82267
RENTUCKY	15.0		193 0.5X	2384	3754 9.3%	6106	2818 7.0%	2152	2470	40270
LOUISIANA	16. 0	: 20564	811 1 7%	309B	3570	2413 5.0%	1428	1853	14417	48194
MAINE	. 17.0	: 42.7% : 27985	· · O	: 1303	1322	: 1925 :	3. 02 791	791	: 357	34074
HARYLAND	- 18. 0	: 82.1% : : · 2985 :	0.02	: 3.8% : 897	3.9% 897	4. 5X	2.3%	2.31		11153
MASSACHUSETTS	19.0	23.9%	1.02	: 0.0% : 030	: 8.0% : 579	: 10.3X : 724	13.2X 830	32.3%	: 1.37. : 0	8628
HICHIGAN	20.0	10.0%	2.01	9.6%	4854	8.4X : 4101 :	9. 4X 3271	: 93.7% : 6533	0.01 9679	41836
	21. 0	45.0%	1.51	7, 5%	7.8%	6.67 2441	5. 31	10.61	: 15.7%	05713
MINNESOTA		: 36.4%	0.1%	: 3.6X	3 OX	: 2.8%	2.1%	3.01	29. OX	:
MISSISSIPPI	22. 0	28207 58.91	280 0.61	4082 8. 5%	5008 10.5%	3320 6.91	1563	1583	3841 8.01	47884
M1850UR1	23.0	: 48983 : : 70.0% :	270 0.4%	4265	4034	3252	1756	: 2956 : 4,1X	: 4516 : 6.5%	: 69932 :
MONTANA	24. 0	99179 66.1%	0	917 0.61	733	618 0.41	434 0. 31	: 415 : 0.3%		148456
NEBRASKA	25. 0	70040	125	2220	1042 1.3X	1245	666 0. 9%	849 1.1%	1534 2.0X	77721
NEVADA	26.0	87719	- 193	733	. 367	: 550 :	339	463 0.4%		110610
NEW HAMPSHIRE	27. 0	: 79.3X : : 4661 :	0.21	: 0.7X : 619	0.3%	0.5X 901	0. 3%	946	: 1197	9468
NEH JERSEY	28.0	: 49.2% :	1.0X 193	: 6.9% : 396	: 7. 4% 319	: 8.5% : : 463 :	4,7%	: 10.0X : 5433	: 12.6%	8009
NEW MEXICO	27.0	7.5%	2.4%	4.92	4. 0X	: 3. 8% : 940 :	7. 4%	: 67.8% : 849	: 0.0X : 31536	121744
	30.0	70.1%	0.3%	1 3%	0.7%	0,7% : 8201 :	0. 3X 3513	0.71 7623	25,92	50218
NEW YORK		29.2%	1,01	8. 3X	9.2X	10.4%	7.01	15.2%		50768
NORTH CARDLINA		: 19403 : : 36. 21	0.71	8. OX	8. SX	13.6%	7. 51	: 8. 5x	🔆 17. OX	71005
NORTH DAKDTA	32. 0	: 61133 : : 66.1% :	0.02	: 1573 : 2.2%	733 1.0X	338 0.5%	357 0. 51	299	6572 9.3%	:
01110	33.0	: 11329 : : 27.1X :	647 1. 5%	4150 9.9%	5375 12.8%	5684 : 13.6X	4217 - 10. 1X	: 8106 : 19.42	5. 6%	41834
OKLAHOMA	34. 0	52274 : 75.1%	714 1.0X	3879 5.6%	2731	2799 4.0X	1669 2.4%	2084	: 3464 : 5.0%	69614
DREGON	35. 0	58913	135	1756 1. BX	1293	1699	1795 1.8%	1998	30349 31.01	97927
PENNSYLVANIA	36.0	: 14378	666	: 4178	4130	: 5452 :	3908	9013	: 3551	45276
RHODE ISLAND	37. 0	31.6%	: 10	: 29	9.1X 125	12.0X	164	685	: 7.8% : 0	
SOUTH CAROLINA	319 0	0.0%	743	2422	3387	: 4207 :	13 6X 1920	: 2297	. 2660	: 31189
SOUTH DAKOTA		43 4% : 51965	2.41	7 8X 840	10.9% 482	13.51	6 21 280	: .7 4%	8.5%	77006
TENNESSEE		67.5% 19937	0.01	: 1.1X . 3300	0.61	: 04% :	0 41	: 0.5%	: 29.6% : 2596	
		. 47.3%	1 67	; 7.8X	10.13	: 11.8%	7. 51	: 7.6%	. 6.2%	
TEXAS		217173 80.8%	: 0.5%	: 4.1%	3. 1X	. 3.6%	2.1%	; 3 8X	· 2.0X	:
UTAH		55381		: 1.4%	0.8X	: 0.9%	0. 5X	1.1%	25553	:
VERMONT	43 0	65.01 6128 62.21	0	: 676	791 8 01	: 5.1% :	4.01	341	10.4%	:
VIRGINIA	44 0	. 16164 39 31	473	3599	: 4362	5095 12 41	2364	. 3445		: 41167
HASHINGTON	45 0	32192	630	: 2260	: 2374	. 2104 :	1478	3088	24762	: 69316
WEST VIRGINIA	46. Q	: 46.4% : : 11561 :	. 0	: 1872	: 2654	: 2908 :	1177	: 1312	: 2721	24105
WISCONSIN	47 0	- 48 0% -	: 0.0%	7 82 4719	11 OX	11.6%	2268	3146		57022
LYOMING	40 0	59 7% 70677	0.2%	. 8 3%.	7.2%	: 6.3%	4.0%	5.52	8 8% 25225	
er y (Um 1 146	40. U	72.12							25 72	•
		1849701	19801	131151	121809			148018		
TOTAL		90 BJ	.0 7%		4.0%	4.3%	2.7%	4.9%	10 3%	-

<u>A</u>

43

AD BY 0 74 4 34 4 04 4 34 NOTE "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE MOST CON-STRAINING CRITERIA (1. 0. IF) 1/8 OF THE POPULATION ALLOWED BY A UNIFORN DENSITY CRITERION IS FOUND IN A DOUBLE SECTOR OF 43 0 DEGREES) NUMBERS IN THE COLUMNS REPRESENT THAT LAND UNIQUELY CONSTRAINED BY THE GIVEN FRACTIONAL CRITERION. THIS LAND IS CONSIDERED AVAILABLE IF THE CRITERION HERE RELAYED IF SECTOR CRITERION IS APPLIED. ASSUME THAT UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. ** COMPOSITE OF 3 RADII **

 $\overline{\mathcal{O}}^{1}$

T 👌

POPULATION SECTOR ANALYSIS - TOTAL U. S. DENSITY = 1500 =/50 MI +++ DOUBLE SECTOR (45.0 DEGREES) STATE AREAS IN SQUARE MILES AND % DF STATE

. .

٠, [·]

			1	/8 ALLOW > 1-	6 ALLOW	ABLE POP.	ABLE POP				
					1		/3 ALLOW	ABLE POP	ABLE POP		
			·						FORM DEN	SITY TRICTED	
		ł	ŧ	·	1	I	I	I	1		
ALABAMA		: . 33958 .:	0				201				
ARIZONA	10	65 4%	0.0%		3493 6 7X	: 8. BX	2856	: 5.2%	4 0%		
ARKANSAS		44 2%	328 0.3% 270	1.0%	550 0.5%	492 0,42	.: 511 .: 0.42	1430	. 52 OX		
CALIFORNIA	3_0 4.0	69.8%	0 5%	: 3136 . 5.9%	2297.	: 2.91	1071 2.0X 2876	2 81	6263 11.0X	<i>2</i> 7	
COLORADO	 5.0	51.0X	0 61	: 2 6%	4227	3870	2876 1.8% 878	11020	. 32 11	104325	
CONNECTICUT	5. U 6. O	66.4%	503 0. 52	1669 1.6X 203	1,1%	1.0X	0. BX 540	2673	27.52	:	
DELAWARE	7.0	10.6%	3.91	3.91	7.61	12,4X	10.41	51.3%	0.0X		
FLORIDA		43.62	0.4%	11.6%	10.01	:- 9.1%	7.92	15.9%		2.1	
GEORGIA	- 9.0	53.1X 34258	0. 11	3 0%	2.61	3.8%	5.2%	10.12	. 22. 12		••
IDAHO	10. 0	58.5% 42460	0. 6X	5.6%	: 7.21	7.3%	4.72	: 6.2% : 676	: 10, 0%		
ILLINOIS	11.0	50.8%	0.0X 357	. 0.8X	1.0X	0.91	0 72	0 82	44 9%	:	
INDIANA	12. 0.	63. 1%	0. 61 772	: 8.9%	6 4X	5.3%	3 42	10.02	2.4%	36342	
IONA	13.0	44. 3%	2.11	10.5%	10.9%	10.31	7 61	10 5%	3. 6%	56067	
KANSAS	14.0	B1.6%	0.11	6.6% 1824	4, 31	2.7%	1.8%	3 OX	0. OX	: 82266	•
KENTUCKY	15.0	91.1X :	0.2%	2.2%	1.72	1.4%	1.2%	2065	0. 2% 2470	40269	
LOUISIANA		53.5X 23112	0.9%	5.01 2422	8.6%	14.1%	6.72	5.1%		49154	
MAINE		48.0%	0.02	5.0X	6.1%	4.6%	2.72	3.7%	29.9%	::	
MARYLAND	18.0	82 6%	0. 0X	3 3%	3 9%	4.41	2 31.	2.3%	1.02	- 11155	
MASSACHUSETTB	19.0	: 29.3% :	1.5%	8. 0%		11.91	: 12. 3%	24.7%	: 1. 31	8628	
TICHIGAN	20.0	21.1% :	1.0%	5. 3%	: 5.1%	8.6% 3821	: 11.7%	47.12	0.01		
INNESDTA	21.0	30. 6X	0.21	6.1X 2954	6.6%	6. 21 2055	5.4%	9.31	. 15, 7%	83913	•
MISSISBIPPI	22. 0	57.7%	0.3%	3. 3X 3320	2.9%	2.41	1. 9%	2 51	. 29.0%		
MISSOURI	23.0	62. OX :	0.52	6.9%	9.9%	6.42 2557	3.12	3. 2%	: B.OX	69933	
MONTANA	24.0	72.2% :	0.42	6.11	5. SX	ູ່ 3, 7% -	2.1%	3.72	6. 5%		
EBRASKA	25.0	66.4% :	0. 0X	0.62	0.4%	0.3%	0.21	0.3%		77721	
NEVADA	26.0	92. OX	0.1%	2.0%	1.5%	: 0.8%	0.7%	1.0%	2.0%	110617	
NEW HAMPSHIRE	27.0	80. 2X :-	0. ÓX 10	0.5%	: 0. 3%	0.27	0.21 463	0.3%		: .	
NEW JERSEY	28.0	51.9%	0. 12 145	6.0%	7.2%	7.8%	4.91 1197	9.4%	. 12.6%	8010	
NEW MEXICO	:	14.8%	1.8%	4. 51	3 41	6.3%	14 9%	52 31	: 0. 0X.	121745	
EN YORK	30.0	71.6%	0. 01 425	0.5Z	0.5%	0.5%	0.3%	0.6%	: 25 9%.		
WORTH CAROLINA	31.0	34. 9%	0.8X	6.7X	8. 5% 3947	8.72	6.7% 3744	13.9%	: 19.8%	50768	
DRTH DAKOTA	32.0	: 41.1% :	0.02	5.4%	7.8%	13.0%	7.41	8 31 290	17. OX		
	33.0	87 0%	0.0X	1.62	0.91	0. 41 4256	0.42	0.4%	: 9.3% : 2326	:	
KLAHDHA	34. 0	34 BX :	1.7%	9.8X	11.3%	10.21	9.7%	: 17 0% : 1882	5.6X	69616	
REGON	35.0	BO 3%	0.1X 261	2 9%	3 2%	3.5%	2.3%	2.7%	5. 0%	97929	
PENNSYLVANIA	36.0	61.7% :	0.3%	1.4%	1.0%	1.01	1.9%	1 91	31.02 3551	45279	
HODE ISLAND	37.0	36 2%	0.21	: 6.2%	9.5%	11.6%	8.7%	17.9%	7.6%		
OUTH CAROLINA	38.0	4.01.	8. 0%	7,21	. 7 ZX	9 62		49.6%	0.0%	:	
GUTH DAKOTA	349 O	51.2% :	0 02	4. 32	9.92	13 OX	6 OX	: 7.1%		: .	
ENNESSEE	40.0	68.1% :	0.0X 193	0.7%	: 0 5%	0.3%	0.3X 3059	0.5% 3098	29 67	:	
EXAS		53.2% 226061	0 5%	5 3X 9882	9 iX	11.2X 5993	7. 3X	7 4% 8685	6 2%	268641	
		84 1% 56684	0 41	3.7%	2.7%		1 7%	3 2%	2 OZ		
ERMONT	43.0	66 5X :	0 4x	0.8%	021	0 51	0.6%	0.9% 338	30 0X	9852	
IRGINIA	44.0	63. 5%	0.0%	. 5. 8X	8 12	4.9%	3.92	. 3 4%	. 10 4X	:	
		44. 9%	0 71	6 BX	9 72	10 BX	5 7%	7 62	13, 8%		
ASHINGTON	45 0	35078		1718	2 41	: 19%	1660	: 39%	35 7%		
EST VIRGINIA		11898 : 49 41	10 0 02	· 7 1%	2548	2770 11 5%	1139 4 7% 2133	1303 5 4% 2808	11 31	57022	
ISCONSIN	47 0.	35753	0 32	4014	3728	3194	3 7%		8 8% 25225		
NOWING	- H O	71227 : 72.7% :	0.07	. 396 041.		0.22	0 32		25.7%		

F-70

.. .

٠

POPULATION SECTOR ANALYSIS - TOTAL U. S DENSITY - 250 0/50 MI. +++ "QUAD" SECTOR (90.0 DEGREES) STATE AREAS IN SQUARE HILES AND X DF STATE

TABULATION

4

6

AVAILABLE LAND > 1/4 ALLOHABLE POP > 1/3 ALLOHABLE POP

			1	> 1.	3 ALLOH				
					1 1	2 ALLOW UNIF	ORM DENS	ITY-	
						1	REST	RICTED L	ANDS
		-	•	•	•	•	• •		
			•						
ALABAMA	1 0	28834 35 5%	2364	: 6977 13,42	5954 11 5X			51907	
ARIZONA	20	47575	473	. 1476	2094	: 3329	59405	114342	
ARKANSAS	J. O	37162	: 042 : 318	1 32	2364	3165	52 0X	53257	
CALIFORNIA	4.0	69 8% 69268	0 62	7 5%	4.42	22803	11 87	160364	
		43 21	1 17	4 42	5 OZ	. 14.2%	.32 1%	:	
COLORADO	5.0	63.2%	502 0 52	2.72	. 2.3%	3.87	28660	104326	
CONNECTICUT	6.0	. 39	10 0 21	: 87 : 1.7%		4999 95 72	: 0		
DELAHARE	7. 0	936 40 21	29	: 376	: 338	806 :	: 39	: 2326	•
FLORIDA	80	22147	1033	: 3703	14 5% 5973		: 13105	59358	
CEDRGIA	9.0	37 32	2384	9 6X 5983	. 10.11	· 19.2%	22.17	58605	
IDAHO	10.0	54 9% 41553	. 4.12	: 10.22	. 8 9%	12.07	10 02	* .	
		49 7%		1 602		1. 42	: 44.92	:	
ILLINOIS	11.0	29249 51 73	1216	7952	4970 8 81		1361	56540	
INDIANA	12 0	: 12323 33 9%	1476 4 IX	5790	4893 13.42	. 10547	1322	36341	
IOHA	13.0	42074	820	. 6147	: 3213	3812	: 0	56066	- 11
MANSAS	14. 0	75.02	1.24	11 01 3098	3281	6 0% 3715	: 0.0% : 193	82266	
KENTUCKY	15.0	86.9%	0.7%	3.8% 	4.02		2470	40269	
		. 52 5%	2.12	. 17.6%	: 11. 12	: 107%	: 6.1%	48153	
LOUISIANA	16. 0	: 43.1% :	2, 17	4979			: 14417 : 29.9%		
MAINE	17. 0	28603	425	2200 6. 5%	1187 3.5%	1303 3.01	357 1.02	34075	+
MARYLAND	18. Ö	27.42	251	: 1004			: 145		:
MASSACHUSETTS	19. 0	482	2 22 87	492	791		: 0		
MICHIGAN	20. 0	5.62	1.02	5.7%	: 9,2% : 4188	78.51	0.02 9679	61836	:
MINNESOTA	21.0	46 32 :			: . 6. 8%	21.7% 4632	: 15.72	1 N.	
		58 92	0 22	: 34%	: .3. OX	5 42	: 27V.UZ	1.1.	· ·
MISSISSIPPI	22.0	. 32038 : : 66 9% :	1. 5%	10. 52	. 7. OX	2705	39941 : 0.0%	: .	•
MISSOURI	23. 0	51319	1255	3870	: .361.9	5356	4516	: 69935	
MONTANA	24. 0		0	926		820 0.6%		: 148456	
NEBRASKA	25 0	: 69367 .	878	1946	1072		: 1534	77720	
NEVADA	26. D	89.5%	1 12	: 2,2% . 714	1081	. 1177	20255	110618	
NEW HAMPSHIRE	27. 0	78 8% 4497	0.2%	20 0	: 1 OX	1.1%			
		47.4%	3.72	10 31	: 5.9X	20.12	12 62	: ¹	
NEW JERGEY	29. 0	0 4%		5 52	: 6.5%		0 01		
NEW MEXICO	29 0	84949 69.8%	241	1 372			25 92	121743	•
NEW YORK	30 0	12015 25.5%	2104	5278 10 51	5365	14707	9930	50219	
NORTH CAROLINA	31. 0	. 16530 .	1428	8859	: 6215	9110	8627	50769	
NORTH DAKOTA	32 0	32 6% : 62146 .	2 8%	17 47 820	: 994	17.92	17 02	71005	
0010	33 0	87.5%	0.02	1 21	1.41	17775	9.3X 2326	41832	
		23 6%	2.4%	: 13 2%	. 10 7%	42 5%	5.62	:	
OKLAHOHA	34 0	52650 75 6%	0 51	4748 6 82 2248		4043	3464	: 1	
DREGON	35 0	56356	1698	2248	: 3117 . 3.2%	4159	30349	97927	
PENNSYLVANIA	36 0	11628	1940	6417	4275	17467	3551	45278	
RHJDE ISLAND	37. 0	25.72	4 3% 0	14 2%	9 4%	38 67	: 0	. 1207	4
SOUTH CAROLINA	38 0	0 02	0 0 2	. 3.2%	2.4X 3841	94 4% 4825	20 01 2663	31188	
SOJTH DAKOTA	39 0	40 2%	3 22	20 2%	12 32	15 52 618	B. 5%	77007	
		67 8%	0 0ž	0 8%	1 02	0 82	29 62	•	
TENNESSEE	40 0	20979 49 8%	000 21%	6465 15 3%	. 5019 11 9%	6176 14 71	2596 6`2%	42122	
TEIAS	41 0	212696	3667 1 4%	1355B	12487	20941	5491 2 0%	268840	
UTAH	42 0	54252	618	936	1737	2084	25553	85180	
VERMONT	43 0	60 7% 6958	0 7%	1 1%	2 0X 531	560	30 0X	9854	
VIRGINIA	44 0	70 6% 16772	0 07 1399	7 9%	5 42	5 7%	10 42	41168	
HASHINGTON	45 0	40.7%		14 7% 3551	11.0%	16 02 6301	13 82	69316	
		44 7%	0 7%	5 1%	4 7%	9 12	35 7%		
WEST VIRGINIA	46 0	12651 52 5%	907 3 87.	3377 14 0%	2171 9 0%	2277		24104	
WISCONSIN	47 0	34721 60 9%	1332	5636	417B 7 3%	6128 10 7%	5028	57023	:
WYOMING	480	70792	0	618	801	550	25225	97986	
		72 2%	0 0%	C 67	0 81	·0 6X	25 72		
TOTAL		1830731 60 2%	39643	180056 5 91	149246 4 91	282611 9 3X	557673 18 3%		
-				-	-		-		

NOTE "AVAILABLE LAND" IS THAT AVAILADLE (NDER THE MOST CON-STRAINING CRITERIA (* 0 IF (* 1/4 OF THE POPULATION ALLOWED BY A UNIFORN DENSITY CRITERION IS FOUND IN A "QUAD" SECTOR OF 90 DECREES IN UNBERS IN THE COLUMNS REPRESENT THAT LAND UNIQUELY CONSTRAINCE BY THE QUEN FRACTIONAL CRITERION THIS LAND IS CONSIDERED AVAILABLE IF THE CRITERION WERE RELAXED. IF SECTOR CRITERION IS APPLIED, ASSUME THAT UNIFORM DENSITY CRITERION IS ALSO IN EFFECT ** COMPOSITE OF 5 RADII **

F-71

Ω

77,

•

2

<

POPULATION SECTOR ANALYSIS - TOTAL U S. DENSITY - 500 - 500 HI - ... "OUAD" SECTOR (90 O DEGREES) STATE AREAS IN SQUAPE MILES AND X OF STATE

TABULATION		AVA	ILABLE L	/4 ALLOWA					
				1	3 ALLOW > 1/	2 ALLOH	ABLE POP.		
					.1	UNI	FORM DEN	SITY FRICTED L	ANDS
		1	ł	.1	ł	ł	•		
ALABANA	1. 0			6253	3985	3329	2075		
AR L ZONA	2.0	69 17 49244	. 0.7% : 936	. 12 OX : 1149	7.72	2026	4 0%	114342	
ARKANSAS	30	43.12	. 0.19%. . 617	1 07	1 47	1 8%	52 07	53258	
CALIFORNIA	4.0	76.01 79062	0 21	5 2X 6282	3 5%	3 32	11 8%		· .
COLORADO	5.0	49.31	: 1.04	3.9%	3 6X	: 10.0%	: 32 1%		
		: 66.3%	: 0.21	1.7%	· 1 9X	2:4%	27.5%	:	•
CONNECTICUT	6.0	: 164 : 3.1%	: 164 : 3.1%	482 9.3%	12.87	· 3735 : 71 7%		: 5211	
DELAWARE	7.0	: 1206	: 30	14 92	251	. 425 : 18.3%	: 1.7%	2326	
FLORIDA	8.0	28381 47 81	: 011 : 1.47	4642 7.8%	5288 8 7%		13105	: 59358	
GEDROIA	9:0	29687		5259	: 4053	: 4429		58604	
IDAHO	10. 0	43435	: 0	926	: 926	: 743	37519	: 83549	
ILLINDIS	11.0	: 52 OT : 38166	0.0X 463		3976	: 7836	44.92	56540	
INDIANA	12. 0	: 67.5% : 18991		8.4% 5182	7 0% 4844	5298	: 1322		
IDHA	13. 0	: 52.3% : 48356		: 14.3% : 3291	2152		3.6%	56067	
KANBAS	14. 0	86.2%	: 0.3%	5.9%	3.81 2335	: 3,7%	0.01		
		91.5%	0. 5%	2.4%	2.8%	2 51	0.2%	:	·
KENTUCKY	15.0	25080		6282 15.6X		6.7%	2470	40269	×
LOUISIANA	16.0	: 25765 : 53.5% :		: 3156 : 6.61	4.42	4.6%		: 48153 :	
MAINE	17.0	: 30224 : : 89.7% :	0.01		975	849	: 357	34074	
MARYLAND	18. 0	4014 36.02	222 2.01			4507	: 145	11156	
MASSACHUSETTS	19.0	: 1081 :	261	1139	1033	5115	: 0	8629	
MICHIGAN	20. 0		3.0X	13.2%	12.0X 4323	7672	0.0%	61837	
MINNEBOTA	21. 0		2.3%	2586	7.0% 2142	12.4%		: -85913	•
MIBBIBBIPPI	82.0	: 61.4% : 34052 :	0.2%	3.0% 3831		J. 9X		47993	
MISSOURI	23.0	75.3%	0.21	6.01 3059	4.7%	3.7%	: .8.0X	69933	
		79.62	0.4%	4.42	4.2%	5.0%	: 6.5%	: 1	
MONTANA	24. 0	67.0%	0. 0X	0.42 :	704	454	: 31.8X :		
NEBRASKA	25.0	72385 : 93.1% :	183 :	1.51 :	1390 1.91	1092		77721	• •
NEVADA	26.0	98259 : 79.8% ;	434 :	347 : 0.3% :	733	589 0. 51	20255		
NEW HAMPSHIRE	27.0	5520 : 56. 3%	135	868 9.2%	676	1090	1197	9466	
NEH JERBEY	29.0	427 7.9%	261 :	473 :	733 :	3096 :	• • •	9010	
NEW MEXICO	29.0	86821	3. 3% : :724 :		9 4x 936	.73. 6% : .946 :		121745	
NEW YORK	30.0	71.3% : 19474 :	0.6%	5385 :	0.8% : 5443 :	0 8% 8901	25.9%	50220	1
NORTH CAROLINA	31.0	38.8% : 23442 :	2.4%	10.7%	10.8%	175%		50769	•
NORTH DANDTA	32.0	46.6% :	1.9%	15.1% : 485 :	9.51	9.91		71005	
	33.0	89.7% 14434	0.02	1.0X	0.61	0. 91	9.3%	41834	
OHIO	:	39. 3%	2. 5%	13.01	6128 14 6%	25.11			
OKLAHOHA	34.0 :	36192 80.7%	1100 :	3754 : 5:4% :	4.0% :	2355	. 5. 0% :	69615	
OREGON	35.0 :	60689 : 62.01 :	154 : 0.2% :	1689.	2634 :	2413 : 2, 5% :		97928	
PENNSYLVANIA	36.0	18721 : 41.3% :	1390 : 3.0% :	6002 : 13.3% :	4507 :	11117 :	3551 7.8%	45278	
RHODE ISLAND	37.0	19 :	10	58 4.81	212	907	0 01	1206	
SOUTH CAROLINA	38.0		145 :	5018	2586	2644	2663	31189	
SOUTH DAKOTA	39 0	58.1% : 52785 :	0.5%	16.17 608	405	415 .	8 51 22793	77006	
TENNESSEE	40.0	68.5% : 25244 :	0.0% : 840 ·	0.8% 5800	0 5% -	0.5%	29.6%	42123	
TEXAS	41.0	97.9% : 229207 .	2.0%:	13 BX :	9 5% : 10345	8.7% :	6 2X 3491	268839	
UTAH	42.0	85. 31	0 71 . 482 :	3 31 1293	3.8X	4 8X :	2 01 .	85180	
-	· · ·	65.5%	0.6% ;	1. 5% :	965 :	· 1. 3X	3-0 0% :		
VERMONT	43.0	7421 :	0.3X	330 · 3 6% ·	462	347 : 35% :	1023 10 42	9852	
VIRGINIA	44.0	21635 52 6%	637 : 1.5% :	5452 : 13 2%	3706 9 01	4072 · 9 9%	-5665 13 9%	41167	۰.
MASHINGTON	45 0	34692 : 50.0%	396 0.6%	2712	3020 4 4%	3744 .	24762	69316	
WEST VIRGINIA	46.0	15459	0.0X	2750	1709	1467	2721	24105	
WISCONSIN	47. 0	40935 ;	193 :	3937 .	3050	3909	5028	57021	
WYOHING .	48 0	71 8%	0.3%	6 92 579	5 3% 376	6 91 405	8 8% - 23225 -	97985	
		72.9%	0 02	0.62	•0 4x :	0 4%	25 72		

TOTAL

gi

 $\begin{array}{c} 2015062 & 21627 & 145462 & 122968 & 177165 & 557673 \\ 66.37 & 0.77 & 4.67 & 4.07 & 5.88 & 10.37 \\ \end{array}$ where, "available land" is that available under the most constraining criteria (1.6. IF > 1/4.0F The population allowed by a uniform density criterion is found in a "guad" become of y0.0 decreases in the columns refressent that land uniguely constrained by the columns refressent that land uniguely constrained by the columns refressent that land if sector of the sector

POPULATION SECTOR ANALYSIS - TOTAL U S DENSITY = 750 0/50 MI. +++ "QUAD" SECTOR (90.0 DECPEES) STATE AREAS IN GOUARE MILES AND % OF STATE

	STATE AREAS	N BOUARL			STATE		· · · ·	
TABULATION		AVAI	LABLE LA	A ALLOW	BLE POP			
	• *				3 ALLOWA	BLE POP	-	•
					i		FORM DEN	SITY
					Į.	ł	· ·	TRICTED LAN
	`							
ALABAMA		37838 72.9%	: 0.9%	4950 9.5%	3706 7.1X	: 5 5%	: 4 0%	. :
ARIZONA	2.0	50614 44 3%	. 328 0.32	: 1559	1 03	1 52	59405 52 0%	
RKANSAS	30	41630	203		: 1534 2 9%	1554	. 6263	: 53259
ALIFORNIA	4. 0	83820 52.3%	1033	. 5008	5684	13327	51492	160364 104325 5211
OLORADO	3 0	70300	174	: 1437	3.5X 1872	1962	28660	104325
ONNECTICUT	60	67 42 415	193	: 1023				
ELAHARE	7.0	9.0% 1390	19	: 280	12.2%	: 396	: 39	2326
LORIDA	8.0	: 59.3% : : 31112 :	0.8%	12.0%	9 1X 3831	: 17.0%	: 1.7%	:
EORQIA		52 41 40086	1.62	: 64%	6. 5%	: 10 9%	22.1%	99357 58603
		: 68.4% :	0. 5%	B 4%	: 6.2%	: 6.5%	: 10.0%	: ·
DAHO	10. 0	: 52.3% :	0.02	: 1.0%	: 0.92	0.81	: 44 9%	83349
LLINOIS	11. 0	40791 : 72.1% :	444 0, 81	3908	: 3619 6.4%	. 6417 : 11 4X	2.4%	56540
NDIANA	12 0	21346 58.7%	733	4719	4063	4159	1322	30344
OHA	13.0	80091	241 .	2094	. 1874 -	1705		: 56067
ANSAS	14.0	1003V :	132 3	1411	0. 32 1631	. 1/4/	: 143	: 62267
ENTUCKY	15. 0	93.2%	0.2%	2.3%	2.01	2.1%	: 0.2%	40269
	16.0	64.7%	0.6%	15.02	: 8,3%	. 5. 3%	: 6.1%	:
	:	57.02 :	0. 02	5. 61	1708 3.51 897 2.61 1795	3 81	29.9%	48154
AINE		- 89. SX :	0.0% :	1534 4. 5X	2.6%	791 2 3%	: 1.0%	34073
ARYLAND	18.0	4439 :				3599		11155
ASSACHUSETTB	19.0 :	1785 : 20.7% :	376 :	620	1013		: 0	8626
ICH10AN	20.0	36892 :	222 :	4429	4092 :	6533	: 9679	: 61837
INNESOTA	21.0	59.6% : 53529 :	0.4%	2316 :	2393 :		: 24926	: 85914
1861881 PP 1	22.0	42.3% ···	0.2%	3310	2.8% 1979		29.0%	47004
I SOUR I	23.0	77.3% : 36674 :	0.3%	6 9%	4.1%	3.3%	B. 0%	
ONTANA	24. 0	81.0% :	0.5%	4.3%	3.6%	2856	: 6.3%	
	:	67.2% :	0.0% ;	0.4%	0.3%	0.3%	31. OX	
EBRASKA	25.0	72771 : 93.6% :	357 : 0.5% :	1245 :	965 1. 2% 444	B47 1.1%	2.0%	
EVADA	26.0	88905 : 80.4% :	0:	550 :	444 :	463	20255	: 110617
EN HAMPSHIRE	27.0	5819 : 61. 5% :	125 :	620 :	560 :	946 10. 01	: 1197	: 9467
EN JERSEY	29.0	1110 :	. 97 :	560 :	B11 :	5433 :	. 0	: B011
EN MEXICO	29.0	13.9% : 87892 :	0:	7.01 : 936 :	531 :	847	0 01 31536	121744
EW YORK	30.0	72.2% : 21954 :	. 0. 0% :	0.8% : 5356 :	0.4%;	0.72	25.9%	50218
RTH CARDLINA	31.0	43.7%	1.9%	10.72 : 6765	8.8%;	15.21	19.82	
	:	52. OX :	0.1% :	13.3% :	9.1%	8. 5% :	17.0%	:
ORTH DAKOTA	32.0	63362 :	0. 0X :	347 : 0. 5% :	425 : 0 61 :	0 4% :		
10	303.0:	18750 44.9%:	1140 :	5867 : 14.0% :	5636 : 13.5% :			41633
LAHOHA	34. 0	50132 : 83 5% :	637 :	3223 : 4 6% :	2075 3.01	2084 :	3464	: 69615
EGON	35 0	61519 :	174 :	1650 :	2248 :	1988 .	30349	97928
NNSVLVANIA	36 0	62.8% 22041	280	1.7% : 5192 :	5201 :	2 0X 9013	3551	45278
IDDE ISLAND	37.0	48 7% :	10 :	193 :	270	19 9% : 685 :	7 8%	
WTH CAROLINA	:	4.0%	0.8X 0	16 OX :	22 4% :	56 BX :	0.01	
		62 91 :	0.01	13.7% :	7 5% .	7.4% :	8.5%	77006
UTH DAKOTA		53162 . 69 0%	0 02	0 5%	328 0 41	0.5%	29 68	
NNESBEE	40.0	27309 . 64 8% :	116 0 31	5269 : 12 5% ·	3619 : 9.6%	3213 : 7 6% ·	2596 6 2%	42122
XAS	41.0	234659 - 87. 3% :	1042	9486	7990 :	10171 3 81	5491	268839
AH	42.0	56588	666	. 724 .	724 :	. 926 :	25553	85181
RHONT	43 0 :	66.4% . 7556 :	• •	0.8%. 482 :	0 8% : 454 :	338	30 0% 1023	9853
REINIA		76 7%	0.01 : 647 :	4 92 · 5211	4 6X . 3078 :	3445	10 41	41167
•	:	56.2%	1.6%	12.7%	7 5% :	8 4%	13 8% 24762	69316
SHINGTON		36332 52 41	0.71	2306	2374 3 4%	3088 4 57	35 72	12
ST VIRCINIA		15729	0 OX .	2076 . 11.9% :	6.1% :	1312 54%	2721 11 3%	24105
SCONSIN	47 0 .	42315	174 .	3213	3146	3146	5028 8,8%	-57022

TOTAL

148018 557673 4 9% 18 3%

POPULATION SECTOR ANALYSIS - TOTAL U S DEWSITY = 1530 #/50 MT +++ "Q:AD" SECTOR (90 0 DECREES) STATE AREAS IN SGUARE MILES AND X OF STATE

Piral ALLBANK 1.0 3731 0.0 4726 2012 2662 2003 11342 ALLBANK 1.0 37391 0.0 4726 2013 2662 2003 11342 ALLBANK 1.0 37391 0.0 4476 323 523 403 ALLBANK 1.0 3732 0.23 1.137 3232 1.137 3232 1.137 3232 1.137 3232 1.137 3232 1.137 3232 1.137 3232 7.0 3212 1.167 1.137 3232 7.0 3212 1.167 1.137 1.137 3232 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 3212 7.0 7.0 7.0 7.0 7.0 7.0 7.0 <th>TABULATION</th> <th></th> <th>AVA1</th> <th>LABLE LA</th> <th>4 ALLOWA</th> <th></th> <th></th> <th></th> <th></th> <th></th>	TABULATION		AVA1	LABLE LA	4 ALLOWA					
AL-BAMA 1.0 39391 0.0 4326 3213 2692 2723 2137 AAL-BAMA 2.0 71830 0.13 0.77 0.33 1.27 2.923 0.233 0.77 0.32 1.27 2.923 0.232 0.77 0.32 1.27 2.924 0.232 0.232 0.77 0.32 1.27 2.924 0.232 0.132 0.232 0.032 <td< th=""><th></th><th></th><th></th><th></th><th>> 1/</th><th>3 ALLO#4 > 1/</th><th>BLE POP</th><th>ABLE POP</th><th></th><th></th></td<>					> 1/	3 ALLO#4 > 1/	BLE POP	ABLE POP		
AL-BAMA 1.0 75 % 0.0 0.0 872 520 520 520 520 ARIJONA 2.0 530 0.0 77 540 0.138 8405 1.1342 ARALISAS 3.0 77 600 77 600 77 600 77 600 77 600 77 600 77 600 77 73 600 77 73 600 77 73 600 77 73 600 77 73 600 77 73 75			1	- 1		Ì	UNI	FORM DEN	5177	· 4NDS
A1100A 2 6 72 6 2 5 2 6 1 </td <td></td> <td></td> <td>1.</td> <td>ļ</td> <td>Ι.</td> <td>1</td> <td>I</td> <td>1</td> <td></td> <td></td>			1.	ļ	Ι.	1	I	1		
All ICOM 2 0 310 772 589 1232 5920 11342 Anausa 3 0 4377 0 0 772 1234 1274 1234 1234 1234 1234 1234 1234 1234 1234 1235 1335	ALABAMA	1. 0				3213	2692			
Analysis 3 4.3,27 0 7.7 0 7.2 1.32 2.02,3 3.233 CALFORNIA 4 0 86237 9.25 4.03 4.03 11025 51462 11025 51462 11025 51427 10025 51427 10025 51427 10025 51427 10025 51427 10025 51427 10025 10025 51427 0 52127 52127 52127 52127 52127 52127 52127 52147 52177 52177 52177 52147 52177 52177 52177 52177 52177 <td>AR 1 ZONA</td> <td>2 0</td> <td>51820</td> <td>0 0X</td> <td></td> <td>6 21</td> <td>5 2%</td> <td>4 0%</td> <td></td> <td></td>	AR 1 ZONA	2 0	51820	0 0X		6 21	5 2%	4 0%		
CALIFORNIA 4 5 7.63 0 3.33 2.43 2.65 11.65 1.632-3 CGLORADD 5 0 7.273 580 11.87 11.87 14.82 321.51 10.632-3 CGLORADD 6 7.13 580 11.87 11.87 14.82 22.75 321.12 CGLORADD 6 7.14 0 21.13 21.13 20.05 31.33 0.05 321.27 DELANARE 7.0 14.67 0.0 24.1 42.12 12.13 31.33 993.27 GEORDIA 9 0 43.98 0.0 7.77 13.68 13.03 993.27 GEORDIA 10 43.98 0.0 7.77 0.62 12.44 353.99 IDALG 10 7.98 12.21 32.44 7.77 35.71 13.53 353.99 IDALG 12.0 43.99 32.0 33.42 353.39 35.33.39 35.33.39 <td< td=""><td>ARKANSAS</td><td>30</td><td></td><td>0.37</td><td>1747</td><td>1274</td><td>1.3%</td><td>52. OX</td><td>4</td><td></td></td<>	ARKANSAS	30		0.37	1747	1274	1.3%	52. OX	4	
COLDRADD 5.0	CALIFORNIA	4 0		σοχ	3,3%	2 4%	2 6%	11 8%	:	
CONNECTIEUT 4 0 0 1 <th1< th=""> 1 <th1< th=""> <th1<< td=""><td></td><td></td><td>55 OX</td><td>0 6%</td><td>: 2 9%</td><td></td><td>: 6, 9%</td><td>32 1%</td><td>- A.</td><td></td></th1<<></th1<></th1<>			55 OX	0 6%	: 2 9%		: 6, 9%	32 1%	- A.	
DELAMAR 7 2 1 3 1 3 1 32 0 32 FUDIDA 8 0 34470 3 2 34 33 1 322 1 33 1 GEDRIA 9 0 1 1 0 34 1 1 0 34 1 1 0 34 1 1 0 34 1 1 0 34 1			68 37	0 62	1 12		2 4%	27 5%	· · ·	
FLORIDA B. 0 Serie Serie <t< td=""><td></td><td></td><td>24 12</td><td></td><td>13 07</td><td>11 5%</td><td>-51-32</td><td>: 0 0%</td><td>:</td><td></td></t<>			24 12		13 07	11 5%	-51-32	: 0 0%	:	
CEDROIA 0 0 10 12 12 12 13 10 12 12 13 <th1< td=""><td></td><td></td><td>0.0.0</td><td>0 00</td><td>10 42</td><td>9.11</td><td>15 84</td><td>1 7%</td><td>0365</td><td></td></th1<>			0.0.0	0 00	10 42	9.11	15 84	1 7%	0365	
LLLIND19 11 0 1 0 74,001 0.83 6.84 74,000 <t< td=""><td></td><td></td><td></td><td>0 02</td><td>4 0%</td><td>5.72</td><td>10 1%</td><td>: 22 1%</td><td></td><td></td></t<>				0 02	4 0%	5.72	10 1%	: 22 1%		
LLLIND19 11 0 1 0 74,001 0.83 6.84 74,000 <t< td=""><td></td><td></td><td>70 6%</td><td>0 41</td><td>7.4%</td><td>5 41</td><td>6 2%</td><td>: 10 0%</td><td></td><td></td></t<>			70 6%	0 41	7.4%	5 41	6 2%	: 10 0%		
INDLAWA 12.0 29980 135 3989 3204 3613 1323 1033 3 45 IDAA 13.0 51297 0 1735 1222 1103 0 354 3606 ANRSAS 14.0 9776 0 1321 1222 1243 1232 12377 12377 <td></td> <td></td> <td></td> <td></td> <td>0 92</td> <td>0.81</td> <td>0 81</td> <td></td> <td></td> <td></td>					0 92	0.81	0 81			
Gua 10 51 0 10<			76 0%	0.8%	6 17		10.0%	2.4%	:	
ANGAG 14.0 71242 0 20 2025 2021 0		:	66. 0%	0 4%	10 7%			3 63	* * j	
KENTUCKY 19 0 0 1 1 1 2 0 0 2268 LOUISIAMA 16 0 2201 1 0 2206 1448 1.764 1417 48134 HAINE 17 0 30581 0 1476 1776 1471 4813 100 MARYLAND 16 0 4832 301 1341 1777 4063 0 685 1177 4063 0 685 1177 4063 10 6827 6183 10 0 685 1177 4063 10 6827 6183 10 0 6827 11<16			91. 5%	0.0%	. <u></u>	: 2 4X	1660 3.0X		56066	
LDUISIANA 16.0 2001 12 13 V2 742 912 413 HAINE 17.0 2005 1307 742 912 4197 48134 HAINE 17.0 2005 1307 742 752 337 48134 HAINE 17.0 2005 1307 742 752 337 48134 HAINE 17.0 2005 1307 1476 1772 750 143 1115 HAAYLAND 18.0 4894 318 1341 1747 2750 143 1115 HAAYLAND 18.0 4894 318 1341 1747 2750 143 1115 HAAYLAND 18.0 4894 318 1341 1747 2750 143 1115 HAAYLAND 200 3267 210 157 247 2 10 157 247 21 132 20 HINESOTA 21.0 94214 327 245 1572 2191 24926 8915 HINESOTA 21.0 94214 327 245 1572 2191 24926 8915 HISSIGNRI 23.0 777 04 123 0098 1772 2472 1313 2441 47884 HISSIGNRI 23.0 7767 022 6 53 390 327 800 146455 47 450 000 130 0098 1772 1515 3441 47884 HISSIGNRI 23.0 77607 022 6 53 390 327 800 146455 47 40 000 13 072 130 03 227 800 146455 47 40 000 13 07 228 0 137 0 03 327 800 146455 47 40 000 13 07 228 0 137 0 03 327 800 146455 47 40 000 13 07 230 0 3207 030 146455 47 40 000 13 07 230 0 3207 030 146455 47 40 000 13 0 00 137 0 032 13 82 HONTANA 24.0 100051 0 463 776 403 47160 146455 47 40 00 0 397 037 030 0 327 030 31 82 HEL HAMPERIRE 27.0 6118 000 397 0327 0323 1101 18 HEL HAMPERIRE 27.0 6118 000 397 0323 1137 0447 HEL HAMPERIRE 27.0 6118 000 397 0323 1138 1197 9467 HEL HAMPERIRE 27.0 6118 000 397 032 1131 120 148 HEL HAMPERIRE 27.0 6118 000 397 032 1131 121745 HEL HAMPERIRE 27.0 6118 000 397 32 323 1131 121745 HEL HAMPERIRE 27.0 6118 000 397 32 323 1131 121745 HEL HAMPERIRE 27.0 6118 001 337 70 003 129 444 407 HORTH CANDLINA 31.0 7725 0 4457 4014 0976 9970 30219 HORTH CANDLINA 30 0 24907 0 32 327 228 278 0029 HORTH CANDLINA 31.0 27752 0 4445 19 33 988 0 1324 1484 HEL HAMPERIRE 27.0 031 74 033 748 233 7007 1500 50071 CAND 30 02297 000 3267 1282 228 2364 46913 GREGOM 33 0 62497 07 04 1374 1983 3049 7728 HORTH CANDLINA 30 0 24977 078 01 1374 1983 3049 7728 HORTH CANDLINA 30 0 24977 078 01 1374 1983 3049 7728 HORTH CANDLINA 30 0 24970 0 2367 1297 308 0 1206 50071 CANDTA 39 0 3347 000 377 207 307 307 307 307 307 307 307 307 307 3		:	94.72	0 02	- 1 AV	. 1243	2 01	: O 2X	* 45v	
LOUISIANA 16.0 20217 0 2000 1480 1760 1448 1760 1448 1760 1448 177 077 275 177 1077 1757 145 11135 14674 1477 2750 145 11135 14674 177 2750 145 11135 14674 177 2750 145 11135 145 11135 145 177 2650 177 14051 1135 1135 145 11135 145 177 177 175 157 145 11135 145 11135 145 1177 1455 117 145 11135 1135 145 11135 124 177 157 157 145 11135 145 11135 145 1177 1455 117 145 11135 145 11135 145 1177 1455 1177 1455 1177 1455 1177 1455 1177 1455 1115 15 124 177 145 1177 1457 1177 117		;	67. 3X		: 13 9%	: 74%		2470	• • • •	*
MAINE 17.0 30581 0 1476 878 782 327 34074 MARYLAND 16 493 218 124 1747 2755 143 MASSACHVSETTS 19 0 4263 297 469 13177 4063 136 6427 MICHIGAN 20 0 3871 116 3922 3728 3742 9675 61839 MINMESOTA 21 0 4244 3067 2145 1730 2437 9675 61839 MISSISSIPPI 22.0 677 0.00 433 304 3237 4316 647 MISSISSIPPI 22.0 3767 2023 1973 2037 4316 647 MISSISSIPPI 22.0 777 0.00 316 32.3 803 47884 MESSAURI 23.0 777 100 403 326 32.7 4316 77721 MESSIGNI 23.0 7790	LOUISIANA	16.0	28217	: O	2306	1449 3.0%	1766	: 14417	*** 48154	
MARTLAND 16 0 493 218 1241 1747 2750 143 1115 MASSACHUSETTS 19 0 2645 29 1200 1377 4053 0 8627 MICHIGAN 20 0 2807 110 7802 774 4053 0 8627 MINNESOTA 21 0 5741 1607 2365 7972 1513 2447 9479 61828 MISSIGNT 21 0 57703 0 0 272 1513 24474 7877 2355 1431 6073 4718 47884 MISSOURI 23 0 77970 0 0 334 2377 1037 6733 4714 4784 MISSOURI 23 0 74 0 0 1111 0 1143 1143 1143 1143 1143 1143 1143 1143 1143 1144 1143 1143 1143 </td <td>MAINE</td> <td>17.0</td> <td>30581 89 7%</td> <td>0.01</td> <td>1476</td> <td>676</td> <td>782</td> <td>: 357</td> <td>: 34074</td> <td></td>	MAINE	17.0	30581 89 7%	0.01	1476	676	782	: 357	: 34074	
	MARYLAND	18 0	4854	. 318	1741	1747	2750	145	11155	5.77
HIMMESOTA 20 21 0 22 6 12 6 43 9 32 13 73 12 23	MASSACHUSETTS	19 0	2663	: 39 :	685 7.91	1177	4063	: 0	8627	
HIMMESDIA 21 21 2424 367 2345 1672 2141 2426 89013 HISSIGSIPPI 22 0 37703 0 3008 1727 1515 3841 47864 HISSIGGIPI 23 0 37703 0 3008 1727 1515 3841 47864 MISSOURI 23 37703 0 3008 1727 1515 3841 47864 MORTAMA 24 0 03 433 3745 403 47166 148433 NEBRASHA 25 0 73709 0 303 0.31 0.32 3181 148433 NEWARSHIRE 27 0 0.160 135 77721 0.073 1833 77721 146333 NEW MEXICO 29 0 1602 145 511 1523 4169 0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 1200 1400 0.0 <t< td=""><td>MICHIGAN</td><td>20.0</td><td>38571</td><td>: 116 '</td><td>3802</td><td></td><td>5742</td><td>. 9679</td><td>: 61839</td><td>•</td></t<>	MICHIGAN	20.0	38571	: 116 '	3802		5742	. 9679	: 61839	•
HISGISSIPPI 22.0 3703 0 9009 1727 1515 941 47844 HISSOURI 23.0 3707 222 222 2721 1930 2357 4316 64933 MINTAMA 24.0 1007 3767 0.22 2721 1930 2357 4516 64933 NEBRASKA 23.0 7907 0 0 635 0.11 377 6.350 1061 6493 NEVADA 26.0 97313 0.01 1313 0.681 1007 2035 1061 6464 NEVADA 26.0 9744 0.02 231 100.2 2035 11061 607 7772 10016 NEW JEREY 28 0.1602 133 111 1363 24.12 60 603 107 9447 NEW JEREY 28 0.02 1.240 3.611 1363 4188 21.0356 121745 NEW JEREY 20 0.4407 3.421 4014 4064 4070 52.971 0.0219 NEW JEREY	MINNESOTA	21 0	54214	367	2345	1872	: 2191	: 24926	: 85915	
HISSOURI 23.0 57697 222 2721 1930 2357 4516 6973 MONTAMA 24.0 100051 0 463 376 403 47160 144455 NEBRASKA 25.0 77909 0 859 618 801 1334 77721 NEW ADA 26.0 9746 0 2351 30.6 20235 110618 NEW ADA 26.0 9746 0 2351 326.2 9836 1123 77721 NEW ADA 26.0 9746 0 2301 326.2 933 1061 9467 NEW ADA 26.0 9746 0 297 6431 933 1161 647 NEW ADA 26.0 9746 0.0 0.497 324.1 932 1167 9467 NEW ADA 30.0 27252 0.435 4189 4217 8627 3074 NEW ADA 30.0 27252 0.435 4189 4217 8627 3074 932 4237 4237 4237 4237	M1561551PP1	22.0	37703	: •	3078	1727	1515	: 3841	: 47884	
MONTAWA 24 0 100051 0 453 976 403 47160 148455 NEBRASNA 25 0 73909 0 839 618 801 1534 77721 NEVADA 26 89446 0 290 251 376 2025 110618 NEW HAMPSHIRE 27 0 6118 0 273 602 2035 110618 NEW HAMPSHIRE 27 0 6118 0 273 52.7 0.021 3154 121745 NEW HEXICO 29.0 1602 148 511 1563 43185 0.021 3163 121745 NEW YORK 30 24002 35 044 10647 2930 30219 NORTH CAROLINA 31 0 2725 0 668 13.97 1927 30749 NORTH DAMOTA 32 0.3498 0.35 0.32 0.32 0.32 0.32 0.32 0.32	MISSOURI	23.0	57987	222	2721	1930	2557		49933	· .
NEBRASHA 25 0 73909 0 897 618 801 1534 77721 NEVADA 26 0 891 X 0.0X 1.1X 0.8X 1.0X 20X NEVADA 26 897446 0 270 231 374 20233 110618 NEL HAMPSHIRE 27 0 6118 0 675 369 888 1117 9467 ANEL JEREY 28 0 1.602 148 511 1.1533 41188 0 6009 NEL JEREY 28 0 1.646 X 10 352 323 10.0X NEW VORK 30 0 24907 36 4314 4014 6094 673 3076 NOR TH CARDLINA 31.0 27252 0 6483 4189 4217 8627 3076 OHIO 32 0 2784 0 326 3277 1007 1007 <td>MONTANA</td> <td>24.0</td> <td>100051</td> <td>0</td> <td>463</td> <td>376</td> <td>: 1405</td> <td>: 47160</td> <td>: 148455</td> <td></td>	MONTANA	24.0	100051	0	463	376	: 1405	: 47160	: 148455	
NEVADA 26 0 89 9% 0 270 221 276 20233 110618 NEL HAMPSHIRE 27.0 6118 0 695 569 986 1197 9467 NEW JERSEY 28 0 1602 145 511 1562 4168 0 6009 NEW JERSEY 28 0 188 6454 19.31 52.37 0.001 NEW JERSEY 29.0 68404 0 349 4314 4014 696 9730 50219 NEW YORK 30.0 24907 36 4314 4014 696 9730 50219 NORTH CAROLINA 31.0 27252 0 6463 4169 4217 6627 50769 53.7X 0.0X 37 326 290 6572 71005 MORTH DAKOTA 32.0 6.23461 0.0X 377 326 420 5632 DRID 33 0.3X 744 0 1206	NEBRASKA	25, 0	73909	· • • •	859	618	801	1534	. 77721	5
NEW HAMPSHIRE 27.0 6118 0 695 567 888 1107 9467 NEW JERSEY 28 0 1602 145 511 1562 4188 0 880 12653 NEW JERSEY 28 0 1602 145 511 1562 4188 644 1633 5233 0.00 NEW JERSEY 28 0 188 6443 153 52373 0.00 13736 12745 NEW YORK 30 0 24907 38 4314 4014 6967 9730 50219 NORTH CAROLINA 31.0 27252 0 6485 4189 4217 6627 50769 53.7 X 0.00 337 3282 833 170 X 50769 GM10 33 0 2290 6572 71005 6474 6771 16831 30149 9728 GM10 33 0 22444 0 1206 1	NEVADA	26 0	89446	0	290	251	376	20255	.110618	
NEW JERSEY 28 0 1602 143 511 1542 4186 0 64x 19 51 52 72 64 NEW MEXICO 27 0 84044 0 547 434 782 31334 121745 NEW YORK 30 0 24907 58 4314 4014 6964 7930 50219 NORTH CAROLINA 31.0 27252 0 6485 4188 4217 6627 50769 NORTH DAKOTA 32.0 63458 0 0.0X 0.0X 0.0X 93X 17.0X 19.8X OHIO 33<0	NEW HAMPSHIRE	27.0	6110 .	· 0	695 .	. 969	888	1197	9467	
NEW FEXICO 29 0 0 840 40 0 369 434 762 3136 121745 NEW YORK 30 0 24007 38 4314 4014 6964 9930 50219 NORTH CAROLINA 31.0 27252 0 6485 4188 4217 6627 50769 NORTH DAKOTA 32.0 63458 0 0.377 326 290 6572 71005 GHIO 33<0	NEW JERSEY	29 0	1602	145 :	511 :	1563	4169	: 0	: 8009	
NEW YORK 30 0 24907 38 4314 4014 64964 64964 50219 NORTH CAROLINA 31.0 27252 0 6485 4189 4217 6627 50769 S3.7X 0 0X 12 8X 8 3X 17 0X 17 5027 71005 MORTH DAKOTA 32.0 63458 0 0.57 328 290 6572 71005 GHID 33<0	NEW MEXICO	29.0	68404	0	569 :	454	702	· 31536	121745	
NORTH CAROLINA 31.0 27252 0 6485 4166 4217 6627 50749 NORTH DAKOTA 32.0 63458 0 3373 328 290 6572 71005 GHID 33<0	NEW YORK	30 0	24907 :	58 :	4314 :	4014	6996	9930	50219	
NORTH DAKOTA 32.0 63438 0 337 328 290 6572 71005 GHID 33.0 22861 290 4526 4709 7122 2326 41834 GHID 33.0 22861 290 4526 4709 7122 2326 41834 GREGON 33.0 24.0 373 2.63 277 3.03 2.63 41834 GREGON 35.0 62744 0 1206 1776 1853 33049 19728 GREGON 35.0 62744 0 1206 1776 1853 331.07 PENNSYLVANTA 36.0 23440 316 5172 4709 6097 3511 45277 RHODE ISLAND 37.0 270 0 145 1043 17.92 7.707 SOUTH CARDLINA 38.0 20137 0.02 132 2220 2653 31189 SOUTH DAKOTA 39.0 23297 0 2411 </td <td>NORTH CAROLINA</td> <td>31.0</td> <td></td> <td>. 0 :</td> <td>6485 :</td> <td>4189</td> <td>4217</td> <td>8627</td> <td>: 50769</td> <td></td>	NORTH CAROLINA	31.0		. 0 :	6485 :	4189	4217	8627	: 50769	
DHIO 33 0 2286.1 200 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 0 32 10 92 11.3X 17 0 35 0 32 10 92 11.3X 17 0 3 0 32 10 92 10 17 10 12 12 12 12 12 1 10 12 10 12 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12	NORTH DAKOTA	32.0			357 :		290			
CALLANDMA 34.0 39778 0 2367 1824 1882 1464 .69615 CRECON 35.0 62744 0 1206 1776 1853 30349 97928 CRECON 35.0 62744 0 1206 1776 1853 30349 97928 FEINSVLVANIA 36.0 23440 318 5172 4709 8087 3511 45277 SUTH CARULINA 38.0 2217 0 143 193 988 0 1206 SOUTH CARULINA 38.0 22139 0 1205 1653 -2212 2463 31189 SOUTH CARULINA 38.0 20139 0 2975 2152 2220 2653 31189 SOUTH CARULINA 38.0 20139 0 2411 204 0.53 -2707 TENNESSE 40 28342 0 4737 3227 3078 2643 24122	OHIO	33 O		0.04.	- 4526	0 51 4709				
CRECON 35 0 62744 0 1206 1776 1853 30349 97928 PENMSYLVANIA 36 0 23440 318 5172 4709 8087 31.0X RHODE ISLAND 37 0 270 0 143 193 598 0 1206 SOUTH CARDLINA 38.0 20159 0 1205 2152 2220 2663 31187 SOUTH CARDLINA 38.0 20159 0 1284 047 13.7 937 0 244 309 367 22793 77007 SOUTH CARDLINA 38.0 20159 0 1284 3049 2442 31.0X 945 22793 77007 SOUTH DAKOTA 39 0 23297 0 241 3049 2454 2473 3102 2454 2473 744 6224 2452 2473 3102 2048 24122 2673 00X 131X 797 742 6232 742	OKLAHONA	34.0			10.9%	1824	1002			
64 1x 0x 1 2x 1 ex 1.9x 31.0x PENNSYLVANIA 36 0 23440 316 5172 4709 8087 3351 45277 RHODE ISLAND 37 0 7x 11 4x 10 4x 17 9x 7 8x 1227 SOUTH CARDLINA 38.0 20157 0 11 4x 10 4x 17 9x 7 8x 1202 SOUTH CARDLINA 38.0 20157 0 12 0x 16.0x 49 4x 0.0x 1208 SOUTH CARDLINA 39.0 23277 0 241 309 352 22793 77007 SOUTH DAKOTA 39.0 2842 0 4737 3129 1096 2944 1228 SOUTH DAKOTA 29.0 2874 0.0x 11 3x 7.9x 7.4x 6 2x 1228 SOUTH DAKOTA 29.0 2975 6880 5481 6865 5491 26883 UTAM 20 57823	OREGON	35 0			3 7% :	2 6%	1853			
Si BX 0 7X 11 4X 10 12 12 12 12 12 12 12 12 12 12 12 11 10 10 10 11 10 1	PENNSYLVANIA	36 0						31:0%	: 45277	
22 4X 0 0X 12 0X 16 0X 44 6X 0 0X SOUTH CARDLINA 30 0 20159 0 3975 2152 2220 263 31189 SOUTH DAKOTA 39 0 53297 0 241 309 31797 SOUTH DAKOTA 39 0 53297 0 241 309 3273 77007 69 2X 0 0X 0.31 0 4X 0.5X 29 4X 22793 77007 TENNESSEE 40 0 28132 0.4737 3129 1098 2394 42122 UTAM 42 0 24132 975 6800 5491 26837 UTAM 42 0 5785 0 425 579 801 2553 VERHONT 43 0 7585 0 473 434 348 10 437 VIRCINIA 40 0 25070 58 4613 2605 3136 3665 41168 #ASH (NGTON 45 0 38108 0 2112 <td>•</td> <td>37 0</td> <td>51 8%</td> <td>0 7%</td> <td>11 4%</td> <td>10 4%</td> <td>17 9%</td> <td>: 78%</td> <td>: ·</td> <td></td>	•	37 0	51 8%	0 7%	11 4%	10 4%	17 9%	: 78%	: ·	
64 64 60 71 8 93 71 8 93 SOUTH DAKOTA 39 0 32279 0 241 309 3279 77007 TENNESSEE 40 0 2832 0 4757 3329 3098 2596 42122 TENNESSEE 41 0 2413 3127 743 62824 64757 3329 3098 2596 42122 TEXAS 410 241327 973 6880 5481 66865 5491 268839 UTAM 420 5782 0 422 203 327 203 VERMONT 43 0 7765 0 423 343 1023 9833 VIRGINIA 44 0 25070 58 4613 2402 343 1043 VIRGINIA 44 0 25070 58 4613 2602 3136 5465 41168 ASH (NGTON			22 4X ·	0 0% :	12 0% :	16. OX .	49 61	20.0%	: •	
66.72 0 00 0.31 0 41 0.91 296 42 TENNESSEE 40 0 28342 0 4757 3329 3078 296 42 2296 TEXAS 41 0241327 975 6880 5481 6685 5491 266839 UTAM 42 0 775 6880 5481 26533 85181 VERMONT 43 0 7768 002 0425 5779 801 25533 85181 VERMONT 43 0 7768 002 032 074 343 1043 VIRGINIA 44 0 2509 984 4434 343 1043 VIRGINIA 44 0 25097 901 3136 565 41168 MASHINGTON 45 0 3169 230 15%2 1882 2472 2472 2472 2472 2472 2472 2472 2472 2473 3973 24168		:	64 6% :	0.0%	12 6% :	6. 9%	7.1%	: 0.5%	たたたい	
TEXAS 41 0 241 22 975 6880 5481 6683 5491 26837 UTAM 42 0 3782 0 42 264 203 3.23 2.03 UTAM 42 0 3782 0 422 579 801 25953 85181 VERHONT 43 0 7585 0 473 434 348 10.437 9853 VIRCINIA 44 0 20070 58 4613 2606 3136 5665 41168 WASH (NGTON 45 0 810 1522 272 274 397 3574 69316 WEST VIRCINIA 46 0 16038 0 2625 1419 1003 2721 24106 WISCONSIN 47 0 2319 203 3098 2567 2808 5028 57023 WYOHING 48 0 71912 0 193			69.2%	0 02	0.3%	0 4%	0.5%	. 29 6X	: .	
B9 BX 0 4X 2 6X 2 0X 2 0X UTAH 42 0 5782 0 0 425 579 801 2553 85181 67 9X 0 0X 0 3X 0 7X 0 9X 30 0X VERHONT 43 0 7585 0 473 434 38 1023 9833 VIRCINIA 44 0 25090 58 4613 2060 3136 5665 41168 uASHINGTON 45 0 3108 280 15°2 1682 24°2 272.1 69316 uASHINGTON 45 0 10638 0 2625 1419 1033 2721 24106 uSST VIRCINIA 46 0 16038 0 2625 1419 1033 2721 24106 uSCONSIN 47 0 4319 203 3098 2567 2808 5028 57023 uYDHING 48 0 71912 0 193 290 367 2525 97987 73 4X 0 0X 0 2X 3 7X <		:	67 JX .	0 0 2	11 3% :	7.9%	7 4%	· 62%	:	
67 VI 0 0 X 0 7X 0 0 X 30 0 X		· . · ·	00 07		2 6% .	2 0%	3. 2%	· / 2 OZ	: 1	
77 0X 0 02 4 BX 4 4X 10 4X vircinia 44 0 25070 58 4613 2606 3136 5665 41168 washington 45 0 3816 60 9X 0 1X 11 2X 63X 76X 13 8X washington 45 0 3816 280 1382 24762 69316 washington 45 0 3816 280 232, 27X 37 37, 24106 washington 46 0 16038 0 2625 1419 103 3721 24106 washingtonsin 47 0 43314 203 3096 2567 34X 11 3X wisconsin 47 0 43314 203 3096 2567 2808 5028 57023 wisching 70 43 0 0X 0 2X 0 3X 4 4X 8 BX wisching 71912 0 193 290 367 25253 97967 73 4X 0 0X 0 2X 0 3X 4 3X<			67 9%	002.	0 5%	07%.	0 9%	- 30 OX		
60 9% 0 1% 11 2% 6 3% 7 6% 13 8% MASHINGTON 45 0 20 10 280 1592 1082 2692 24752 69316 S5 0% 0 4% 23% 2 7% 3 9% 35 7% 36% MEST VIRCINIA 46 0 16038 0 2623 1419 1303 2721 24106 MISCONSIN 47 0 43310 203 3098 2567 2808 57023 MYSCINSIN 47 0 43310 203 3098 2567 2808 57023 MYSCININ 47 0 43310 0 23 3078 2857 2285 57023 MYSCININ 47 0 4304 0 23 3098 2567 2808 57023 MYSCININ 70 42 0 21 0 193 270 367 22257 97967 73 4% 0 0 X 0 22% 3 7% 3 0% 4 3% 257673 TOTAL 70 4% 0 2% 3 7%	-		77 0%	0 02	4 9%	4 4%	3 4%	10 4%		
55 0% 0 4% 2 3% 2 7% 3 9% 35 7% WEST VIRCINIA 46 0 16038 0 2623 1419 1303 2721 24106 MISCONSIN 47 0 43319 2009 2567 2808 5023 MYSCINSIN 47 0 43319 203 3098 2567 2808 5028 MYSCINSIN 47 0 4319 203 3098 2567 2808 5028 MYSMING 48 0 71912 0 193 290 367 2525 97967 73 4% 0 0X 0 22 0 3X 0 4 25 7X 2574 2076 367 257673 TOTAL 70 4X 0 2X 3 7X 3 0X 4 3X 16 3X			60 9X	0 12 -	11 2%	6 3%	7 6%	13 8X		
66 3X 0 0X 10 9X 5 9X 11 3X MISCONSIN 47 0 43319 203 3098 2567 2808 5028 57023 MYDMING 48 0 71912 0 193 290 367 2525 97987 73 4X 0 0X 0 2X 0 2X 0 3X 0 4X 25 7X 70 4X 0 0X 0 2X 3 0X 4 3X 131928 57673 TOTAL 70 4X 0 2X 3 7X 3 0X 4 3X 16 3X			55 OX	0 4%	2 3%	2 7%	3 9%	35 7%		
HISCONSIN 47 0 43319 203 3098 2567 2808 5028 57023 76 0X 0 4X 5 4X 4 5X 4 9X 8 8X HY2HING 48 0 71912 0 193 290 367 25223 97987 73 4X 0 0X 0 2X 0 3X 0 4X 25 7X 2141133 6178 112074 90981 131928 557673 TOTAL 70 4X 0 2X 3 7X 3 0X 4 3X 18 3X			66 5%	0 0%	10 9%	5 9%	5 4%	11 ·3X	·.	
MYCHING 48 0 71912 0 193 290 367 25235 97987 73 4% 0 0X 0 2X 0 3X 0 4X 25 7X 2141133 6178 112074 90981 131928 557673 TOTAL 70 4X 0 2X 3 7X 3 0X 4 3X 18 3X			43319 76 0X	0 4%	3098 5 4%	4 5%	4 9%	. 8 8%		
2141[33 6178 112074 90981 131928 357673 Total 70 4% 0 2% 3 7% 3 0% 4 3% 18 3%	WYOHING	48 0					367	25225	97987	
TOTAL 70 4% 0 2% 3 7% 3 0% 4 3% 18 3%		2		6178	112074		131928	357673		

70 42 0 22 3 72 3 02 4 32 1 33 NOTE "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE MOST COM-STRAINING (RITERIA 1:0 1F > 1:4 0F THE POPULATION ALLOHED BY A UNIFORM DENSITY CRITERION IS FOUND IN A "OUAD" SECTOR OF 90 0 DEGREES IN HUMBERS IN THE COLUMNS REPRESENT. THAT LAND UNIQUELY CONSTRAINED BY THE GIVEN FRACTIDNAL CRITERION THIS LAND IS CONSIDERED AVAILABLE IF THE CRITERION WERE RELAXED IF SECTOR CRITERION IS APPLIED. ASSUME THAT UNFORM DENSITY CRITERION IS ALSO IN EFFECT ... COMPOSITE OF 5 FADIL ...

· F-74

ł

POPULATION SECTOR ANALYSIS - TOTAL U. S. DENSITY = 250 0/50 MI +++ SINGLE SECTOR (22.5 DEGREES) STATE AREAS IN SQUARE MILES AND % OF STATE

TASULATION

>1/16 POP IN SECTOR 1 > 1/8 POP. IN SECTOR

		ינ כ``` ו	8 POP. 1 > 1/	6 POP. 1	N SECTOR					
			1	> 1/			N SECTOR			
					1	> 1/ 	2 POP I UNJF	N SECTOR		
						×.		1	P CRITE	STRICTIONS
		•	•	•	•	•	•	•	•	
ALA8474	1.0.16550			30098	35387	41775	44129			
AR I ZONA	2 0 : 44033	39 2% 44863		58 OX 48144	49215	50942	85 0% 51608	. 54937 ::	100 02 : 114343 :	
ARNANSAS	38 5% 3 0 23594	39 2X 27059	-32019	42 1%	43 02	44 61	45, 1X 43830	46995 :	100 07 : 53258 :	
CALIFORNIA	44.32	50 8% 60158	60.1% 66573	69 51 73060	76 41 78426	: 80 8% : 83926	82.3% 66068		160364 :	
COLDAADO	33 0% 5.0 58527	37 5X 61123	41 5X . 64095	45 61 66624	48.9X 68824	52 3X 70580	: 53.7% ⁻ . 71719	2 75666 :1	100 0% : 104326 :	
CONNECTICUT	56.1X 6.0: 10	58 6%	61, 42	63.9% 116	66.0X	67.7% 203	68.7%	: 5211 :	100.0% : 5211 :	
DELAWARE	70 309	0.2%	0.4%	2 2X 946	3 5X	: 3.9% : 1544	4 3%	2267 :	2326	
FLORIDA	8.0 10769	16 6%	27 81 19628	40 7% 25138	28535	32569	72 21	: 46252 ;	100 0% : 59357 :	
GEORGIA	9.0 : 16347	26 21	: 33.12 - : 25534 -	42 4% 00186	48 1% 38887	54 9% 43898	58.7% 45722	: 52737 :	100.0X : 58604 :	
IDAHO	27 91 10 0 35686	34 9% 37809	43 62 40019	56 6% 41736	43058	44380	: 78 01 : 44824	: 46031 :	83550 :	
ILLINOIS	42.7% 11.0 : 11599 .	45.32	47, 9%	50 0X	51.5% 37944	53. 1% 42103	: 53.6% : 43386	: 55179 :	100 0% : 56539 :	
INDIANA	12.0	26.82	41:2% 8396		67.1% 19011	74.52	: 76.7% : 24472		36342 :	
IOHA	13 0 26238	12.9% 28767	23.12 36911	38.5% 43242	52. 3X 48038	63.3% 51338	67.32 52255		00.0X : 56067 :	
KANSAS	: 46 BX 14.0 : 59579	51.3%	65.8% 67801	77.1%	05.7% 74826	91.61	93.2% 78358		00.0% : 82266 :	
RENTUCAY	72.42 15.0 : 11368	76 1%	82:42	87.52	91. OX	94.31	95.22		40269	
LOUISIANA	14.0 11455	- 35. 3X 13578	42:32	51.1%	61: 7X	78 01 28940	83.2%	: 93.9% :1 : 33736 :	48154 :	
MAINE	17.0 : 2334	28.21	34.7%	43 8% 28593	53.2% 30214	60.12 31916	62. 3X 32414	: 70 1% :1	34074	
MARYLAND	68.5% 18.0 994	72.7%	78.5%	83 9% 3242	88.7% 4150	93.41	95.11		11155	
MASSACHUSETTS	9.92 190 58	14 42 251	20 21	29.12 840	37.2% 1177	44 02 1573	47.22		00.01 : 8627 :	
HICHIGAN	0.7% 20.0 20024	2.9%	4. BX	9.7%	13.6%	10.2%	21.51	: 100. 0% : 1	00.0% 61637	
MINNESOTA	32.41	33.6X 38359	39.8% 49367	47.52	55.01 52969	40.72 35459	62 6X	: 84.3% :1	00. 0X : 85914 :	
MISSISSIPPI	41.12	44. 62	53. 02 24868	58.0% 30137	61.72	64.62	41138	71.02 11 44043	30. 01 : 47883 :	
MISSOURI	38.11 23.0 33254	43.01 36969	51.9% 44274	62.9% 51261	75:1%	83.71	85.9%		69934	
MONTANA	47.6% 24.0 92206	52 91 94396	63.3% 96027	73.3% 98401	79.4X 97356	84.5%	85. 9%	÷ 93.5% :1	48456	
NEBRASKA	62.1% 25.0 : 63815	63.6% 64336	64.7% 66932	66. 3% 70059	66. 9% 71941	67 41	67.7% 74016	68.2%:1	77721	
NEVADA	82.11 26.0 95393	82 81 85672	86.1% 86445	90 11 87275	92.6% 98066	94.51 88944	95.2% 89185	: 98.0X 1	00.0X :	
NEW HAMPSHIRE	27.0 2818	77.5%	78.12	78.91	79.61 5578	BO. 4%	80.62 6369		9467	
NEW JERSEY	29.9X 29.0:0	32.6% 29	41. 9% 96	51.42 492	58. 9% 685	64.71 926	47. 3% 1091		00 01 ·	
NEH MEXICO	: 0.0X 29.0 : 60346	0.42	1.2% 83337	6.1% 85045	8 67 86339	11 6X 89153	13.5%	:100.0% :1	21744 :	
NEW YORK	66 01 30.0 5703	66 8% 7440	68 5% 10625	69.92 15035	70 9% 19754	72 42	72.9%		00.0% : 50219 :	
NORTH CARDLINA	: 11.41 31.0 : 6919	14 81 9486	21 21 12950	29 92	39.3% 23893	48.01 30687	50. 9% 33032	: 80.2% :1	00. 0%	
NORTH DAKOTA	13.6% 32.0 \$4088	18.7%	25.5%	37 42	47.1%	60 4%	65.1% 43960	: 83 0% :1	00.01 : 71005 :	
OHID	33.0: 1972	78.9%	84.41 7305	87. 2% 12005	68 6% 16608	89 41 20333	90.11	90 71 .1	00 0% :	
OKLAHOMA	34 0 39633	9.82 43213	17.5% 48375	28 71 52621	39 7% 56800	48.6%	51 91 42107	94 42 .1	00.0% : 69615 :	
OREGON	56 9% 35.0 : 49794	62.1% 52139	69.52 54918	75 62 58450	81 6% 60206	67. 9%	89.22 63420	95.0% :1	00.0% : 97928 :	
PENNSYLVANIA	50.8% 36.0 : 3590	53 21 6485	96.12 9804	39 72 14697			64 BX	69. 0X : 1	00 01 : 49278 :	
RHODE ISLAND	7.9% 37.0 0	14 32	21 72	32 52	41.52	50.9% 68	57 62		1206	
SOUTH CAROLINA	- 0 OX :	0.01	0 0x :	0 02	2.4%	5.6%	5 62	100 0% :1	00.0% : 31109 :	
SOUTH DAKDTA	39 0 5742 18 43 39 0 46919	25. 2%	32 92 .	43 6X	57. 52		76 0%	91, 52 : 1	00 0% :	
TENNESSEE	60 92 40 0 11433	. PO 3X	65 5% 16878			: 69·3X .	69 63	70.42 1	00.02 .	
TEXAS	27.1%	33 42	40 1%	49 61 :	61.1%	74 0%	79, 2%	. 93.8% . 1	00. 02 : 68839 :	
UTAH	: 61.0%	46 8%	73 12 .	80 31 :	85 OX	. 69 6% :	90 2% :	98 02 1		
	42.0 52264 : 61.4% : 43.0 3889	61.9%	54117 · 63 52 : 5443 ·		65.8%	57128 67.1% 7981	67.6%			
VERMONT	39. 5%	4468	55. 2X	6437 65 32	75 4%	: 81. OX ·	83 94	· 89 6% :1	00.0%	
VIRGINIA	16 5%	23.7%	31 62	17225 41. 8%	21867 53 11	27319 : 66 42 :	70.2%	86 21 1 44554	00 OX :	
WASHINGTON	45 0 22890 33 01 46 0 5076	37.0%	41 SX	32096	50 52		55.2%		00 OZ :	
WEST VIRGINIA	. 21. 12	31.5%	9892 41 01	12757	64 32	: 18239 : . 75 7%	79. 32	. 89 7% :1	00 OX :	
HISCONSIN	47 0 19590	23343 40 9% 5 144	50 62	35686	40733 71 4X	44622	80 42	91 22 1 72761	00 OX :	
WYOMING	49 0 65330 66.7%	68 5X	19901 70 31 .	70464 71.92	71246 72-71	71883 73 41	72211	74, 32, 1	00 02	
									30844	

TOTAL

1405512 1518712 1681820 1864324 2012560 2190230 2199678 2482289 3039964 46 2% 50.0% 55 3% 61.3% 66.2% 70.7% 72.4% 81.7% 100.0% NOTE NUMBERS IN THE COLUMNS REPRESENT THE AMOUNT OF LAND THAT IS COMSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED WENEVER A SECTOR CRITERION IS APPLIED. IT IS ASSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA HERE APPLIED TO SADII (2. 5. 10. 20. 30) INDI-VIDUALLY AND THE RESULTS COMPOSITED.

Ś

Э

 TABLE
 F2.14

 POPULATION SECTOR ANALYSIS - TOTAL U. S.

 DENSITY - SOG #/60 MI. *** SINGLE SECTOR (22.5 DECREES)

 STATE AREAS IN SQUARE MILES AND % DF STATE

		STATE	AREAS	IN SQUARE	MILES A	ND & DF	STATE					· · ·	
	TABULATION			>1/1	16 POP								
	and the second second						N SECTOR	N SECTOR					
						. 1	> 1/ i	4 POP. I > 1/	3 POP. 1	N SECTOR			
									> 1/		ORM DENS		
										1	NO P	DP CRIT	ERIA ESTRICTIONS
				- 1		1	1	· }	L 1	1		1	
													•
	ALABAMA		1.0	24039	27628	30726	34798	39121	43936	46503	49833	51907	
	ARIZONA		2.0	46 3%	47526	99 2% 48723	. 67 0% : 90421	75 42 · 51483	- 84 6% 52467	52911	96 0% 54937	:114343	:
	ARKANSAS		30	40 8%	: 41 6% : 31343	: 42.6% : 36004	44.1%	45 0%	45.9%	45239	48 0X	: 100 0%	:
	CALIFORNIA		. 4.0	57.62	58 9%	67.6%	: 74.8%	: BO. 1%	B3 4%	84.9% 92756	: 68.2% 108871	100 01 160364	:
	COLORADO			: 41 5%	: 44 32	: 47.3%	51.1%		: 56 5%	57 BX	: 67 9%	100 0%	
				: 60.8%	62 42	: 64.7%	: 66.4%	67.9%	: 69.5%	: 70.1%	: 72 5%	:100.0%	•
	CONNECTICUT			: 0.2%	154 3.0X	5.6%	647 12 41	: 17 62	: 1226	.: 28, 3%	100.0%	5211 100 0%	-
	DELAWARE		7. 0	: 24 5%	26.1%	849 36 5%		: 66 8%	: 1710. : 73 9%	: 90 1%	. 98 31	: 100. 0%	1
	FLORIDA	· ·	80	: 20149 : 33.9%	23884		31092 52 47		36459 61 4%	: 39121 :- 65: 9%		: 59357 : 100. 0%	:
	GEORGIA		. 🤊 O	25061	28767	:32385		:41736	46146		52737	: 38604 : 100 01	:
	IDAHO		10.0	39758 47.6%	40501	: 41727	42885	43898	44853 53.7%	45287	46031	83550	: :
	ILLINGIS	•	11. 0	: 19570	23903	: 32627	. 38976	: 43155	46330		55179		:
	INDIANA		12.0	: 34.6%	9573	://13433 -	:= 18374 (23633		: 29722	. 35020	: 36342	
	IOHA		ÌJ. 0			37.0X	48375	: 51618	53480	: 81.8X : 53992	36066	100.0X	:
	KANSAS -		14. 0		61.7X		66.3% 73666	:	95.4% 79487	: 80027		62266	:
	RENTUCKY		15.0	: 81.9% : 16839	: 83.7% : 18296	88.3% 20362	92:0% 22951		: 76.6X	97. 3X	: 37799	: 100.0% : 40269	:
	LOUISIANA		- 16. 0	: 41.8% : 15855	: 45.4%	: 50. 4%	56 7% 24550		01 6X 30342	87.2X	93.9% 33736	: 100. 0% : 48154	
·	MAINE		17.0	: 32 91	: 38.1% : 26557	: 43 8%		58.7%	32241	65. 51 32868	23717	100 0%	:
	MARYLAND		18.0	: 77. OX	: 77:91	82.01	65. BX		94 61 3809	96: 57	: 99. OX	100.01	•
				: 19 02	21. 51	:- 26. 6%	35.7% 1834		: 52.1%	: 58.3%	99.7% 8627	100.0% 8627	
	MASSACHUSETTS		5 A S	434 5.0%	656 7.62	: 1004 : 11.62	: 21.3%	28.4%	: 34.17	: 40.7%	: 100. 0%	: 100. 01	
	MICHIGAN		20.0	36. 5%	23922	29496 46.13	: 54 41 .	62.2%	68. IX			: 61837 : 100. 0%	:
	MINNESOTA		21.0	: 48.7%	42914		: 60.2X -	- 43. 6% :	: 56752 · 66.1%			85914 100.0%	:
	MISSISSIPPI		22.0	24125	: 25322 · : 52.9%	: 20450 : 59.4%	: 32530 : 67,91		: 41128 : 85.91	: 42257 : 68, 3%		: 47883 : 100. 0%	:
	MISSOURI		23.0	41563 59 4x	: 43068	: 49090 70.21	53837 77.0%	58035 83.01	61065 87, 31	89.6X	: 65417 : 93.5%	: 69934 : 100. 0X	
	NONTANA	· · .	24. 0	96654 65.1X	96857		99202	99955 67.31		: 100843 : 67.91		: 148456	:
	NEBRASKA		25.0	66527 85.6%	67724 87.1%	70213	72298	73736 94.9%	74789	75135	. 76187	77721 100.01	:
	NEVADA		26.0	86059	86966	:. 87737	88635	99089	: 89552	: 89774	90363	110618	
	NEW HAMPSHIRE		. 27. 0		: 78.6% : 4053	79 31 4729	90 1X	60.5% 6031	: 61.01 : 6832	:7160	8270	9467	
	NEW JERSEY		28.0		42.81		56 7% : 1129 :		72.2X	: 75.8% : 2113	: B010	· 8010	
	NEH MEXICO			1.7% 83801	: 5.8% : 84225		: 14.1%. : 87246	- 17 1% - 80162	: 20.7% : 89954	: B9262		: 121744	:
	NEW YORK		30 0	: 68.81 9669	69.21	70.12 15150	19261	72.41	: 73.1% : 29960	73 3X 31488	: 40299	: 100.0% : 50219	1
	NORTH CARDLINA		31.0	19.31	23.81 15662	30 2%	28 41	48. 01	57.7% 33746	62 7% 37104	90.2X	: 100. 01 : 50769	
	NORTH DAKOTA		32.0	25 41	30 BX	37.0%	45.11	53.7% 63497	66. 5% 63922	73.1%		100.0%	
		•		· 82.1X	: 82 8%	· 86. 17	: 69 1% :	: 89 4%	90:02	90.2% 29018	90.72	100.0X	
	GH10		33.0	: 17.1%	8859 21 21	11995 28.71	: 16029 : 38 31	21558 51.5%	26507	: 69.4%	: 94.4%	100 0X	
	OKLAHOMA			47353	49292 70. 8%	53075	57060 82.0%	60062 86 31	62600 89.91	43796 91.61	95. 01	100.0%	
	ORECON				57331 58 5%	: 58923 : 60 2%	: 63 3X :		63642 65. 02	. 66 SX		97928 100.0%	
	PENNSYLVANIA	•	36.0	20.12	: 11551 - 25.5%	: 14900 : 32 91	42.3%	51 91	: \$3.0%	: 30610 : 67.6%	41727	100 01	
	RHODE ISLAND		37.0	0 07	: 0.	: 10	48	135	241	299	1206	1206	
	SOUTH CARDLINA	•	. 38. 0	9756	. 11889. : 38 1%	. 14407	16868 54 12	20207	24376	: 25881	20525	31187 100.0%	
	SOUTH DAKOTA		39 0	50759	50798	51994	52834 68.6%	· \$7755	53635	: 53799	54214 70.41	77007	
	TENNESSEE		40 0	16656	18026		24009	28313	: 33157	35879 85 21	: 39526	42122 100 01	
	TEXAS		41.0	39 5X 194554	42 8% 205159	217704	57 0% 229844	239098	247416	250446	263348	268939	
	UTAH		42. 0	72 41 53480	76 31 34609		85 5% 56839				98 01 59627		
	VERMONT		43.0	62 8X	: 64:1X : 5308	. 65 JX	6765	67.6% 7643	68 31 8135	68 7% 8482	8930	100.0% 9853	
	VIRGINIA		44 0	53 92	53 9%	61 72	68 72 20362	24926	: 192 67	31430	35502	41167	
	MASHINCTON		45.0		34 6% 30581	40 21 33090	49 5% 35312	60.5%	. 71.5%.	40810	44554	100 0% 69316	· ·
	WEST VIRGINIA		46.0	41 51	44. 12	47 71	51 2X 13471	54 8X	: 57 1%	58 91	44 3X - 21384	100 0% : 24106 :	
				39 02	43. 1%	47 92	. 55 91	67 0%	•• 78, 7%	82 6% 48086	68.7%	100 0% 57022	
	MISCONSIN		47 0	26566	28796 90 51		60 3X		: B1 5%	84 31 72356	91 2% 72761	100 0%	
	WYOMING		48 0	69663 71 1%	69663 71.1%	70619	71352	71844	72134			100 01	

TOTAL

ILEGED IT TO BE AVAILABLE IF THE ANOUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIER A STATUS CONSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED WHEN VER A SECTOR CRITERION IS APPLIED. IT IS ASSUMED THAT A UNIFORM DEMSITY CRITERION IS ALSO IN EFFECT. CRITERIA WERE APPLIED TO BE AVAILABLE TO IN FAFECT. VIDUALLY AND THE RESULTS COMPOSITED.

PJPULATION SECTOR ANALYSIS - TOTAL U S. DENSITY = 750 0/Sû mi ••• Single Sector (22 5 Degrees) State Areas in Souare Miles and % of State

	STATE AREAS	IN SQUAR	E MILES	AND % OF	STATE					•	
TABULATION		>1/		IN SECTO	R IN SECTO						
			í		/6 POP 3	IN SECTO	R				
		·					IN SECTO /3 POP		R		
				1		1	> 1	/2 POP	IN SECTO		
		.				1		1	FORH DEN	POP CRII	ERIA
				1			- P		1	NC F	ESTRICTIONS
•			•	•	•	•	•	•	•	•	
,											
ALABAMA	1 0	27435	30407 58 6%	33167 63 92	36062 69 5%	39729 : 76 3%	44322 85 4%	46976	47833 96 0%	51907 100 0X	•
ARIZONA	2 0		48977	50132	51685	52274	· 52805	53258	54937 48 0%	. 114343	· · · ·
ARKANSAS	3 0	31845	32907	43 8%	45 2%	45 72	: 46 21 · 44612	46 61	46995	100 0X 53258	:
CALIFORNIA	··4 0	59 BX 71593	61 BX 75926	69 7% 80664	76-2% 85258	81 0X 89726	: 83 8% • 93238	85 3X	108871	100 0X 160364	
COLORADO	50	44 6% 65388	47.3%	50 3% 68640	53 22	56 0X		59 6%	67 9%	100 07	
	-	62 7%	. 64 22	65 8%	: 67. 5%	. 69 OX	. 70.1%	70 72	72. 5%	:100 OZ	:
CONNECTICUT	6 0	1.7%	6 9%	627 12 0X	936 16 0%	1322	. 1853 35 6X	2268 43 5%	5211 100 0%	: 5211 : 100. 0%	1
DELAWARE	7.0	27 41	743 32 01	975 41 9%	1283	. 1973	1727	1891	2267	2326	
FLORIDA		25013	27261	30436	35 2%	67 6% 34730	. 37017	61 3% 39787	46252	100 0X 59357	:
GEORGIA '	9.0	. 42.1X 20815	45 9% 31189	51.3%	. 55.7% . 37789	: 58 5% : 42257	. 62 4X : 46381	: 67-0% : 48726	77 9%	: 100. 0X : 58604	-
IDAHO	10 0	49 2%	53 2% 41254	58 2%	64.5% 43087	: 72 1% 44052	79 5%	83 5%	. 90 0% 46030	100 0%	:
	· · · · · · · · · · · · · · · · · · ·	: 48 9%	: 49 4%	. 50.7%	51.6%	. 52.7%	: 53.7%	: 54 3%	55 1%	. 100. 0%	
ILL INDIG	11 0	25167	27657 48.9%	: 35425 : 62 7%	40627	: 44815 : 79 3%	: 47546 : 84 1%	48761	55179 97 61	. 56539	
INDIANA	12.0	: 9843 : 27.1%	11657	: 15537 : 42.8%	20439	24936	20516	30861 84 9%	35020	36342	
IOWA	13.0	: 35647	: 37201	49220	56.2% 49533	52342	53731	: 54272	56066	36066	:
KANSAB	14. 0	63 6X : 69557	. 71111	. 80 7% 74392	: 88 3% : 76833	93 41 78580	: 95.8X	96.8X	100 0% B2073	. 100 OX 82266	:
KENTUCKY	15.0	: 84.6% . 19480	. 86 4% . 19676	90.4%	93.4X	95 5%	: 96.9% : 33254	97 6%	99.81	100 0X	:
		: 45 9%	. 48 9X	: 53.2%	: 58.7%	: 67.9%	: 82.6%	68. 5x	93:9%	: 100. 0%	:
LOUISIANA	16 0	: 18943 : 39, 31	: 20429 · 42.41	22407 46 5%	25457	28622 59.41	: 30841 : 64 0X	51884 66-21	33736 70 11	48154 100.0%	
MAINE	17 0	26972	26991	20130 82 6%	29365	. 30716 : 90.1%	: 32279 : 94:7%	32926 96:61	33717	. 34074 100 0%	
MARYLAND	18.0	2480	: 27.12	: 3329	4207	: 5211	: .6427	. 7411	: 11011	11155	:
MASSACHUSETTE	19.0	22 2%	24.32	29 82	2239	: 46.7% : 2634	: 57.6%	: 66 4% : 3995	98 7% 8627	100.01	
HICHIGAN	20.0	24067	: 12 31 . 25978	: 19.5X : 30533	26.01	: 30.0% : 39353	: 37.7% : 42894	: 46 3% : 45625	. 100 0%	100 0X	:
	21.0	38 91	42.01 43898	49 41	: 56.7%	: 63.6X	69.41	: 73.8X	84.31	100. OZ	
MINNESOTA		43637 : 50 BX	: 51, 1%	49369 57.5%	52409	55285	: 57262 : 66 7%	: 59431 : 68.0%	71. DX	: 85914 : 100 0%	;
MISSISSIPPI	22. 0	25001 52.9%	26856 56.11	29471 : 61.5%	- 33157 69.2%	: 38060 : 79.31	41302	: 42460 : 88.7%	44043 92 0%	47883 100 0X	-
MISSOURI	23. 0	. 43415	44458	50354	. 54928	59046	: 61625	62561	65417 93 5%	69934	
MONTANA	24 0	97494	: 63 6% . 97494.	72.0% 98411	78. 9% 99434	: 84 4% : 100128	389 1X	100881	101296	148456	
NEBRASKA	25.0	: 65.7% : 68033	65.7% 68901	66 32 71285	67.0% 73012	: 67 4% · 74324	67.7% 75000	: 68 0% 75339	68 2% 76187	: 100 01 . 77721	-
NEVADA	26.0	87 5% 86936	88 7%	91 7% 89491	93.9%	95 61 89427	: 96 5%	96 92	98.01 90363	100 0X 110618	
		: 78. 6%	79.32	80 OX:	: BO 5%	: BO 8%.	: 81.1%	: 01:3%	: 81:7X	:100 0%	
NEW HAMPSHIRE	27. 0	4169 44.01	4333	: 4883 : 51.6X	5452	. 6166 · 65.17	: 6948 ; 73.41	: 7324 : 77 41	: 8270 : 87.4%	9467 100 0%	•
NEW JERSEY	29.0	482 6.02	10 81	1110	1457	: 1431 : 20 41	2036	2577	: 8010 100 0%	8010 100 0%	
NEW MEXICO	29.0	84544	85316	86860	87719	88471	: 89041 ·	89359	90209	121744	
NEW YORK	30.0	. 69.42 : 12091	70.1%	71.3%	. 72.1%	: 72.7% 25389	: 73.1%	: 73 4%	40289	: 100. 01 : 30219	
NORTH CAROLINA	· 310	: 24.1X : 15594	27.5%	33 8%	41 4X	50 6% 27531	39 41 34267	65.0%	80.2% 42142	100 0% 50769	
,		: 30 7%	· 35 2X	40 3%	46 JX	34 21	67.5%	74. 5%		: 100 OX	
NOATH DAKOTA	32. 0	59183	59183 83.4%	61422 66 5%	88 7%	83641 89 7%	63989 90,1%	641 3 4 90.37	90.7%	. 71005 : . 100. 0% :	
OHIO	33 0	9235	10663	13857	18625	23710	. 28217 . 67 3%	. 31401 . 75. 1X	39507	41833	
OKLAHONA	34 0	50180	52013	55410	57929	60380	62841 90.32	64066	66151 95.0%	69615 100 0%	
OREGON	35. 0		58759	79.61 60245	83.2% 61818	66 71 62899	63989	92 0X 63591	67579	97928	
PENNSYLVANIA	36.0	58 6%	60 0X	61 31 16887	63 1%	64.21 24443	65 3X	67.0%	69.01 41727	100 0X : 45278 :	
	37.0	25.1%	. 30 21 .	37 32 39	43 92 .	34. OX	65 23	72 3%	92 22	100 0x 1206	
RHODE ISLAND		0 01	0 8%	3 2X	16 0%	22 4X		43 2%	100 0%	. 100 OX ·	
SOUTH CAROLINA	38.0	11754	14041 45.0X	15691 50 37 .	17293 55 4% .	20410	24588	26229 84 1%	28525 91 5%	. 31189 : 100 0% :	
SOUTH DANOTA	39 0	51193	51193 66 3%	52293	53027	53461	53673	53837	54214 70 4%	77007 100 0%	
TENNESSEE	40 0	18142	19956	67 91 22050	24752	69 4% 28709	69 71 33486	69 9% 36313	39526	42122	
TEIAS	41.0	43 1% 208662	47 42 214230	52 3% 224189	58 8% 235103	68 2% 243798	79 5% 250003	86 2%	93 8% 263349	100 0% 268839 .	
UTAH	42.0	77 61 34629	79 71	83 41 56539	87 5% :	90.7%	93 OX 58344	94 2% 39701		100 0% 85181	
-		64.1%	65 1%	66 4X .		67, 9%	68. SX	68 9%	70 OX	100 01	
VERMONT	43 0	5481 55 67	5491 55 7%	6205 63 0X	6813 · 69 1%	7662 · 77 8%	0154 82 81	8492 86 21	8830 89.6%	9853 100 01	
VIRGINIA	44 0	14552	16038	18238	21452	25553 .	29954	32057	33205	41167 . 100 0X	
WASHINGTON	45 0	30774	39 OX 32742	44 31 34653	36940	62 1X 38677	72 8% 40125	77 9% 41466	86 21 44554	69316	
WEST VIRGINIA	46 0	44 42	47 2X . 10866	50 0X 11792			57 9X 19008	59 8X 20072 -	64 31 21384	100 0X 24106	
	47 0	44 5%	45 1%	48 9%	56 6% .	67 41	79 2%	83 3%		100 01 57022	
WISCONSIN		51 02	30648 53 7%	35425 62 1%	39633 69 5%	43985	47169 B2 7%	48848 85 7%	91 2%	100 0%	
WYDMING	48 0	70262		71072	71564 73 0%	71912	72163 73 6%	7,794	72761 · 74 3%	97986 100 02	

TOTAL

. 1993 - 19

1745298 1807107 192992 2047623 2144306 2271978 2334266 248287 3039963 57 4X 53 4X 63 5X 47 47 7X 74 77 76 8X 81 7X 100 0X THAT IS COMSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED WENEVER A SECTOR CRITERION IS APPLIED. IT IS ASSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA WERE APPLIED TO 3 RADII (2. 3. 20. 30) INDI-VIDUALLY AND THE RESULTS COMPOSITED

POPULATION SECTOR ANALYSIS - TOTAL U. B. DENSITY - 1500 #/50 MI. +++ SINGLE SECTOR (22 5 DECREES) BTATE AREAB IN BOUARE MILES AND X OF STATE

r	AB	uL	AT.	I	ON.	
---	----	----	-----	---	-----	--

>1/16 POP. IN SECTOR

) i 		IN SECTOR	IN SECTOR	IN SECTO				
					Í		D POP.	IN SECTO	R IN SECTO	R	
				ł			Ì	UNII	FORM DEN	51 TV	ERIA
									1	NO F	ESTRICTIONS
ALABAHA		32482 62 61	33186	. 66.7%		: 76.8%		: 90 8%	49833	51907 .100 0X	•
ARIZONA	2.0	49466 43.3X	51087 44.7%	: 51830 : 45.3%	52284	52544 46 01	: 53017 : 46.4%	53500 : 46.8%	: 54937 . 48.0%	.114343	
ARKANSAS	3.0:	33765 63 4%	: 34200 : 64.2%	: 37953 : 71. 3%	40868		44689 83.9%	: 43519 : 85 5%	: 46995 88 2%	53258 100 0%	:
CALIFORNIA	4.0:	79535 49. 6X	02286 51.31	: 85837 : 53.5%	: 89079 : 35.5%		: 95303 : 59.4%	: 61 0%	108871 67.9%	160364 100 0X	
COLORADO	5.0	68226 65.4X	: 68833 : 66.0%	: 70648 : 67.7%	: 71671 : 68 7%	72539 69 5%	: 73475 : 70.4%	: 74180 : 71 1%	: 73666 : 72.3%	104326	:
CONNECTIONT	6.0	386 7.4%	: 695 : 13.3%	: 811 : 15.6%	994 19.1X	: 1399 : 26.9%	: 2027 : 38 9%	: 2538 : 48 7%	: 5211 .100 OX	: 5211 : 100. 01	:
DELANARE	7.0	. 811 34. 9%	: 859 : 36.9%	. 1052 : 45.2%	: 1303 : 56 0%	: 67. 6X	: 1756 : 75 5%	: 1920 : 82.6%	2287 98.31	100.01	:
FLORIDA	8 .0:	49. 5%	: 31546 : 53.1%	: 32733 : 55:1%	: 33794 : 56 9%	59.21	37413 63.0%	: 40250 : 67.8%	: 46252 : 77,9%	. 59357 :100.0X	:
GEOROIA	9.0:	32279. 35. 1%	: 3307,1 : 56.4%	: 35174 : 60.0%	38069 53.01	: 72.4%	: 46735 : 79 72	. 47118 : 83 81	: 52737 : 90 0%	: 38604 : 100. 0%	:
IDAHO	10. 0	41804 50.0%	: 41813 : 50:0X	: 42643 : 51.0%	43232 51.7%		: 44911 : 53.8%	: 45355 : 54.31	46030	83550 100.0%	:
ILL INDIS	11.0	29712 32. 61	30426 53.8%	: 37693 : 66.7%	: 42142 : 74.5%	: 45644 : 80.7%	48231	: 49533 : 87.6%	55179	: 56539 : 100. 0%	
INDIANA	12.0	13298 36. 61	14832	: 17997 : 49.5%	21259 58.5%	25244		31208	: 35020	36342 100.01	:
IGNA	13.0	39668 69.0%	: 39140 : 69.8%	: 46629 : 83.21	50074 89.31	52477	53837 96.01	54407	: 36067	: 56067 ;100.0%	
KANSAS	14.0	72500	: 73002 : 88.7%	75791	77306		79854 97.1%		82073	82266	-
RENTUCKY	15.0	20429	21074	22436	24067 59.8%	27464	33293 82.7%	35734 88.7%	: 37799	40269	-
LOVIGIANA	16.0	21992	22031 45.81	23430	25727	28699	30909	31970	: 33736	48154	
MAINE	17.0	27194	27194	29226	29375	30724 90 21	32279	: 22935	33717		-
MARYLAND	18.0	2779 24. 91	28 31	3704	4931	6002	: 7045	8260	: 11011	: 11195 : : 100.0X	
MABBACHJOETTS	19.0	1380 16. 0%	1933	2094	2480	: 53.81 : 2943	43. 1X 3990	: 4364	8627	8627	
MICHIGAN	20.0	27438	29419	32202	35743	: 34.1X : 39855		44417	: 100.0X	: 61837 :	
MINNESOTA	21.0	44422	45094	: 50508	57.8X				: 60988	: 100. 0% ·	
M1561851PP1	22.0	51.9% 27792.	20110	: 39. 8%. : 30204	61.9% 33341	64.6X	: 41341		71.0X	47883	
HISBOURI	23.0	50. 0X 45345		53.1% 1830	69.6% 55709	79.62 57415	61847	42860	. 65417	: 100. 0X : 69934 :	•
MONTANA	24.0	64.81 97928	65.9% 97928	: 74:1% : 98768	: 79,7% : 99646 :	: 85.0%		89.9% 100871	: 101296	100.0%	
NEBRASKA	25.0	46. 0X 49603	64.02- 70195	: 46: 5%	67.1X	: 67.5% : 74490	67.71 75048	: 48.0% : 75386	: 76187		•
NEVADA	26.0	89.41 88365	90. 31 98732	: 93:0% : 89108	: 94. 5% : 89417.	: 95.9% : 89639	96.6%		90363	:100.0% : 110618 :	
NEW HAMPSHIRE	27.0	79.92 4420 :	: 80.2% : 4429	: 80.6% : 4989	: 80.8% : 5520 :	: 81.0% : 6175 :	81.2% 6977	: 81.31 : 7382	. 6270	:100.0% : . 9467 :	
NEW JERSEY	289.0	46.7%	46.8%	: 52.7% : 1583	58.3% 1969	63. 41 2248	73.7%	78 0X	87 41 8009	100.0%	
NEW MEXICO	29.0	13.0% : 66145 :	16.3% 86869	: 19.8% : 87564	24 61 . 99027	29.1%	35.1% 89108	47.7% 89427	90208	100.0X : 121744 ·	
NEW YORK	30.0	70.8%	71.4%	71.91	72.31 : 21713 :	72.8% 26036	73.21	73.5%	40289	100 01 : 50219 :	
NORTH CAROLINA	31. 0	29 61 :	32.5% 19358	37. 4% 21134	43.21 23787	51.8%	60.4% 34412	46. 31 37925		100 0% : 50769 :	
NORTH DAKOTA	32.0	37. 9% : 59801.	38.1% 59901	41.62	46. 9%	54.6% 63739	47.8%	74.7%	83.0% 64433	100.0%	
OHIO	33.0	84:2%	84.2% 13838	87.1X 16984	99.9% 20111	89.81 24472	90.1% 20082	90. 31 32385		100 02	
OKLAHONA	34.0	28.2%	33.1% 54320	40. 61	48.1%	58.5% 60641	69.0% 63024	77. 4% 64269		100.0X ·	·
ORECON	35.0	76.4%	78.0%	81. 0%	83.7%	87. 1%	90 5%	92.31	95.02	100.0%	
PENNSYLVANIA	36.0	61.1% 15102	61.7%	62.71	63. 5% :	64.4X	65 5% 30108	67 12	69 01	100.0%	
RHODE ISLAND	37.0	33.4%	33. 9%	39.31	45. 31	55 ZX :	66 51			100.0%	· · · ·
BOUTH CAROLINA		0. 8%	13:67:	20. 9X :	: 280 : 23 2% 17428 :	27.2%	36. 8%		100:02	100 OX : 31189	
BOUTH DANOTA		48.4%	48: 52	51 BX :	: 55.9% :	45.7%	79.11	84.31	91.5%	100.02	
	40.0	47.01 :	47. 01	68.21	53074 68 9%	69 42	69 72 :	69 97	70 41	100 0X : 42122	
TENNESBEE	:	49.7%	51. OX :	54.2%	25032 : 59 41 :	68.5%	79.7%	86. 5% .	93 BX :	100 02 :	
TEXAS	:	Q1.6% ::	BJ. 1X :	66.3%.	239262 : 89.01 :	91.4% :	93.4Z :	94 72 .	263348 98 0% 59627	100 01	
UTAH	:	45.3% :	46.8 % :	67 42 :	57755 : 67 8% :	68 OX ·	68.6X	69 IX	70 OX	100 OZ	*
VERHONT	43 0 :	5607 : 36 91 :	57.01 :	6273 : 63.7% :	69.42	77.9%	8154 82 81	86 21	89 6%	9853 . 100 0% -	
VIRCINIA	44.0	16704 : 40 6% :	17872 : 43.42 :	19406 : 47. 1% :	21848 53 1%	25833 62 0x	30204 73 4%	32366 78 62		41167 100 0X	
MASHINGTON	49.0	33920 : 48.9% :	35145 : 50.72 :	36342 : 52.4% :	37540 . 54. 21 :	37034 : 56:37; :	40414 . 58. 3%	41862	44354 64. 31	69316 100.0X	
HEST VIRGINIA	46.0	11126 : 46 2% :	11136 · 46.2% :	11947 : 49.6% :	13655 : 56.6% :	16270	19097 79 21	20092	21384 88 7%	24104 : 100.0% ·	
WISCONSIN	:	36 0% :	56 62 ·	64.1X :	40337 . 70 7% :	77 91 -	83.2%	86 32	51994 91 22	57022 : 100 0% ·	
WYOHING	48.0.	70812 : 72.3% :	70812 72.3%	71313 . 72.8% ·	71642 : 73:1% :	71970 : 73 4% :	72163 : 73.6% :	72394 . 73 9% .	72761 74 31	97986	
			000160								

1855831 1888350 1987803 2075429 2179879 2284405 2350362 2482206 3039963 61.0X 62.1X 65.4X 68 3X 71 7X 75 1X 77 3X 81 7X 100 0X

2

TOTAL

NOTE: NUMBERG IN THE COLUMNS REPRESENT THE AMOUNT OF LAND THAT 18 CONSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED WHENEVER A SECTOR CRITERION IS APPLIED. IT IS ABBUNED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA WERE APPLIED TO 5 RADII (2. 5. 10, 20, 30) INDI-VIDUALLY AND THE RESULTS COMPOSITED.

POPULATION GECTOR ANALYBIS - TOTAL U. 9. Density = 250 0/50.ml. +++ double gector (45.0 degreeg) BTATE AREAS IN SQUARE HILES AND % DF STATE

21201 40.87 43207 39.42 29529 55.42 41142 38.12 42706 40.12 10

22099 37. 01

19647 37.92 44969 39.32 28767 54.02 59695 37.21

41702

59.12

10 0.21 444 19.11 13790 23.21 20535

35, 01 38185

38185 45.7% 17138 30.3% 4709 13.0% 32347 57.7% 63166

79.21 14272 25.41 12931

58209 82: 0% 3551 8: 5% 44081

5790 12. 8% 0 0. 0% 7537 24. 2% 48655

43.21

: 33.4% : 33.4% : 181254 : 67.4%

53220 42. 51

9525 23.11 24974 36.01 .7141 29.61 24849 43.61

47437 69. 01 :

4420 44.92

33. 0

34. 0

35.0 36. 0

37. 0 38. 0

39.0

40. 0

41.0

42.0

43.0

44.0

47.0

48 0

10

1.0

20 3.0

4.0

5.0

4.0

7.0 8.0 9.0

10.0 :

11.0 12.0

13.0 14.0

15.0

 a_{1}^{μ}

11. 11.

TABULATION

AL ABARA

INDIA

OUISIA

NECTICUT

30. H1. *** GUARE HILES AND * _ > 1/8 POP. IN SECTOR 1 > 1/8 POP. IN SECTOR 1 > 1/3 POP. IN SECTOR 1 > 1/2 POP. IN SECTOR

32742 43.12 48346 42.32 38571 72.42 74459 46.42 66710 43.92 106

37575 76.21 49724 43.51 41758 78.81 80944 50.51 49663

46.81 203 3.91 1476

DENSITY NO POP

51907

100.0% 114343 100.0%

: 100. 01 : 160364

100.0X 104326 100:0X 5211

100. 0X 2326 100. 0X 59357

49833 96.0% 54937 48.0% 46993 88.2% 108871

47.9% 75666 72.3% 5211

100.03

44129

44129 85.01 51608 43.12 43830 82.32 86068 53.71 71719 68.71 222

222

4.3% 1479 72.2% 34836 56.7% 45722 78.0% 44824 53.4% 44824 53.4% 443386 76.7% 24472 47.3% 52235

 x
 3.97.
 4.37.
 100.07.
 100.07.

 x
 3.97.
 4.37.
 100.07.
 100.07.

 x
 3.97.
 227.
 70.37.
 100.07.

 x
 3.021.
 3.483.
 4.233.
 97.37.

 x
 2.00.77.
 360.07.
 77.97.
 100.07.

 x
 72.02.
 78.07.
 90.07.
 100.07.

 x
 72.02.
 78.07.
 90.07.
 100.07.

 x
 72.02.
 78.07.
 97.07.
 100.07.

 x
 70.52.
 76.77.
 97.63.02.
 95.337.

 x
 70.52.
 76.77.
 95.339.
 50.06.

 x
 97.83.99.
 78.399.
 78.399.
 50.04.

 x
 97.83.97.
 78.32.21.
 97.07.81.50.04.
 50.23.24.

 x
 97.89.97.78.32.81.777.91.100.07.
 50.23.24.
 50.23.24.

 x
 97.89.97.73.22.71.100.07.100.07.
 50.23.24.
 57.97.100.07.100.07.

 x
 97.37.4.42.37.70.13.100.07.100.07.100.07.
 107.77.71

CRITERIA

NYOMINO
TUTAL

0H10

OKLAHONA

ATTOR 150 AND

REALTH CARDING 188 SOUTH DAKOTA

TENNESSEE

TEXAS

UTAH

VERMONT

VIRCINIA

HEST VIRCINIA WISCONSIN

MERCIN

1544002 1583878 1772988 1925028 2091704 2199677 2482286 3039962 50 8% 32 1% 38 3% 43 3% 48 8% 72 4% 81 7% 100 0%

72. 31

NOTE: MARBERS IN THE COLUMNS REPRESENT THE AMOUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE BIVEN CRITERION IS APPLIED. WHEREVER A SECTOR CRITERION IS APPLIED. IT IS ASSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA WERE APPLIED TO S RADII (2, 3, 10, 20, 30) INDI-VIDUALLY AND THE REGULTS COMPOSITED.

49. OX :

76.82 34474 64.03 6022 61.13 14813 36.03 27741 42.93 11667 48.43 33390 58.53 70175 71.63

POPULATION SECTOR ANALYSIS - TOTAL U. S. DENSITY - 300 -/50 HI +++ DOUBLE SECTOR (45 0 DEGREES) STATE AREAS IN SQUARE MILES AND % OF STATE

TABULATION

> 1/8 POP IN SECTOR

		1) i c		IN SECTOR	N SECTOR	N SECTOR			
			1		í		2 POP 1	N SECTO		
			1			· •		DRM DEN	POP CR11	ERIA
		·]		1	I	1	1	1	NO P	ESTRICTIONS
ALABAMA	1. 0	: 26653	28371	: 32309	37500	43357	: 46503	49833		:
ARIZONA	2.0	51.3%		49118	72 21 50373	83 5X 51724	· 89 6X 52911	96 0% 54937		:
	3.0	: 41.4%	- 91. BX	43 02 38542	5 44 12	. 45 2%	46. 3%	48 0%	100 07	
ARKANSAS		: 63.7%	34238 64-32	72.4%	41341 77.6X		: 84 9%	. 88 2%	:100 0%	:
CALIFORNIA	4 0	43.32	. 44.9%	77605	: 52:12		. 57. BX	108871	. 100. 02	:
COLORADO	5 0	: 65224 : 62.:5%	65552 62.8%	65.4%		: 7117P	73176	· 75666	104326	
CONNECTICUT	6. D	29 0.6%	• 77		: 685	1168	: 1476	: 5211	5211 100.0%	**
DELAMARE	7.0	: 656	: 685	1071	1419	: 1698	1862	2287	2026	:
FLORIDA	8.0		24009	: 46 1% - 27782	61. 01 31507		:. 39121	98.3%	59357	:
GEORGIA	9.0	: 39.0X 29342	: 40,4% : 30156	: .46 8% : 34981	: 40154		48308	: 52737	100.0X	:
IDAHO	10. 0	: 48.4% : 41099				: 77 5% : 44477		: 90.0X • 46031	: 100 '0X 83550	:
ILLIND15	11. 0	: 49.2% : 27396	: 49.2% 28728		: 52.2X : 40617	53.2% 44670	54.2X	55 12	100 0%	:
		: 48.5%	50.8%	: 64.1%	71.8%	: 79.0%	63.7%	. 97.6%	100.0%	:
INDIANA		: 29. 5%	31.9%	44.7%	: 57.2%	72.4%	: 91.9%	96.4%	: 100. 02	;
IOHA	13. 0		40067	: 46494 : 82.92			: 96: 31	: 100 0%	: 56067 :100.0%	:
MANSAS	14. 0	70397 85.6%	70686	: 74035	76167				82266 100.0X	:
KENTUCKY	15 0	19393		21006	: 25823	32192	: 35116	: 37799	40269 100 0X	
LOUISIANA	16. 0	18653	18991	23334	26692	040060	: 31536	: 33736	: 48134	;
MAINE	17. 0	: 38.7% : 27474		29056	30397	62.4X	32868	: 33717	. 100 0X . 34074	
MARYLAND	18. 0	: 90.6X : 2519	90.6% 2625	85.3% 3570	89.21 4497	94,1X 5578			100.02	1
MASSACHUSETTB	19.0	22.6%	23.51		40.31	50. OX	: 58.3%		100 0%	1
MICHIGAN		25650	. 8. 17	13.3%	23. 41		: 40.7%	: 100. OX	100.01 61937	
	21.0	: 41.5%	42.91	51.0%	: 59.0% :		71.9%	: 84.3X	100 0X 85914	
MINNESOTA		: 55. 2%	55.4%	. 99 11	62.31	65. 1%	: 67.1% :	: 71. OX	: 100: 0%	:
MISSISSIPPI	22.0	: 26055 : 54, 41		65.7%	36892 77 01	· 84, 7%		44043 92.0%	: 100 0%	:
HISSOURI	23. 0	: 47169 : : 67.4% :				85. 5%	: 69.6% :	73: 5X	100.0X	
HONTANA	24. 0	: 97803 : : 65.9% :		66 62	67.12	100312 67:6%	67.9%	68 21	148456	
NEBRASKA	25. 0	: 68943 : : 89.6% :			72809	73996 93.2%		76187 98.0%	77721 100.0%	1
NEVADA	26.0	: 87072 : : 78,7% :	87149 : 78.8% :	68036 : 79.6% :	88741 : 80.2% :	89136 80.6%	89774	90363	110618	:
NEW HAMPSHIRE	27. 0	4256	4410 : 46. 6% :		3754	6716 70 91	7180	8270	9467	:
NEW JERSEY	29. 0	270	386	668 :	1177 : 14, 78 :	1612	2113 :	8010		
NEW MEXICO	29.0	: 84360 :	84563 :	66068 :	87651 :	20.11 88577	89262 :	90208	121744 100.02	
NEW YORK	30. 0	: 49,3% : : 11976 ;		17129 :			73.3%	40289	. 50219	•
NORTH CARDLINA	31.0	: 23.0% : : 14986 :	16859 :	20912 :		54.4% : 33273 :		42142	100.0X	
NORTH DAKOTA	32: 0	: 29.5% : : 40699 :	33,2% : 60699 :	41.22 : 62204 :			73.1% : 64076 :	04433	100.0%	
OHIO	33.0	: 05.5% : 9747 :	85 51 :	87.6% : 13790 :	68.8% : 18972 :		90.2% . 29018 .	39507	100.0%	
OKLAHOMA	34. 0	: 23.3% : 50383 :	24.5%	33 OX :	45 4% :	50 CX :	69 41 -	94 4%	100.0X	
OREGON	35.0	72 4%	73 OX :		B3. 5% :	89. 9% 62928	91 6X : 65166	95 OZ	100 02	
		: 57.8% :	38. 9X :	60.9% :	62.'6% :	64.3%	66. 5% :	69.0%	. 100. 02 :	
PENNSYLVANIA	36.0	11397 :	27.8% :		22205		30610 : 67 67 :	92 21	45278 100 0%	
RHODE ISLAND	37. 0	0.01 11030	0.01	10 0.8%	58 : 4.6X ·	16 87	299 : 24, 81	100 01	: 1206 : 100.0X .	
SOUTH CAROLINA		: 35.4% :	38 7% :	49.3% :	62.0X :	76,9%	BCIOX :	28525 91. 5%	31189 : 100.0% :	
SOUTH DAKOTA	39.0	51608 67.0%	3160B :	52419 :	52940 :	53509 :	53799	54214 70 41	. 77007 : 100 0X :	
TENNESSEE	40 0	19017	18567	22359	27145 .	32752 :	35879	39526 93 8%	42122 :	
TEXAS	41.0	207629	210496	223668	233231	242553	250446	263349	268839	
UTAH	42 0	54387	54822	55912	86 81 : 56539 :	57832	50556	59627	85181 100.0%	
VERMONT	43. 0	. 5954 .	5954	6649 .	66. 4% . 7346 :	8058 :	6462	8830	9853 :	
VIRGINIA	44. 0	60 4X 14195	14977 :	18528	76.6% 23536	20730 .	31430	35502	100.0%	
MASHINGTON	45 0	34 52	31112 :	45 QX - 33775 -	36149 :	319706 :	76 3X 40810	44554	100 0% : 69316 :	
WEST VIRCINIA		44.1%	44.9%	48.7%	52.2% : 15826 -	55.8% /	58 92	64 3X 21384	100.02 24106	
	47 0	44, 31 31334	45 0X : 32019	54 8%	65 71	77 91 43683	82 6% 48086	BB 7% 51994	100 0%	
WISCONSIN		55 0%	56. 2%	65.7% .	7372.	80 17 .	84. 3% .	91 21		
WYDMINC	48 0	70233 71 7%	70233 . 71.7% .	70476 72 4% :	71516 : 73.0% .	72018 73.5%	72356 : 73 82	72761	100 02	

TOTAL

...

1761966 1790938 1936860 2073310 2213636 2305123 2482290 3039964 36.0% 38.9% 63 7% 68.2% 72.8% 75.8% 81.7% 100 0% NOTE: NUMBERS IN THE COLUMNS REPRESENT THE AMOUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED MEMBERSEN A SECTOR CRITERION IS APPLIED. IT IS ASSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA MERE APPLIED TO 3 RADII (2. % 15 ALSO IN EFFECT. VIDUALLY AND THE RESULTS COMPOSITED.

 TABLE F2.19

 POPULATION SECTOR ANALYSIS - TOTAL U. 9.

 DENSITY = 750 0/80 HI. *** DOUBLE SECTOR (45.0 DEGREES)

 STATE AREAS IN SQUARE HILES AND X OF STATE

5. 1

• • •

TABULATION

> 1/8 POP. IN SECTOR

ALAMAA 1.0 PTO-14 20768 20728 40001 4070 PTO EXTERIAL MO				2 1/ `	6 POP. 1 3 1/	3 POP. 1	IN SECTOR	I IN SECTOR				
ALABANA 1.0 SPG20 SPG20 SPG20 SPG20 CAUSA CAUSA ALABANA 2.0 SPG20 SPG20 SPG20 CAUGA CAUSA SPG20 SPG						1		2 POP. 1	N SECTO			
ALABAMA 1.0 377.1 77.2							1	1	ND	POP. CRIT		
An 12004 2 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7<			₿.	l	. 1	4	. 1	ļ	l			
Alizona 2.0 44000 2012 11000 20200 12200 12000 12000 12000 CALIFORNIA 4.0 5121 51200 51200 51200 51200 51200 CALIFORNIA 4.0 51201 61200 7120 7120	ALABANA	1.0			: 34789	: 38939	: 44081	: 46976	: , 49833	51907		
Amazaria 2 2 2 3 4 7 4 5 4 5 3 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 5 1 5 5 1 5 5 1 5 5 5 1 5 5 5 7 1 5 5 1 5 5 7 1<	ARIZONA	20			50412			: 90.3% : 33238	10 96 0% 1 54937	100.0%	: 1	
CALIFORNIA 4. 5. 6. 6. 7. 8. 7. 8. 8. 7. 10. 7. CALADAD S. 6. 6. 7. <th7.< th=""> 7. 7.</th7.<>	ARXANDAR	3 0			44, 12	: 44. 9X	: 46. OX	46.6%	48 02	100.0%	:	
col_based 5 6 77 <t< td=""><td></td><td></td><td>: 66.7%</td><td>: 67.6%</td><td>74. SX</td><td>: 79. 5%.</td><td>63. 2%</td><td>: 85.3%</td><td>89.2%</td><td>: 100. OX</td><td>:.</td></t<>			: 66.7%	: 67.6%	74. SX	: 79. 5%.	63. 2%	: 85.3%	89.2%	: 100. OX	:.	
construct 6 6 7			: 46. 9%	: 47.7%	: 91.3%	54.1%	: 37.3%	: 39. 6%	67. 92	-: 100. OX		
BLAMARE 7.0 0.0 1.2, 21 21, 27 <th21, 27<="" th=""></th21,>	· · · ·		: 44. 4X	: 64.91	: 66. 5%	67.8%	69.6%	: 70.7%	72. 51	1100.0%		
PLON IDA 6 28,27 34,17 28,27 24,17 77,77 81,27 78,27 <th78,21< th=""> 1</th78,21<>			: 3.0%	: 5.0 %	12.21	:. 21. 9%	: 39. OX	43. 9%	100.01	: 100. 01	-	
eEXAD1A 0.0 2000 22.11 0.0.0 2000			: 32.8%.	36.1%	: 32.3%	: 64.7X.	: 73. 9X	:- 81. 3%	98.31	100.01	: 1.	
IDAWD 10 64 55 22 42 57 76 77 77 76 77	FLORIDA		: 44.5%	43.8%	52.1%	86. 4%	: 61.7%	. 67.0%	:. 77, 9%	: 100. 0%	: :	
IBMO 10.0 14120 41700 42073 42772 44478 43343 46030 62330 ILLINDIG 11.0 55.87 53.77 54.77 53.77 53.77 54.77 53.77 53.77 53.77 53.77 53.77 53.77 54.77 53.	ALONGIO	9.0			: 34612 : 42.5%	41330	46195.	48924	33737 90.01	: 58604 : 100, 0X	.	
LLINGIS 11.0 22134 22040 28746 44407 48761 51.7 56.39 INGIANA 12.0 35.01 21.7 50.01 27.10 50.01 27.10 50.00 27.10 50.00 27.10 50.01 27.10 50.07 54.71 50.00 27.10 50.07 54.71 50.00 27.10 50.07 54.77 50.07 54.77 50.07 54.77 50.07 54.77 50.07 54.77 77.07 50.01 50.	IDAHO	10. 0	: 41920	. 42045	: 42975	: 43792	: 44679	: 45345	46030	83550		
IND (AM) 12 0 13064 13065 12074 20105 27745 20061 23022 23242 IDMA 13 0 7474 20174 20107 74773 10077 74773 10077	ILLINDIS	11. 0	32134	33042	: 38716	42566	: 46407	: 40761	: 55179	: 56539		
IDM 13.0 cd2347 cd3000 48182 81010 23073 .44773 35007 35007 LAMBAR 14.0 77.57 75.57 71.57 77.57 75.57 75.41 20157 20157 20157 20157 20157 20157 20157 20157 20157 20157 20157 20157 7411 11011 1113 1113 1113 1113 1113 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 1115 11115 1115 1115 <td< td=""><td>INDIANA</td><td>12. 0</td><td>: 13066</td><td>: 13607</td><td>: 18374</td><td>: 23160 -</td><td>27744</td><td>. 30861</td><td>: 35020</td><td>.: 36342</td><td></td></td<>	INDIANA	12. 0	: 13066	: 13607	: 18374	: 23160 -	27744	. 30861	: 35020	.: 36342		
AMBLE 14.0 77000 77200 77432 77431 77100 7753 7753 7753 7753 7753 7753 77432 77431 77111 <th7711< th=""> <th 77111<="" td="" th<=""><td>1044</td><td>13. 0</td><td>: 42547</td><td>43608</td><td>: 48182 :</td><td>51010</td><td>53075</td><td>: 94272</td><td>56067</td><td>: 56067</td><td>:</td></th></th7711<>	<td>1044</td> <td>13. 0</td> <td>: 42547</td> <td>43608</td> <td>: 48182 :</td> <td>51010</td> <td>53075</td> <td>: 94272</td> <td>56067</td> <td>: 56067</td> <td>:</td>	1044	13. 0	: 42547	43608	: 48182 :	51010	53075	: 94272	56067	: 56067	:
REDTUCAY 15.0 20313 20000 22444 23627 23447 2779 40249 LDUISIAMA 16.0 22.77 24.97 24.97 24.97 24.97 24.97 LDUISIAMA 16.0 22.77 24.97 24.97 24.97 24.97 24.97 MAINE 17.0 27.97 27.92 27.91 27.92 27.91 27.92 27.97 27.92 27.97	KANEAE	14. 0	: 72009	72973	79521	: 77432 :	: 79178	: :60327, :	. 82073	62266		
LDUISIANA 16.0 25.0 26.0 27.0 26.0 26.0 27.0 26.0 26.0 27.0 26.0 26.0 27.0 26.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 27.0 27.0 27.0	KENTUCKY	15. 0		20504				: 35647	37799	40269		
		16.0			: 36.8% : : 24472 :	28043			: 93. 92.	: 100. 0%	-	
HATVLAND 18.0 2007 2007 67.2 94.3 19.0 100.01 MASKACHUSETTE 10.0 2007 31007 3105 2074 110.00 MASKACHUSETTE 10.0 2007 31007 210.0 210.0 20.0 27000 2807.0 </td <td></td> <td></td> <td>: 42.7%</td> <td>44.42</td> <td></td> <td>: 58.2% :</td> <td>: 43. 2%</td> <td>: 44.27</td> <td>70.1%</td> <td>: 100. 0%</td> <td></td>			: 42.7%	44.42		: 58.2% :	: 43. 2%	: 44.27	70.1%	: 100. 0%		
23. 91. 26. 91. 10.0 10.42. 24.42. 23.22. 24.4470.72. 10.0.07. HICHIGAM 20.0 27.00 21.42.72. 24.73. 24.77. 44.37. 10.0.07. 10.007. HICHIGAM 20.0 27.00 22.007. 24.77. 44.37. 10.007. 10.007. HIGHIGAM 20.0 27.007. 24.77. 44.37. 10.007. 10.007. HIGHIGAM 21.0 48.77. 46.07.77. 48.77. 48.77. 47.07. 10.007. HIGHIGAM 22.0 28.407. 27.04.0 27.07. 48.97.7. 48.97.7. 47.07.1 10.007. HIGHIGAMI 22.0 28.407.7 74.83.7 27.7.7. 48.97.7.7.7.7. 48.97.7.7.7.7.7. 10.007. HIGHIGAMI 22.0 24.007.77.7.7.7.7.7. 48.97.7.7.7.7.7.7.7. 48.97.7.7.7.7.7.7. 48.97.7.7.7.7.7.7. 48.97.7.7.7.7.7.7.7. 48.97.7.7.7.7.7.7.7. 48.97.7.7.7.7.7.7.7. 48.97.7.7.7.7.7.7.7. 48.97.7.7.7.7.7.7.7. 48.97.7.7.7.7.7.7.7.7. 48.97.7.7.7.7.7.7.7. 4	-		: 82.1%	82.1%	66. OL 1	: 87. 8Z.	: 94. 3% :	: 96.6X :	:. 99.OX.	100.0%		
10.01 12.01 21.01 <th< td=""><td></td><td></td><td>: 25. 9%.</td><td>: 26.8%</td><td>: 34.7% :</td><td>: 42. 91</td><td>33. 21</td><td>66.4X</td><td>: 98. 7%</td><td>: 100. 0%</td><td></td></th<>			: 25. 9%.	: 26.8%	: 34.7% :	: 42. 91	33. 21	66.4X	: 98. 7%	: 100. 0%		
43.07 44.07 44.07 44.77 44.07 44.07 84.41 85.07 84.41 85.07 84.41 85.07 84.41 85.07 85.07 84.41 85.07 <td< td=""><td></td><td></td><td>: 10. OX</td><td>12.0%</td><td>21.62</td><td>28.3%</td><td>36.7%</td><td>46.3%</td><td>100.0%</td><td>: 100. 0%</td><td></td></td<>			: 10. OX	12.0%	21.62	28.3%	36.7%	46.3%	100.0%	: 100. 0%		
136.42 34.53 40.13 43.13 43.73 40.03 71.05 100.03 HIBSIDNIM 22.0 22.007	NICHIGAN		: 45. CX :	44. 5%	: 54 OX .	41. 72	: 48. 3X -	73 81	84. 3%	: 100. 0% :		
BB 97. 39, 51 - 48, 62. 78, 51 - 69, 43. 68, 7572, 62, 100, 07. REBUTANA 21, 0 64, 972 77, 51 - 72, 52. 62, 23. 68, 97. 97, 57, 53. 69, 23. 53, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57	HIMEBUTA	81.0	: 36.4% :	54. 5%			: 45. 9% :	- 68. OX :	71.0%	: 100.0% :		
HIEBOURI 22.0 - 49923 - 4224 - 3731 - 4224 - 3731 - 4234 - 4234 - 4324 - 4324 - <td>MISSISSIPPI</td> <td>22. 0</td> <td></td> <td></td> <td></td> <td>37577</td> <td>40897</td> <td>42460</td> <td>44043</td> <td>: 47983 : : 100.0%</td> <td></td>	MISSISSIPPI	22. 0				37577	40897	42460	44043	: 47983 : : 100.0%		
REBIT ADM 24.0 98179 98179 99070 10027 100281 101274 14855 MEBRABIA 25.0 70040 70145 72305 73427 74672 73339 76197 77711 MEDRABIA 25.0 70040 70145 72305 77427 74672 73339 76197 77711 MEVADA 26.0 77712 8845 4771 27537 76477 774777 774777 774777 774777 774777 774777 774777 741377 7413777 7413777 7413777 7413777 7413777 7413777 7413777 7413777 7413777 7413777 7413777 7413777 7413777 7413777	NIGOURI	23. 0	48783	: 49254 ;	83519	::: 37553 ;:	40905	: 42561 :	65417	·:. 69934 :		
HEBRABIA 28.0 70040 70145 72427 77427 77721 MEM HAMPBHIRE 27.0 4441 4797 5375 4080 64080 7324 62737 6033 110618 MEM JERMEY 28.0 3989 7911 1187 1305 1944 62777 6007 2007 8007 11007 1007 <td>HENTANA</td> <td>24. 0</td> <td>: 98179 :</td> <td>98179 :</td> <td>. 99096 :</td> <td>99829 ::</td> <td>100447</td> <td>100881</td> <td>101296</td> <td>:148436 :</td> <td></td>	HENTANA	24. 0	: 98179 :	98179 :	. 99096 :	99829 ::	100447	100881	101296	:148436 :		
MEXADA BA. 0 0 07712 07712 07712 07712 07712 07712 07712 07722 07224 <th0727< th=""> 07274 0727</th0727<>	NEBRABKA	25.0	: 70040 :	70145	72385	73427	74672 :	: 75330 :	76187	: 77721 :		
HAMP BUIRE 27.0 : 44.51 : 47.77 : 5375 : 4080 : 724.11 : 6270 : 94.57 NEM JERNEY 38.0 : 59.31 : 50.31 : 50.31 : 50.31 : 50.42 : 27.71 : 6270 : 74.41 : 10.07 NEM VEXICO 29.0 : 57.81 : 97.91 : 1187 : 1103 : 1049 : 22.71 : 60.07 : 60.07 NEM VEXICO 29.0 : 59.31 : 677.41 : 77.11 : 77.41 : 77.341 : 73.341 : 74.341 : 73.341 : 74.341 <th: 74.341<="" th=""> : 77.341 <th: 74.31<="" td=""><td>NEVADA</td><td>B4. 0</td><td>: \$7719-:</td><td>87912</td><td>: 486445 1</td><td></td><td>. 89562 .:</td><td>: 89299 :</td><td>90363</td><td>110618</td><td></td></th:></th:>	NEVADA	B4. 0	: \$7719-:	87912	: 486445 1		. 89562 .:	: 89299 :	90363	110618		
NEW 28.0 : 798 : 71 : 1107 : 1005 : 27.7 : 0007 <th:< th=""> : 0007 <th:< th=""> : 0007 <th:< th=""> : 0007 <th:< th=""> : 0007 : :</th:<></th:<></th:<></th:<>	NEH HANPENIRE	27.0	4461 :	4757.	5375 :	- 4090 :	4000 :	7324	. 8270	: 9467.3		
NEXT ICO PP. 0 0 11 177.0 17.1 17.2 17.2 17.3 <th17.3< th=""> 17.3 17.3 <th< td=""><td>NEN JERNEY</td><td>38.0</td><td>: 378):</td><td>90.3% 791</td><td>1187</td><td>: 1505 :</td><td>1969 :</td><td>2577 :</td><td>6009</td><td>: 9009 :</td><td></td></th<></th17.3<>	NEN JERNEY	38.0	: 378):	90.3% 791	1187	: 1505 :	1969 :	2577 :	6009	: 9009 :		
: 70.11 : 70.41 : 71.71.72.41 : 73.11 : 73.41 : 74.11 : 100.01 : HEM YORK 30.0 : 14476 : 13140 : 14737 : 23931 : 24133 : 23445 : 44287 : 100.01 : HORTH CARDLINA 31.0 : 18403 : 18730 : 23903 : 2707 : 20467 : 37809 : 43142 : 50.747 : HORTH CARDLINA 31.0 : 18403 : 18730 : 22903 : 2707 : 20467 : 37809 : 443142 : 50.747 : HORTH DANOTA 32.0 : 41132 : 41704 : 14123 : 43707 : 44134 : 44134 : 44132 : 71005 : HORTH DANOTA 32.0 : 11127 : 11974 : 14123 : 21900 : 27144 : 31401 : 27907 : 44133 : 44433 : 71005 : HORTH DANOTA 32.0 : 11127 : 11974 : 14123 : 21900 : 27144 : 31401 : 27907 : 44133 : 44433 : 7100.01 : CHID 21.0 : 11127 : 11974 : 14123 : 21900 : 27144 : 31401 : 27907 : 44133 : 44513 : 47613 : CREGON 32.0 : 38913 : 59048 : 34087 : 44794 : 44377 : 44064 : 44131 : 47613 : CREGON 32.0 : 38913 : 99044 : 40805 : 42998 : 34271 : 4406 : 46131 : 47613 : CREGON 33.0 : 14477 : 15044 : 17223 : 27333 : 28805 : 32713 : 41727 : 45278 : CREGON 33.0 : 14477 : 15044 : 17223 : 27333 : 2805 : 32713 : 41727 : 45278 : CREGON 31.0 : 1297 : 1401 : 279 : 144 : 237 : 321 : 1204 : 1204 : S0.0 : 14077 : 15044 : 17223 : 2733 : 2805 : 3271 : 3737 : 522 : 31169 : CREGON 31.0 : 1297 : 1404 : 27101 : 24900 : 2222 : 28223 : 31169 : CREGON 31.0 : 12949 : 14272 : 14714 : 20101 : 24900 : 222 : 28223 : 31169 :	NEW MEXICO	29.0	7. 9%			18.82 : 69105 :	24.4%	22.2% : 87357 :				
: 29.21 : 20.21 : 20.21 : 29.31 : 47.71 : 61.12 : 60.21 : 100.01 MORTH CARDLINA : 0 : 18700 : 20803 : 20977 : 20897 : 20897 : 20897 : 20897 : 20897 : 20897 : 20897 : 20897 : 20897 : 20897 : 20897 : 20897 : 4133 : 64133 : 100.01 : MORTH DANDTA : 20 : 11327 : 11776 : 16123 : 21000 : 27184 : 50.31 : 60.31 <td< td=""><td>-</td><td>:</td><td>70.1%</td><td>70.4%</td><td>71.7%:</td><td>72.4%</td><td>. 73. 1% :</td><td>-73.4X :</td><td>74.1%</td><td>: 100. 0% :</td><td></td></td<>	-	:	70.1%	70.4%	71.7%:	72.4%	. 73. 1% :	-73.4X :	74.1%	: 100. 0% :		
: 26, 21, : 26, 92, : 44, 92, : 83, 43; : 46, 92, : 74, 53; : 80, 05, : 100, 05, : MORTH DANDTA 20, 0, : 41130; : 44, 92, : 97, 94, 3377; : 44134, 44432; : 71005; : 0HI0 21, 0, : 11329; : 41125; : 81, 300; : 27184, : 94, 31; : 94, 93; : 90, 73; : 90, 73; : 90, 73; : 90, 73; : 90, 73; : 90, 73; : 90, 73; : 90, 74; : 100, 03; : 0HI0 21, 0, : 11329; : 41425; : 21300; : 27184, : 31401; : 29507; : 41033; : 44433; : 71005; : 0RLANDMA 24, 0, : 32274; : 32908; : 34647; : 59398; : 42297; : 44064; : 44053; : 45451; : 4541; : 45171; : 43276; : 43			: 29.2% :	20.21	30.5% :	47.7%	58. 1% :	- 65. OX :	BO. 2%	: 100. 0% :		
BALL STIL CALLAND 32201	-		34.21	36.92 :	44.92::	53.4% :	44. 9% :	74. 5% :	83. OX	: 100. 0% :		
: 27.11: 28.44: 28.51: 51.41: 44.7: 65.01: 78.11: 44.41: 100.01: (BLLANDMA 34.0: 52274: 53968: 53968: 623978: 62397: 44066: 64351: 64615: (BLANDMA 25.0: 5274: 53968: 53968: 623978: 62397: 44066: 64351: 64615: (BEQDM 25.0: 58913: 74.11: 61.71: 65.61: 63991: 643971: 643971: 643971: 643971 (BEQDM 25.0: 12974: 60.31: 62.11: 63.41: 63.91: 64797. 100.01: 100.			: 66.1% :	66.1% :	88. 3% **	89.3% :	89.8% :	90.3%:	90.7%	: 100. 0% :		
: 73.11 74.11 11.71 <		:	27.1% :	28.4X :	- 38. SX · :	51. 4% S	65. OX :	75. 13 -:	94.4% ·	: 100. 0% :		
: :		:	75.1% :	74.1%	🛙 🛍 1. 7X 🗄	85. 6X 🙄	89. 6% :	.92.0% :	93.0%	: 100. 0% :		
: 31. #X : 33. 2X : 42. 3X : 51. 4X : 43. 4X : 72. 7X : 72. 2X : 100. 0X : RHDDE ISLAND 37. 0 : 0 : 10 : 39 : 164 : 397 : 521 : 1206 : 1206 : SCUTH CARDLINA 38. 0 : 13949 : 14792 : 16714 : 20101 : 24006 : 2229 : 28953 : 31169 : SCUTH CARDLINA 38. 0 : 13949 : 14792 : 16714 : 20101 : 24006 : 2229 : 28953 : 31169 : SCUTH DANGTA 39. 0 : 51965 : 31965 : 32903 : 32367 : 33337 : 54214 : 77.07 : SCUTH DANGTA 39. 0 : 11949 : 14792 : 16714 : 20101 : 24006 : 2239 : 28953 : 31169 : SCUTH DANGTA 39. 0 : 11949 : 14792 : 16874 : 20101 : 24006 : 3237 : 3337 : 54214 : 77.07 : : 47. 3X : 48. 5X : 49. 7X : 40. 7X : 100.07 : : 79. 7 : 20573 : 223973 : 223973 : 23137 : 34213 : 79526 : 42122 : : 77. 7 : 20573 : 21834 : 227950 : 247970 : 23177 : 263346 : 26827 : : 60. 7X : 100.07 : : 60. 7X : 100.07 : : 60. 7X : 100.07 : : 60. 7X : 21834 : 227950 : 247970 : 23177 : 263346 : 26827 : : 60. 7X : 21834 : 227954 : 237970 : 23177 : 263346 : 26827 : : 00 : 7X : 21834 : 227934 : 227950 : 247970 : 25317 : 94.27 : 80.07 : : 717 : 71 : 80.27 : 80.70 : 100.07 : : 100 : 71 : 91.27 : 21834 : 2270 : 77.53 : 48. 47 : 48. 77 : 70. 100.07 : : 100 : 128 : 4128 : 4003 : 7975 : 2042 : 26307 : 9742 : 85181 : : 100 : 128 : 4128 : 4007 : 129 : 40.77 : 18.77 : 49. 67. 10	OREGON	359.0:				42098 :			49.02	: 100. 0% :		
BHCDE ISLAND 37.0 0 10 27 144 357 521 1206 BOUTH CARDLINA 38.0 1084 27 31.4 27 521 1206 1206 BOUTH CARDLINA 38.0 12949 14272 14714 20101 24200 22229 28525 31169 BOUTH DANGTA 39.0 51945 32803 532803 53267 3357 53217 4214 7707 BOUTH DANGTA 39.0 51945 51945 32803 532807 3357 53237 54214 7707 TENNESSEE 40.0 19977 203973 23893 23893 34313 39526 42122 147.37 203873 20893 23893 23187 35318 32619 42122 147.37 203873 20893 23187 35318 42182 42182 10.0 12173 203834 229354 237970 23317 24212 42182	PENSYLVANIA	36.0 :		15044	19223 :		28805 :	32713 :		: 45278 : : 100. 0% :		
BOUTH CARDLINA 38.0 129347 14972 16714 20101 24207 28923 31187 BOUTH DANGTA 39.0 13945 14972 16714 20101 24207 28923 31187 BOUTH DANGTA 39.0 13945 31965 32903 53287 53837 53837 54214 7707 BOUTH DANGTA 39.0 13753 20573 23877 53837 53837 54214 7707 TENNESSEE 40.0 1977 20573 22873 23875 23377 754214 27073 TENNESSE 40.0 1977 20573 22873 23877 25336 42122 TENNESSE 41.0 217173 218534 2279530 2479700 253177 263348 428837 UTAH 20.077 218341 25632 279750 247970 253171 263348 248837 UTAH 20.3331 25632 213793 26701 9427 83181	RHODE ISLAND	37.0	. 0:	10 :	39:	164 :	397 :	521 :	1206	1206 :		
BOLTH DANGTA 99.0 51965 52907 53287 53287 53287 54214 7707 TENNESSEE 40.0 1.0737 20593 22893 22893 2387 53287 53287 54214 7707 TENNESSEE 40.0 1.0937 20593 22893 23816 3338 34513 27526 42122 17.37 20593 228934 229954 23177 263177 263146 42122 17.37 218534 229934 23970 23177 263146 426837 UTAH 42.0 1.216334 1.27935 8478 48.73 79.673 83181 10.0 1.216334 2.29354 2.2017 73.42 84.93 7995 8076 64.72 69.673 69.673 VIRAH 42.0 1.3387 46.77 7.753 46.47 70.05 100.071 24.237 49.73 69.73 69.73 69.73 69.73 69.73 69.73 69.7	BOUTH CAROLINA	388.0		14292	16714	20101				: 31109 :		
TENNESSEE 40.0 1 10077 20973 20974 20974 20974 20974 20974 20974 20974 20974 20974 20974 20974 20973 20974 20973 20974 20974 20973 20974 20974 20973 20974 20974 20973 20974 20974 20974 20974 20974 20974 20974 20974 20974 20974 20974 209744 20974 20974 <th< td=""><td>SOUTH DANOTA</td><td>39.0</td><td>\$1965 :</td><td>-51965 :</td><td>32905 :</td><td>53267 :</td><td>53557 -:</td><td>53837</td><td>54214</td><td>: 77007 :</td><td></td></th<>	SOUTH DANOTA	39.0	\$1965 :	-51965 :	32905 :	5326 7 :	53557 -:	53837	54214	: 77007 :		
TEXAB 41.0 : 21173 : 218334 : 227950 : 23179 : 23177 : 263149 : 26829 : UTAH 42.0 : 55321 : 56402 : 57434 : 26230 : 97427 : 23187 : 26823 : 97427 : 23177 : 23177 : 23177 : 23177 : 23177 : 2411 : 5420 : 97427 : 33181 : 55321 : 56400 : 57434 : 86.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 77.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753 : 68.73 : 67.753	TENNESSEE	40.0	19937 :	20593 :	23893 :	20160 :	33138 :	36313 :	39526	42122 :		
UTAH 42.0 354321 364001 374341 362701 987271 83181 C 50.0X 65.0X 65.0X 65.0X 65.0X 66.7X 67.0X 100.0X VERMENT 43.0 64.0X 64.0X 75.7X 68.4X 64.9X 70.0X 100.0X VERMENT 43.0 64.2X 64.07 77.7X 86.2X 64.9X 70.0X 100.0X VIROINIA 42.2X 64.9X 79.0X 100.0X 9833 98.7X 72.2X 100.0X 98.3X 99.6X 100.0X 98.3X 100.0X 98.3X 100.0X 98.3X 100.0X 98.3X 100.0X 98.3X 100.0X	TELAS	41.0	217173 :	218534 :	229354 :	237950 :	247590::	253177 :	263348	: 268839 ;		
: 42,27; 42,27; 49,07; 77,17; 12,27; 96,77; 99,67; 100,07; VIRGINIA 44.0; 16164; 16437; 20234; 24596; 29697; 23057; 23502; 41167;	UTAH	42.0	55381 :	55632	36800 :	57456 🔅	56230 :	98701 :	59427	: 85181 :		
: 42,27; 42,27; 49,07; 77,17; 12,27; 96,77; 99,67; 100,07; VIRGINIA 44.0; 16164; 16437; 20234; 24596; 29697; 23057; 23502; 41167;	VERMONT	43.0		6129 :		7575 :	8096 :					
: 39. 31: 40. 43: 49. 23: 39. 87. 77. 78: 86. 21: 100.03: MABNINGTON : 40. 43: 30.02: 33.022: 33.024: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.64 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 : 397.68: 37.66 <	VIRGINIA	:	42.21 :	42.21 :	49.0% :	77.1% :	12.2%	86.271 : 32057 :	89.6X	100.0%		
HEBT VIROINIA 54.4% 47.4% 50.9% 54.3% 57.4% 39.6% 64.3% 100.6% HEBT VIROINIA 44.0% 11361 113637 16097 16093 120072 21204 24106 - 48.0% 48.0% 55.7% 46.7% 76.4% 83.3% 160.0% HISCONSIN 47.0% 24014 288861 420971 46581 48948 51.974 57022		:	39.3% :	40.4% :	49.2% :	59.8X :	72.1% :	77.9% :	86.21	: 100. 0% :	•	
: 48.0X : 48.0X : 59.7X : 66.7X : 78.4X : 83.3X : 88.7X : 100.0X : MISCONSIN 47.0 : 34016 : 34142 : 38861 : 42991 : 46561 : 48848 : 51994 : 57022 :			44.4% :	47. 6% :	30.9% :	54. 3% :	57.4% :	37.8% :	64. 31	: 100. 0% :		
		:	48.0%	48.0% :	55. 7X 🗄	46.7% :	78.4% :	83. 3% :	88 7%	100.01 :		
: 59.7% : 59.9% : 48.2% : 75.4% : 81.7% : 85.7% : 91.2% : 100.0% :		:	- 59.7% :	59.91 ;	48.2% :	75.4% :	B1.7% :	85.7% :	91.2%	100. OX :		
MYDHINO 48.0 : 70677 : 70677 : 71410 : 71796 : 72124 : 72394 : 72761 : 97986 : : 72.1% : 72.1% : 72.9% : 73.3% : 73.6% : 73.9% : 74.3% : 100.0% :	uton ind	42.0	70677 :									

232019 2334266 2482286 3039963 74 1X 76.8X 81 7X 100.0X

TOTAL

1849701 1869503 2000661 2122471 2232019 22 60.8% 61.5% 65.8% 67.8% 74 1% 5 IN THE COLUMNS REPRESENT THE ANDUNT OF LAND IDERED TO BE AVAILABLE IF THE GIVEN CRITERION MERNEVER A SECTOR CRITERION IS APPLIED. IT IS A UNIFORN DENSITY CRITERION IS ALSO IN EFFECT. E APPLIED TO 3 RADII (2. 5. 10. 20. 30) INDI-THE REMAINS COMPOSITED. NOTE: NUMBERS THAT IS CONSI IS APPLIED. ABSUMED THAT CRITERIA MERS VIDUALLY AND

POPULATION SECTOR ANALYSIS - TOTAL U. S. Density - 1500 8/50. HI. +++ DUUBLE SECTOR (43.0 DEGREES) State Areas in Square Hiles and X. OF State

ABULA	TION

		1								
			1 () ()		> 1/	N SECTOR	IN SECTOR	-		
			·	· · [1	UNIF	ORM DENS	DP. CRIT	EBTA
							·.	ĩ	NOF	ESTRICT
		•	·	•	•	•	•	•	•	
LABANA	1.0	: 23958	33958	36236	: 39729	44284	47140	49833	51907	÷
RIZONA	2.0	5.4% 50478		91946	: 52496	: 52998				4
RAANSAS	3.0	: 44.2% : 37201	44. 5%	40607	: 45.9% : 42904	44448		: 46995	: 100.01	:
ALIFORNIA	4.0	: 67.0% . 01042	70.4%	86879	: 91106	B3. 5%	97851	: 08.2% :108871	160364	
OLORADO.	5.0		51.62	1. 71111	56. 8%	: 73301		. 67.9% 75666	100.0%	:
ONNECTICUT	6.0		: 66.6% : 753	: 68.2%	: 69.2% : 1351	: 70.3%	: 71.1%	72 5%. 5211	100.0%	
ELAWARE	7.0	: 10.4% : 1013	14.42	: 1293	25.91	: 38.3%	: 48.7% : 1920	100.0%	100.0%	
LORIDA	8.0	: 43.6% : 31527	: 44.0%		34914	37143	82. 6X	: 98. JX	100. 0X	
EORGIA	9.0	: 53.1% : 34258	: 53.2%. : 34605	56: 31 37847	58.8% 42103	: 62. 6%		77.9%	100.0X	
DAHO	10, 0	: 58.5%	: '59. OX'	44. 62	71 GL	: 79.21	: 83 BX		100.07	
LLINGIB	11.0		50. 81 36023	51.7%	52.6X	53.61	54.3% 49533		100.0%	
NDIANA	12.0	: 63. 12	: 43.7%	72 61	79.02 24694	84.21	87.67		100.01	
ONA	13,0	44. 3%		: 57. 01	68.0%		85. 91	96. 4%	100.07	
ANSAS	14.0		81.7% 75067		92. 51		: 97.0%	: 100. 0%	: 100.0%	
			: 91.2X		78261	96.6%	90442	99. BX	92266 100.01	
	15.0	: 53.5%	54.4%	: 37 41	27367 68.01	- 82. OX-	35734 88.7%	93.92 ·	40269 100.0X	
OUISIANA	16.0	: 48. OX	: 48 OX	53. 01	20477	30687 63.7%	31970 66.41	33736 70.11	40154 100.01	
AINE		: 28207 : 92.6%	: 82.8%	27334 86. 11	30668 90.0%	94.4%	32935 96.7%	33717 99.0%	: 100. 01	
ARYLAND	18, 0	29:3%	3435 30.8%	38.6%	49.8%	61.8%	: 8260 74:0%	11011	11155 100.01	
ABSACHUBETTB	19. 0	: 21. 1%	: 22.1%	2364 27.41	2909	3351	4564	8427 100.0%	8627 100.0%	: ;
ICHIGAN	20. 0	: 31305 : 50.6%		: 56. 9X	37276	43097	46417 75.11	52158 84. 3%	61837	: :
INNESOTA	21.0	: 49533	49785 57.9%	82419 61. 2%	90111 44 1X	87167 66. 5%	88797		100.0X	
1681891 PP1	22. 0	: 29674.	29874	33215	37973			: 44043	47983 100.01	
I BSOUR I	23. 0	50489 72. 2%	50798	55034 78. 71	56855 84. 2%		62960 89. 91	65417		
ONTANA	24. 0	98575	98575	99492	100070	100534	100871	101296	148454	
EBRABKA	25. 0	71535	: 71603	: 73128 :	:74257	74865 :	: 75386 -	76187	77721 100.01	
EVADA	26.0	92.0%	: 99712-	: 99234: :		89774	89986	- 696363	: 110618	•
	27. 0	: 4912	4921	90.7% 5491	6176	6919	7382	8270	100. 0X	
eh jersev	28.0		··· 1332 ·	1689	1959	73.1%	: 3821 .	8010		
EN MEXICO	29.0		: 87217.	91.1X 97893	. 88510	89089	89427 -	90208	100.0%	
eh vork	30. o :	17515	: 71.6% : 17939	21209	28534	24905	33293	40289	: 100, 0% ** : *50219 ::	
ORTH CAROLINA	31.0	20863	: 20983 ·	42.41	27589	34180	37925	-42142 -	100.0%	
DRTH DAKDTA	3 2. 0	41.1%	: 41.1% :	44.6%	. 54. 3%	67. 3%	-74.72 -64144	83.0%	71005	
H10	3 3. o	: 197. OX-	: 87.0%	: 198.6X :	89. 5%	89.9%	90.3X 32385	90.72	100.0% 41833	:
KLAHONA	34.0	34.82	: 36.4%	46 3%	37. 6%	67 7X	: 7.7.4% :	: 94.4X :	100.0X	
REDON	35.0	80.3%	80.41		-86. 5X	90.01	92.3%	95. 01 -	100.0% 97929	
	34.0	61.7%	: 61. 9% : 17370	63.4%		65. 4%		69.01	100.01	
NODE ISLAND	JT. 0	39.2%	38.4X	-44, 6% :: 232 :	94.1X 318	65.67	74.3%	92.21	100.0%	
		4.0%	: 12.01	: 19.2%	26.4%	36.0X	50.4%	100. OX .:	: 100. 07 .:	
OUTH CAROLINA	39.0	51.2%	13961	: 55.5% :	.65.31	78.3%	: 64.31L :	91.5%	:100.0% :	
DUTH DAKDTA		48. 1%	52439 68.1X	48. 8% :	69. 31	69. 61	69.9X.:	70.4%	100. OX -:	
INNESSEE	40. 0	22399 53.2%	: 22591 : 53.6%	24810 : 58.9% :	28651 68.0%	79.2%	36429 86.3%	93.8X	100.01	
145	:	84.1%	227142 84. 5%	: 89.2% :	90. 8%	93.12	94. 7%	98.0%	100.0%	
AH	42.0	56684	: 57041 ; : 67.0%	: 37698 : : 67,7% :	57890 68.0%	- 58354 48. 5%	58824 69.11	59627 70.01	100.0%	
RMONT	43.0	6253	: 6273	: 6823 : : 69.21 :	7624	8106	84.72	97.41.	100.0%	
RGINIA	44. 0	18470	: 18769 -	21587: 52 41	25573	30031. 72.9%	32366	35502 -:	41167 100.0%	
SHINCTON	45.0	35078	35473	37210 :	38880	40202	41862 -:	44554 :	69316 :	
ST VIRGINIA	46. 0	11898	· 11908 ·	1.3424 .	. 14173	18943	20082	21384 :	24106 :	
SCONSIN	47. 0	35753	49 41 35917	39932	43857	47033	47186	51994	57022	
ONING	49. C ;	62.7% 71227 72.7%	63.01 71227	71613 :	71912	72143	72394 :	72761 :	97986 :	

- 72.7%. 72.7%. 73.1%. 73.4% 7.4% 7.4% 7.4% 74.3% 100.0% 1946617 1956151 2050327 2165779 2273250 2350342 2462289 3039944 64.0% 64.3% 67.7% 71.2% 74.6% 77.3% 61.7% 100.0% NOTE: NUMBERS IN THE COLUMNS REPRESENT THE AMOUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED. WHENEVER A SECTOR CRITERION IS AVENUED. IT IS ASSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA LERE APPLIED TO 3 RADII (2.5, 10, 20, 30) INDI-VIDUALLY AND THE REGULTS COMPOSITED.

F-82

TOTAL

60 2% 61.5% 67.4% 72.4% 81.7% 100.0%

NOTE: NUMBERS IN THE COLUMNS REPRESENT THE ANDUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED. WHENER A SECTOR CRITERION IS APPLIED. IT IS ABSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA HERE APPLIED TO 3 RADII (2. 5. 10. 20. 30) INDI-VIDUALLY AND THE RESULTS COMPOSITED.

	1.0 :	28834 : 2	11178	39175.	. 44129	· 49933	51907 100 0%	•	
ARIZONA	2.0:4	17373 : 4	19047.	: 49524	·: 51608-	54937.	. 114343 :		1.1
ARKANSAS	3.0	37162 : 3	37401 :	41466	° 43830.	46995	100.0%	4.5 ×	
CAL IFORNIA		59.8X : 7	70. 42.	. 77 91	82.37	: 69.2%	100.01	2 A	
COLORADO		3.21 4	H. 3%	48.71	53.71	67.91	160364		1.12
	: 6	5958 : 4 53,22 : 4	3.7%	69316 66:4%	: 71719 : 68.7%	: 73666 : 72:3%	104326	10.16	
CONNECTICUT	6.0:	319 :	- 48 :	. 135:	222	. 5211	: 5211 : : 100. 07 :		
DELAHARE	7.0	936	965 :	1341	: 1679	2287	2326 100.01		
FLORIDA	W.O: 4	G2147 : 2	IJ179.:	38685	* 34856	: 46252	59357	 9.5 	
GEORGIA		7.374 : 3	19.11	40.71	38.71	* 77 91	· 100 0% ··	5 A. A. A. A.	1990 - S
I DAHD	10.0	4.9% : 5	8. 9% ::	69:12	78.02	90.02	58604 100 0% 83550	$(z \in X)$	
		9.7% : 5	10.JX	52.22	53: 62	55.1%	100.0X ·:	1.1.1.1	. : .
ILLIND19	: 5	1.71 : 5	3.9%	67 91	76:71	97:6%	56539 : 100 02 :	the second second	, .
INDIANA	12 0 - 1	3131	2022	. 10100	. 34473		36342		
IOWA					34433	: 38087	: 3000/	· · · ·	. 1 - 64 -
KANSAS	14.0 ; 7	5.0% : 7 1410 : 7	1979 ::	. 75077	: 78358	: B207J	100 01 : 82266 :	10 C 10 C	
KENTUCKY	15.0 : 2	6.8% : 8 1124 : 2	7.5%	91:31	33484	: 37799.	100.0%	:	
LOUISIANA	16.0 . 2	2.5% : 5	4. 51	72.11	83.2%	93.91	; 100. OX ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · ·
		3.1%:4	5 11	.55 5%	· 62.3%	· 70 32	48154 100.0%		• :
MAINE	17.0:2	9603 : 2 3.9% : 8	9027 : 5. 2% :	71. 4X	32414	: 33717 : 99.01	34074 : 100.0% : 11195 :	2	
HARYLAND	18.0:	3059 : 7.4% : 2	3310/:	4314	3249 47 21	11011	11195	2.5	•
MASSACHUBETTS	17.0 :	482 :	-349-:	1042	1853	: 8427;	: 8627 :		•
HICHIGAN	20.0 2	8641 : 2	9346	34547	30735	92158	100.01 61837		· · ·
HIME50TA	· • •	A 312 : A	7 91	54 OZ.		· 84 77.	100 01		· ,
HIG81851PP1	21.0 5	8. 41 : 5	7.12	62.61	63.62	71 01	83914 100.02 47883	· · · ·	
	82.0:3 :6	A 912 · A	A 41 -	78 97 .	95 91	• 92 AL	· 100 07 ·		1.124
HIBSOURI	23.0 ; 5	1319 5 3.4% : 7	2973	56443 BO 71	85 91 60062 85 91	65417 93 51	69934		
MENTANA	24.0;9	8874 9	8874 .:	99800	100476	101296	69934 100.01 148456	195. 1	
NEBRASKA	25.0 : 4	9547 : 7	0445	72143	74015	76167	77721		• •
NEVADA	24.0 : B	9.3% : 9 7159 : 8	0.6% : 7390 ::	92.8%	97.2%	99.0% 90363	100.01 : 110618.:		4.1
NEW HANDSHIRE	: 7	8.8% : T	V.OX :	79.4%	: 80.6% ;	: 81.7%	100.01		$(x,y) \in \mathbb{R}^{n}$
	: 4	7.4% : 3	1.11 :	41.42	: 67.3%;	87.41	9467 : 100.01 8010 :		
NEW JERGEY	28.0	29 : . 0.4% :	1.4%	540 7.0%	1081 13.5%	100.0X	100.01	n per si Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-A	
NEW MEXICO	29.0 : 8	4949 : 8: 9.8% : 7(5190 : 0 01	86782	80732 72 94	74 11	121744		• •
NEW YORK	28.0 : 4/ 29.0 : 4/ 30.0 : 11 31.0 : 1 31.0 : 1 32.0 : 4/ 52.0 : 4/	2815 : 14	4919	20217	25582	40287	50219		÷ .
NORTH CAROLINA	31.0	1530 : 1	7959	26917	33032	42142	50769		
NORTH DAGOTA	392.0 ± 44	2.4% : 3 2144 : 4	3.4X 2146	52. 8%	63.12 63960	83.0X	71005		
0H10	33.0 1	7.5% 8	7. 51	B8.7%	90.11	90.72	100.0%	· · .	·
OKLAHONA	: 2	5.6% 2	0.1X	41 3%	51.91	74. 41	100.01		
-	33.0 11 22 34.0 53 27	2630 : 3. 3.6% : 76	5.2%	83.0X	89.2%	46151 95.0X	100 OX :	÷	
OREGON	35.0 : 5	6356 : 56 7.5% : 59	9054	60303	63420 :	47579	97928 100.0% 45278		
PENNSYLVANIA	36.0 1	1629 : 1: 5.7% : 30	3568 : 0.01 :	19985	24260 53.61	41727	45278		
RHODE ISLAND	37.0 :	0:	0 :	. 39 .	. 49 -	1204	1204 :		
SOUTH CAROLINA	39.0 1	D. OX : . (D.:0% : 1549 :	3.2%	23700	28525	100.0% 31189 100.0% 77007		
SOUTH DAKOTA	: 40	0.2% : 43	J. 4X .:	43.7% 52853	76.0%	91.5X	100.01	•	
TENNESSEE	: 61	7.8% - 67	7. OX :	00 01	OV. 67. :	- /U. 4A :	100.UX		
	4	P. BX : 51	867	28332 47.31	33350 : 79.21	39526. 93.8%	42122 100,0%		
TEXAS	41.0 21	2696 :216 2.1% : 80	5363 : 3 5 51						
UTAH	42.0 9	1252 54	870	85.3X	57543	98 0X 59627	85181 100.0%	1.1	
VERMONT	43.0; (5950 : 6	9 58 :	7739	8270 :	6830 :	9953 :	,	
VIRGINIA	44.0:16	0.6% : 70 5772 : 16	0 6X : 9171 :	78.6%	D1 W	87.6% : 35502 :	100.0X . 41147	÷	
WASHINGTON	45.0 30	5772 : 16 5.7% : 44 967 : 31	12	56 72	70.21	86 2%	41147 100.0%	14	
annan a rager gant	: 44	17% · 45	412 :	50. SX .	35.22	64.3%	100.01		
	46.0 : 12	1631 : 13	1328	16934	19107 79. 32	21384	24104		
WEST VIRGINIA		2.5% : 54	. 27. :	70.374 :	/T		100.01 :		
WEST VIRGINIA Wisconsin	47.0:34	721 : 34	652 :	41688 :	45866	51994	57022		
	47.0:34	0721 : 34 0.9% : 63	032 :	41688 : 73.1% : 71410	43866 80.42 72211	51994 91.2% 72761	57022 : 100.0% :		

IQUARE HILES AND X OF DIATE

TABULATION

 TABLE
 F2.21

 POPULATION BECTOR ANALYSIS - TOTAL U.S.

 DENSITY - 250 0.06 MI. 000 TOTAL U.S.

 BTATE AREAS IN SQUARE MILES AND X OF STATE

 > 1/4 POP. IN SECTOR

 > 1/3 POP. IN SECTOR

HARTH MAR

50 0

1.5

 $\gamma_{\rm s} = \gamma_{\rm th}$

Sec. Sec. 23.0.05 Sec. 2.

ender als s

2000 - 1 - 2-. 12.10 1. 1.

and the

5.1

5 s. . .

8 1. S. 1977

e 1.

POPULATION SECTOR ANALYSIS - TOTAL U. B. DENSITY - SOO 9/50. NI. +++ "GUAD" SECTOR (9.0.0 DEGREES) STATE AREAS IN BOURRE HILES AND X OF STATE

TABULATION		l	/4 POP. 1 > 1/ 	D POP. 1	IN SECTO 2 POP	R In Secto Form Den		
				An Ant	Ī		POP. CRI1	ERIA IESTRICTIONS
	1.0	: 35888	: 36265	: 42510				
ARIZONA	2.0	: 49.1X	: 69.92	: 81: 9%	: 89.62	: 94.0X	: 51907 : 100. 0X : 114343	:
ARKANGAB		: 43.1%	: 43.9%	: 51348 : 44,92	: 46 3%	: 48.0%	: 100. 0%	:
		: 40501 : 76.01	: 76.2%	: 43367 : 81:41 : 84954		86.21	: 53258 : 100. 01	•
CALIFORNIA	4.0	: 49. 3%	: 80674 : 50.3%	: 54, 2%	: 37.9%	3 67: 9 X	140364 : 100. 01	
COLORADO	5.0	64. JL	: 46. 3%	71179 48.21 811	: 73176 : 70.1%	72. 51	: 104326 : 100: 01	
CONNECTICUT	6 . 0	: 3.1%	: 6.3%	: 15.47	: 28.3%	: 100. 0%	5211 100.01	:
DELAHARE	7. 0	: 1204 : 51.9%	: 1264 • 54 47	1412	: 80. 1%	: 98.3%	2324 100.0X	
FLORIDA	9.0	20301	: 84.41 : 29191 : 49.21			46252	57357 100.0%	• · · · · · · · · · · · · · · · · · · ·
GEORGIA	9.0	38687 66.0%	: 49.21 : 38996 : 44.31 : 43435 : 52.01 : 38629	44255	48308	52737	58604 100 01	: K
10AHO	10. 0	43435 52. 01	43435	44341	45207	44030	82550 - 100. 01	e
ILLIND18	11. 0	38144 47. 9%	38629	43367	47343	55179	56539	•
INDIANA	12.0	18791	19494	24478	29722	33020	100.01 34342	
1044	13.0	48356	54.21 48549	51840	31992	94046	100 0%	• . • •
KANBAB	14. 0		: 75743	77692 94.41	VA JI 80027 97 JI	100.0X	100.01 82266	
KENTUCKY	15.0	91. 5% 25080	25273	31654			100.0X	:
LOUISIANA	16.0	42. JX 25745	24250	27413	: 0752X : 31934	: 93.9% 33734	100.0%	
MAINE	17.0	53. 5% 30224	30224	31973	- 63, 5X	70.11	34074	
HARYLAND	18.0 :	58 .7%	: 556.774';	93. AX 3317	74 51	47. OZ	100 02	
HARBACHURETTE	19.0		38.01 : 1341 :	47.7%	3513	8427	100:01	
HICHIGAN	20.0	12. 5%	: 15.51 : 35241	20.72	40.7%	100.01	: 100:01 : : 61837 :	
HINGERUTA	21.0	34. 7X	57.0% 52730	45.01	71.91	64. 31	100.01 61837 100.01 83914 100.01	
NIGRIGATPPI	82.0	61.4 2	41.41	44.62	47.12	71.01	100.01	
NIBBOURI	23.0	75. 3% 35441	79.51	44.61 39990 83.31 39010	98.37	92.01	: 100. 01	· · ·
	:	79. 62 99471-					: 100. 01 :	
	24.0	47.0%	: 67 0% :	67.51	67.9%	40.2%	: 100. OX	
	25.0	72385	72.4X	94 92 :	96.7%	: 418.OX	77721 : 100 0% :	
NEVADA	26.0:	88259 79. 61	80.2%	87041 80.5%	81.2%	: B1 7%	: 110418 : : 100. 01 :	
	27.0:	9520 38. 31	59.7%	68: 7% :	75.81	87.4%	9467 : 100.01 :	- 7
VERICE VERI	200.0:	427 : 7.01	11.1X	1361	26.41	100. OL	:100 0% :	
HEN HEXTCO	29.0:	64621 : 71.3% :	87545 71.9%	72.61	73.3%	74,11	121744 : 100 0% : 50217 :	
NEDH YORK	30.0:	19474 :	41.12	26045	31408	40287	50217 100.01	
NORTH CAROLINA	51. 0	23442 44. 6%	24407	JACKYY :	37104	42142	: 50749 :	
NURTH DAKOTA	32.0	42947 : 88.7%	62947. ::	63. 61 636.32 87.63 87.61	44076 90. 2%	64433	100.01 : 71005 : 100.01 :	
OHIO	33.0	16434 39. 31	17467 :	22090 S4.7%	29018	37507	41833 100.0X	
ONLAHONA	34.0	56192 : 80.71 :	57292 :	61046 87 71	63796 91.6%	46151	69615 : 100.01	•
OREGON	35.0	40687 :	40843 :	42532 :	45146	47579	97928 :	5. C
PENNSYLVANIA		42.0% : 18721 :	20101 ::	43.72 26103 37.72	30610	41727	100.01 - 45278 -	
RHODE TELAND	37.0	41.3%:	29		244.3			
BOUTH CAROLINA	38.0	3.4% : 18132 :	2.41 : 18277 :	7.21.	25081 :	100.01	31189 :	·
BOUTH DAKOTA			52795 :	53373 :	53799 :	54214 ::		
TENNEBBEE	40.0	48.3% : 25244 :	48.3% : 24064 :	49.3% : 31884 :	69.9% : 35879 :	70.42	100.0% : 42122 :	
TEXAS	41.0	59.91 : 229207 :	24084 61.9% 231099	75.7%	95.2%; : 250446 :	93. 8%	100.01 : 268839 :	· . ·
UTAH	:	83.JX :	84.0% : 54298 :	STY. 374 :	93. 27:	- YU. OX :	100.01	
VERHONT	43.0	45. 5% : 7421 :	66.1% : 7450 :	67. 61	68.7% 8482	70.0%	100.01 :	
VIROINIA	•	25 31 ·	78.42.	E1 27 ·	84 12 -	00 AT -	100.02 -	
MASHINGTON	45.0	32. 61	22272 54.11 25078	67.3% : 37700	76.31	84. 27	100.0%	• . •
	:	50. OX :	30.4X	34, 5X :	26. YX 1	- 64. 3 7. :	100.0X : 24106 :	
MEST VIRGINIA	:	40935	15459 : 44.11 :	75. 51	62.61	88.7% :	100.01 :	
MICCHEIN	47.0	71.81 :	72.12 .:	79.01.	84.3%.:	51974 : 91 2% :	100.01 :	
WYONING			71400					

2013062 2036400 2182154 2305121 2482288 3039963 66 37 67 01 71 81 75 67 81 77 100 03 NOTE: NUMBERS IN THE COLUMNS REPRESENT THE ANDUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE DIVEN CRITERION IS APPLIED. MERCHAR SECTOR CRITERION IS APPLIED. IT IS ASSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA MERE APPLIED TO 3 RADII (2. 8. 10, 20, 30) INDI-VIDUALLY AND THE REBULTS COMPOSITED.

TOTAL

 \subset

• , •

......

с<u>ь</u> -

·2

.

·. .

TABLE F2.23 POPULATION SECTOR AMALYSIS - TOTAL U. S. BENSITY - 750 0/50, HI. *** "QUAD" SECTOR (*0.0 DEGREES) STATE AMEAS IN BOUMAE HILES AND 1 OF STATE

御習いでもの

ころをはいてある。 という こうしき 二級語 このです しょうしん しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう たいしょう たいしょう しょうしょう

.

		1	> 1	: POP ב/ יו כ	IN SECTOR	N SPCTO	R	÷.,		
				Í	UNIF		5117 POP. CR11	ER LA	1	
		1] .			1	ND 1	ESTRICTI	ONS	
LABAMA	1. 0	: 37938	: 38320	: 43271	: 46976	: 49833	: 51907	•		
RIZONA	2.0	: 72.9%	: 73.8%	: 83:4%	: 90.5%	: 96 0%	100.0X	:	••,•	
RKANDAD	3.0	: 44.3%	: 44.6%	43 43	: 46.6X	48.02	100.07	:		
ALIFORNIA	4, 0	: 78.2%	: 78.5%	: 62-41	: 833%	: 99.2%	100.01 160364	:	- 11 L	
GLORADO	5, 0	: 52.3%	: 52.9%	: 54.0%	: 57.61	: 67.9%	100 OX 104326	 AN A.A. 	· •	
BONECTICUT	4.0	: 47.4%	: 47.6%	: 48.9%	: 70.7%	: 72.5%	100 0% 3211	: * .		
ELAHARE		· • • • • •	· 11 71	· 11 11	- AT 41	· 100 07	100.07		(
LORIDA	8.0	: 99.3% : 31112	: 40.2% : 32154	: 72,21 : 35954	: 81.3% : 39787	: 98.3% : 44252	2326 100.0% 37337 100.0%			
EDROIA	. 0	52.4%	: 54.2% : 40366	: 45278	: 40726	77.4% 52737	: 100.01 : 38604		25.1	
DANO		; 48.4%	: 48. 9%	: 77.31;	83. 91 49343	: 90.0%	100.0%	:		
LLINDIS	11.0	82.3%	: 82.31	: 53: 31	54:31	55.11	: 100.01	•. • .•	, .	
NDIANA	12.0	: 72.1%	: 72.9% : 82079	: 79.8% : 26798	86.2X	97.6%	: 100.0x			
Chia			;	1 FUC /A.		. TH: 4A	100.01 56067			
		: 89.3%	. 89.8% : 74785	: 93:51	: 94:8%	: 100: 01	: 100: 0%	: :::::::		. •
ENTUCKY	15.0	: 93.2%	: 43.31	93.72 32308	97.41	99.8%	82266 100.01 40269		· · ·	
BUISIANA	16.0	: 64.7% 2784.4	: 43.31 • 97474	: 00:21 - 30174	: 88.5% - 31.864	93.9%	100.0%			
AINE	17.0	37.01	37.1%	42.71	44.27	70.11	48154 100.0% 34074			
	19.0		: 27.31	: 94.OX	- 76.6 %	: TY:OX	100.0X		1.1.1	
ABBACHUSETTS	19.0	: 39.4%	: 40. 9%	: 30/ 3%	: 46.4%	98.72	100.01 6427 100.01		-	
ICHIGAN						100.01	100.01			
		99. 47	: 40. OZ	: 67.21	73.61	64.31	61837 100.0%			
LINESOTA	88.0	42.31	42.51	45.21 40482	40.01	71.01	100.01			
1001651771	:	: 77.30	: 77.6%	: 84./5%	: 88.:7%	92.01	47983		· .	
	83.0	81. 0%	61. 5X	83.8%	42561 87.51	43. 31	69734 100.02 148436		ť.	
CHITANA	, 24, 0	47.23	47.21	A7. AX	48:01	48:21	100. 0X			
ERASKA	25.0	93. 41	94.11	95.72	94.9%	76187 98.01	100.0%			. :
EVADA	246.0									·.
	27.0	41. BX	9744 42. 61	0743 71:51	77.41	87,42	9467		200 2010 - 1	;
	20.0	13. 92	: 15.12	22:0%	: 32.2%	100.01	: 8010 : 100.01		1.1	÷ .,
DA MEXICO	29,0	72.2%	72.21	73:01	73.42	74:11	121744 : 100.01 :			
DV YORK	• •	43. 7%	45. 42	56.2%	32463 : 45.01 :	80.21	: 90219 : 100.0% :			
ONTH CAROLINA	31.0:	52. CL :	: 52. OX .	: 49: 3% :	: 74.5% :	83.01	90749 : 100.0% :	1 g.		
DRTH DANDTA	32.0:	87.22	84.21	: 89.7L :	44134 90.3%	90.71	71005 : 100.0% :	÷.	6 ¹	
410	:	44.8%	47. 41	41.4%	: 31401 : 79:11 :	39507 94:4%	41833 100.02 47613	1 e +		
(LAHONA	34,0:	80.5% :	: 84.4% ;	: 87 :0% :	: 72:0% :	43.0 2	:100.01 :	1 N N N	1. A.	
NEO(IN	315,0:	- 62. 8% :	63. OX	64:71	: 67 .01. :	69.01	97928 : 100 01 :	N 60		
DINBYLVANILA	36.0:	22041 : 48.7% :	22320 49. 3%	27512 60. 8%	32713 72.31	41727	: 45278 : : 100: 07 :	5.		
ODE ISLAND	37.0:	4. OX :	4. 6%	251 20. 8%	43.2%	100.01	1204 : 100.0X :	10.		
DUTH CAROLINA	38.0	17628	17428	23403	26229 :	20525	: 31189 :		~	
ATDAKO HTU	39.0:	57143 -	67142		97877 -	RADIA -	· 77007 ·		Ð.	
DOCESSEE	:	27309 : 44. 8% :	27425	32494 77.61	34313 :	39526 93/81	100.01 42122 100.01	1970 - N 1980 - N		
EXAB	:	87.3%	87.71	91.2%	253177 94.2%	263349 98.02	268839 100.0%			
	42.0	- 54589 : - 66.4% :	67.253	97977 : 40.1% :	58701 : 48.9% :	39 <u>62</u> 7 70.0%	95181 : 100.01 :			
RHONT	43.0:	7026 : 76.71 :	7556 : 76.7% :	9038 : 81, 4% :	- 8492 : 84:27. :	8830 : 89.4% :	9833 : 100:01 :	× .		
IRGINIA	44.0	23121 :	23748 :	29979 :	32057 :	33302	41167 : 100.0%			
SHINGTON	45.0	34332 :	34794 :	39092 :	41446 :	44554	49314 : 100.0%			
ST VIRDINIA	44.0	15729 :	15729 :	18405 ::	20072 :	21384 ::	24104 :			
ISCONSIN	47. 0	42315	42489	45702	40640	51994	100.0% 57022 100.0%			
(OMING	48.0	71784 :	71786 :	72066 :	72394 :	72741 :	97984 : 100.0% :	1		
	:									

TOTAL

H ы . w

NOTE: MARGERS IN THE COLUMNS REPRESENT THE AMOUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE QIVENT OF LAND IS APPLIED. MMENEVER A SECTOR CRITERION IS APPLIED. IT IS ASSUMED THAT A UNIFORM DENSITY CRITERION IS ALSO IN EFFECT. CRITERIA MERE APPLIED TO 5 RADII (2, 5 10, 20, 30) INDI-VIDUALLY AND THE REBULTS COMPOSITED.

F-85

.

a. .

<u>.</u> .

TABLE F2.24 POPULATION SECTOR ANALYSIS - TOTAL U. S DENSITY - 1300 #/50 HI --- "OUAD" SECTOR (90.0 DECREES) STATE AREAS IN BOUARE HILES AND & OF BTATE > 1/4 POP. IN SECTOR

TABULATION

1.2

TABULATION	> 1/4 POP. IN SECTOR	
	> 1/2 POP. IN SECTOR	
	NO POP CRITERIA NO RESTRICTIONS	
	an 19 - Kalandar Bankalan ang 1990 - Kalandar Kalandar	
ALABAMA	1 0 : 39391 : 39391 : 43927 : 47140 : 49833 : 51907 ;	
ARIZONA	75.9% 75.9% 84.6% 90.8% 96.0% 100.0% : 2.0 51620 52139 52911 53500 54937 114343 :	
ARLANSAS	43.3% 45.6% 46.2% 46.2% 46.0% 50 0% 100 0% 3.0 42499 42499 44243 43519 46993 53258 . 79.6% 79.6% 63.1% 65.1% 66.2% 100.0%	
CALIFORNIA	4 0 68239 : 89183 : 93768 : 97851 : 108971 : 160344 :	
COLORADO	: 55 0% 55.6% : 38:5% 61:0% : 67.4% 100.0% : 5.0 : 71275 : 71864 : 73051 : 74180 : 75666 : 104326 :	
CONNECTICUT	: 68.3% 68.9% : 70,0% : 71,1% : 72,5% :100,0% 6.0 : 1255 : 1264 : 1940 : 2538 : 5211 : 5211 :	
DELAWARE	: 24 11 24 31 37 21 48 71 100 01 100 01 - 7 0 1467 1467 1708 1920 2287 2326 :	
FLORIDA	7.0: 1467: 1467: 1706", 1920: 2287: 2226: :: 63.11, 63.11, 73.41, 82.61, 98.31, 100.01; 8.0: 34479: 34508: 6683: 40250, 46232, 57357:	
GEORGIA	30.1% 50.1% 62.1% 67 8% 77 9% 100 0%	
IDAHO	9.0: 41389: 41630: 43930; 4918; 52737. 38604; 70.65; 71.05; 7647; 83:87; 90.05; 100.05; 10.0: 43946; 43946; 44718; 43555; 46030; 8350;	
ILLINDIS	: 52.6% : 52.6% : 53.5% : 94.0% : 55.1% : 100.0% :	
	: 76.0X : 76.8X : 82.9X : 87.6X : 97.6X 10000X :	
INDIANA	66.0X 66.4X 77.1X 85.9X 96.4X 100.0X	
IDHA	13.0 : 51299 : 51299 : 53085 : 54407/; 54067 : 54067/: 54067/; : 91.5% : 91.5% : 9407% : 9700% : 100.0% : 100.0% : 100.0% : 100.0% : 100.0% : 100.0% : 100.0% : 100.0% : 100.0%	
MANSAS	14.0 : 77866 : 77904 : 79198 : 80442 : 82073 : 82266 : . : 94.7% : 94.7% : 96.3% : 97.8% : 99.8% : 100.0% :	
KENTUCKY	15.0 : 27097 : 27145 : 32762 : 35734 : 37799 : 40269 : 557 a 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
LOUISIANA	16.0 : 28217 : 28217 : 30523 : 31970 : 33736 : 48154 : : 58.6% : 58.6% : 63.4% : 66.4% : 70.1% : 100.0% :	
MAINE	17.0 : 30581 : 30581 : 32057: 32935 : 33717 : 34074 : 6	
MARYLAND	19.0: 4854 : 5172 : 6514 : 8260 : 11011 : 11195 : : 43.5x : 46.4x : 58.4x : 74.0x : 98.7x : 100.0x :	
HASSACHUSETTS	19.0 : 2663 : 2702 : 3387 : 4564 : 8627 : 8627 : : 30.9% : 31.3% : 39.3% : 32.9% : 100.0% : 100.0% : 1	
HICHIGAN	20.0 : 38571 : 38687 : 42489 : 46417 : 52158 : 61837 :	
MINNESOTA	21.0 : 54214 : 54580 : 56925 : 56977 : 60988 : 65914 : 63.1% : 63.1% : 63.1% : 65.1% : 68.4% : 71.0% : 100.0% :	
H1991681PP1	22.0 : 37703 : 37703 : 40000 : 48228 : 44043 : 47083 : : 70.7% : 78.7% : 85.2% : 88.8% : 92.0% : 100.0% :	
HISBOURI	23.0 : 57987 : 58209 : 60930 : 62860 : 69417 : 69934 : : 82.91 : 83.21 : 97:11 : 99.92 : 69932 : 69932 : 69934 :	
HONTANA	24.0 : 100051 : 100051 : 100514 ¹ : 100891 ¹ : 101296.: 148456.:	
NEBRASKA	: 67.4%; 67.4%; 67.7%; 68.0%; 68.2%; 100.0%; 5. 25.0; 73909; 73909; 74748; 75386; 74197; 77721;	
NEVADA	26.0 : 89446 : 8945 : 89735 : 89986 : 90363 : 110618 :	
NEW HAMPSHIRE	: 60.9% : 80.9% : 81.1% : 81.3% : 81.7% : 100.0% : 27.0 : 6118 : 6119 : 6813 : 7382 : 8270 : 9467 :	
NEN JERSEY	: 64.6% : 64.6% : 72.0% : 78/0% : 87.4% : 100.0% :	
NEW MEXICG	: 20.0X : 21.8X : 28.2X : 47.7X : 100.0X : 100.0X : 29.0 : 88404 : 88404 : 88973 : 89427 :: 90208 : 121744 :	
NEW YORK	: 72.6% : 72.6% : 73.5% : 73.5% : 74.1% : 100.0% :	
NORTH CARDLINA	: 49.6% : 49.7% : 58.3% : 66.3% : 80.2% : 100.0% : 49.6% : 49.6% : 49.7% : 33736% : 37925 : 42142 : 30769 : 49.7% : 49.7%	
NORTH DAKOTA	: 53.7% : 53.7% : 66:5% : 74.7% : 63.0% : 100:0% : 32.0 : 43458 : 43436 : 63815 : 64144 : 44433 : 71005 :	
OHID	: 89.4% . 89.4% : 89.9% : 90.3% : 90.7% :100.0% : 33.0 : 22641 : 23150 : 27676 : 12385 : 19507 : 41833 :	
OKLAHONA	: 34.61 : 35.37 : 66 21 : 77.41 : 94.41 : 100 01 : 34.01 : 39878 : 39878 : 62445 : 64269 : 66181 : 67615 : .	
OREGON	86.0% : 86.0% : 89.7% : 92.3% : 93:0% : 100.0% :	
PENNSYLVANIA	: 64.1X : 64.1X : 65.3X : 67.1X : 69.0X : 100.0X : .	
RHODE IBLAND	: 51.8X : 52.5X : 63.9X : 74.3X : 92.2X : 100.0X :	
	: 22.4% : 22.4% : 34.4% : 50.4% : 100.0% : 100.0% :	
SOUTH CAROLINA	38.0 : 20139 : 20139 : 24134, 24304 : 28923 : 31189 : : 64.6% : 64.6% : 77.4% : 84.3% : 91.5% : 100.0% : 39.0 : 53297 : 53297 : 53538 : 53847 : 54214 : 77007 :	
SOUTH DAKOTA	: 69.2X : 69.2X : 69.5X : 69.9X : 70.4X : 100.0X :	
TENNESSEE	40.0 28342 28342 33100 36429 39526 42122 : : 67.3% : 67.3% : 78.6% : 86.5% : 93.8% :100.0% :	
TEXAS	41 0 : 241327 . 242302 : 249182 : 254664 : 263349 . 268839 : 89 8% : 90 1% . 92 7% : 94 7% . 98 0% .100 0% :	
UTAH	42.0 : 57823 : 57823 : 58247 : 58826 : 57627 : 85181 : : 67.9% : 67.9% : 68.4% : 69.1% : 70.0% :100.0% :	
VERMONT .	43.0 : 7585 . 7585 : 8058 : 8492 : 8830 : 9653 : : 77.0x : 77.0x : 81.6x : 86.2x : 89.6x : 100.0x :	
VIRGINIA	44.0: 25090: 25146: 29761: 32366: 35502: 41167: : 60 9x: 61.1x: 72.3x: 78.6x: 86.2x: 100.0x:	
MASHINGTON	45 0 38108 38388 39980 41862 44554 69316	
WEST VIRGINIA	55.0X: 55.4X: 57.7X. 60.4X. 64.3X: 100.0X: 46 0 16038 16038 18663: 20082: 21394 24106	
WISCONSIN	66.5% 66.5% 77.4% (83.3% 88.7% 100.0%) 47 0 (43319 4352) (4619 (47166 51974 37022)	
WYOMING	: 76.0% : 76.3% 81.6% . 86.3% : 91.2% :100.0% : 48.0 71912 : 71912 : 72105 : 72394 . 72761 : 97986 :	
	73 42 73 42 73 62 73 92 74 32 100 02 :	

TOTAL

2141103 2: 700: 205529 2350363 2482287 3039963 70 4 77 31 81 71 100 02 NOTE NUMBERS IN THE COLUMNS REPRESENT THE AMOUNT OF LAND THAT IS CONSIDERED TO BE AVAILABLE IF THE GIVEN CRITERION IS APPLIED WENEVER A SECTOR CRITERION IS APPLED. IT IS ASSUMED THAT A UNIFORM DEMSITY CRITERION IS ALSO IN EFFECT. CRITERIA HERE APPLIED TO SHOLI (2. 5. 10, 20, 20) INDI-VIDUALLY AND THE RESULTS COMPOSITED.

382005 400812 531013 373547 413399 131 132 171 121 121 141

POPULATION CASE 1 COMPOSITE

RADIUS 0 - 2 MILES/DENSITY 100 PERSONS PER SQUARE MILE - 30 MILES/DENSITY 200 PERSONS PER SQUARE MIL

381 999 1 33

ATION CASE 1 IS 141 IN THE AMOUNT OF LAND 1T CONSTRAINS

0. DZ		0 03	0
0	07	0	1689
01 2220	2625	07. 6870 :	32
2220 42 10451 132	2625 42 7356 42 1457 32 434 13 9023 162 26354 322 8376 212 0 0 0	122 11361 142	222
10451	7356	11561	9920
2799	\$457	142 3792 - 72 1216 32 4603	122
0	434	1216	6321
02	11	31	171 25756 461 13375 161 5597
07	162	803. 8% 15208	. 40%.
15546	26354	15208	10375
3377	8376	9416	3397
6X 0	212	15208 18% 9418 23% 347 1% 4574 13%	3397 142 6475 131 14784 43% 39
02	OX	12	132
1197	242	4574	14784
02	212	627	39
203	647	67	02 347.
22	8309 242 212 27 647 72 0	0X 0	432 39 02 347 41 1380 192 23650 307 18036 382 10171 152 23276 167 13365 172 4719 42.
. ox .	01	07 1390 27	11580
	232	1390	25650
. v.	2355	4294	18036
TO .	52	97	362
16%	18%	192	192
13288	27107	29683	23276
14157	12236	16019	13365
187	19844	212	172
341	172	252	42.
1322	3474	656	58
07 0 07 07 11406 167 12288 97 18157 187 37365 343 343 1322 1437 1322 1437 0 0 743 343 343 1322 147 0 0 7 46831	0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	UX 1390 874 972 13539 192 29683 203 192 203 203 203 203 203 203 203 203 203 20	Ö
46831	17939	01 18258 157	01 4449
	151	15%	
2454	101	7184	5443 112
	17939 151 4989 102 485 13 12207	1911 47	6630
31 6241 121	12207 172 3735 92 11329 162 19869	17476	14147
122	12207 17X 3735 9X 11329 16X 19869 20X 9196 20X 0 0	251 1737 41 17570 28%	201
37 .	92	41	81
7423	11329	19570	12709
251 01	19869	28% 12256 13% : 7035	24926
231 02 1226 32	207 9196	132 :	-1554
1226 32	202	167 :	3%
A7 -	. 01	. or	67
1090	5365	11348	965
1090 37 11686	5365 172 7334 102 7563	11348 341 11368 151	6630 132 14147 3204 82 12709 182 24926 252 1554 332 488 67 37 11947 163
15%		15%	167
101	237	191	5366 131 83916 311 10084
202	41331	26730	83916
16521	12941	12420	10084
107 53065 207 16521 197 3821 3821 3821 397 3532 97 552 97 5182 77	2338 151	191 26730 101 12420 151 107 1776 41 10403 151 4429 18%	10094 122 68 13 4592 232 8926
39%	262	102	11
72	5%	42	232
5182	7488	10403	8926 132
3503	8145	4429	40
152	104 9563 237, 41331 151 152 2339 262 2339 262 1957 5% 7488 113 8145 34% 34% 34% 13520 14%	18%	4592 232 8926 132 48 02 20071 352 13469
116 07 17611	62	5674 101 20564 211	352
17611	13520	21%	13464

48 01 2113 22 4680 40520 25% 29876 29876 292 29876 0 0 0 0	5250 10% 3831 3% 6958 13% 16772 16772 13616	12%	30%	8954 172 1727	107c2 21. 424e	163 C: 192:
01 2113 2% 4680 9% 40320 25% 29876 29876 29876 00	10% 3831 3% 6958 13% 16772 10% 13616	172 19517 142 - 6021 122	30% 27802	8954 17% 1727	107c2 21: 424e	1921
01 2113 2% 4680 9% 40320 25% 29876 29876 29876 00	10% 3831 3% 6958 13% 16772 10% 13616	172 19517 142 - 6021 122	30% 27802	17% 172	107e2 21: 424e	1921
2% 468: 9% 40320 23% 29876 29876 0 0%	3% 6958 13% 16772 10% 13616	14% 6321 12%	27802	1727	424e	192: 1
4680 9% 40520 25% 29876 292 0 0%	6958 13% 16772 10% 13616	6321 12%				2 2 50
40520 25% 29876 291 0 0X	16772 10% 13616	122	e 975	22 14195 272	565	100
29876 292 0 01	13616	9052-	17% 10396 7%	4844		3271
291 0 01		9052 6% 10654	12487	37.	· · · · · · · · · · · · · · · · · · ·	327:
ox	13%	197.	121	a 1	5264	1.
0	100	29 12	25 1X	0 Cz	5047	0.
02	0	0 07		1216	1071	0.
0 :	. 0	0	1689	29008	15556 26% 12391	2065
2220	2625	6890	3% 12873	497	12391	3%
42 10451	2625 42 7336	122	222	27%	215	11
137. *	• 4 X	11361	122	4150	2393	07.
2799	1457	3792 -	11031	19618	15681	97 3 0100
0.		1216	6321	12506	14543	48
10		4603.	25756	10094	40%	02 0
. 02 -	162	82	462.	18%	< 12% ·	0
19%	321	182	167	- 72	72	0%
3377 6X	8376	9416	3397	917	257	. 521
0	0	347	6475	20226	6687.	3609
1197 .	8309.	4374	14784	3905	3252	- 72 D
41:	24%	132	: 43%	31	10%	01.
02	27	67	ÖZ	312	60%	01
203	647 , 72.	0 01	347.	07. 07.	7430	0.
0	0	Ő	11580	22533	18046	251
01	232	1360	25650	367	7537	704
01	27115	8% ·	307.	301	77.	17
OX	92	97	362	267	132	02
11406	12400	13539	10171	9235	8666	68 07
13288	27107	29683	23276	6311	1631	241
14137 :	12236	16019	13365	17196	3213	10
187	10044	212	172	222	4%	0%
341	172	252	42	OZ .	12	D2
1322	3474	676 71	58.	. oz .	- 2760. - 291	່ວນ
0:	48	. <u>o</u>	0.	627	7315	07
46831	17939	18258	4449	855	2909	1052
3674 :	4987	· 7184 ·	5443	753	19261	415
81 ·	102	242	112	11	38%	17
52	13	41	131	281	222	31
121	12207	251	201	11194	1168	0X
1119	3735	1737	3204	7778	21934	408 :
7423	11329	17570	12707	7016	7604	290
251	14869		187	101	117	232
02	207		252	42	67	01
31.			1554	376 · 12	471	174 07
			60		1139	0
1090	5365	11348		484	8772	212
37 : 11686		11368	-	37	787	12
152	102	152	167	147	er 4	02
101	237.	7865	- 7568 132	152	12130	357
33065	41331	26730	83916	29442	20863	347
		12420	10094	4815		917
192	151	151	122	61 0	31 -	125
39%	202	107.	11	01	142	12
72	5%	42	232	187	272	2%
5182	7488	10403		809E 24	122	357
3503	8145	4429	48	69	5192	40
132	34% 3628	5674	20091	07 12246	10239	0% 241
07.	62 13520	101	352	217	18%	.134
192	14%	21%	16%	51	12	02
	52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 33 0 434 00 702 10 9023 110 9023 110 9023 1177 82534 1377 8376 1197 8376 1197 8376 1197 8309 1197 8309 1117 8309 1127 222 02 222 03 07 04 223 05 07 05 223 06 0 07 02 08 212 07 01 1128 187 1128 187 1127 1223 113 1973 1141 177 1322 3471 132 177 132 347 132 172 132 174 132<	0x 1x 3x 0x 10x 9023 4402 10x 162 9203 1920 1374 2234 1920 1377 2376 9418 1377 2376 9418 1377 2376 9418 1377 2376 9418 1147 6300 4574 0 0 347 61 203 647 61 203 647 61 203 647 61 203 647 62 0 232 1370 0 232 4274 0 232 4274 0 231 197 11406 12401 1357 11422 2107 272 11228 2107 272 1122 347 132 1142 127 132 1122 347 141 <	0 13 33 171 10 9023 4603 25756 037 6124 13268 12375 197 237 198 163 3377 6234 13268 12375 197 237 198 163 3377 637.6 416 5967 0 0 347 647.6 0 0 347 432 0 222 137 432 0 224 137 432 0 224 137 432 0 224 137 432 0 223 427 047 203 447 0 347 0 232 1370 2355 0 232 1370 2365 0 232 1370 3276 1145 138 1632 1632 12200 1239 1071	0x 1x 3x 17x 24x 10 9023 403 275.6 10034 0x 161 8x 465. 1087. 1374. 2324 1508 1237.5 57-6. 1377. 237.6 441.6 5x97 97 1377. 237.6 441.6 5x97 97 0 0 347.6 441.7 21.2 22.3 1147 630-9 457.7 202.6 27.7 23.7 33.3 33.3 0 212.6 627.97 347.7 343.5 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.5 <td>92 33 71 211 333 280 0 434 1216 6321 12506 16343 01 4023 4503 25756 10074 6581 01 9023 46050 13075 5674 5915 197 6274 18206 13075 5674 5915 197 6274 18206 13077 9717 10113 63 213 223 143 22 223 107 6309 4374 1478 1602 2253 0 0 212 627 39 3433 6687 023 247 07 12 7430 233 1004 203 457 041 198 2253 1264 1203 0 220 1970 2353 1264 121 121 121 121 0 221 1970 221 107 7430 <td< td=""></td<></td>	92 33 71 211 333 280 0 434 1216 6321 12506 16343 01 4023 4503 25756 10074 6581 01 9023 46050 13075 5674 5915 197 6274 18206 13075 5674 5915 197 6274 18206 13077 9717 10113 63 213 223 143 22 223 107 6309 4374 1478 1602 2253 0 0 212 627 39 3433 6687 023 247 07 12 7430 233 1004 203 457 041 198 2253 1264 1203 0 220 1970 2353 1264 121 121 121 121 0 221 1970 221 107 7430 <td< td=""></td<>

TABULATION

APL TONA

CA TEORNIA

COLORADO

FLORIDA

CEORCIA

ILL INDIS

RENTUCKY

LOUISIAN

HICHIGAN

MINNEGOTA

H155047

OHIO OKLAHONA

ORECON

PENNSYLVANIA

RHODE ISLAND

SOUTH DAKOTA

TENNESSEE

TETAS

UTAH

VERMONT

VIRCINIA MASHINGTON

WEST VIRGINIA

HISCONSIN

WYOHIND

TOTAL

SOUTH CARDLINA

WISSISSIPPI

1.1

MASSACHUBETTS

MA INF

I DAHO

CONNECTION

TABLE F3.1 ULATION CASE I AND IROMMENTAL SUITABLITY LEVELS *** TE AREAS IN SQUAPE MILES AND & DF STATE

SUITABLUTY MEDIUM-HIG

£

DENST

P : 9

1+ +

1.6.3

RESTRICTIONS DEN: 5 LAND RESTRICT | RESTRICTEL LANCE

5140

11434; 50255

160364

104325

57356

58605

83550

56539

36342

56067 .82245

402eE

48151

34975 11155

8627

61830 . 85915

47983 49934

> 49616 97929

45278

1207

31187

77007 42122

268837

85181

9852

41168

69315 2410c

5762:

97960

5211 2320

1911 4: 5*504 50% 61**

12% 48221 30% 27782 27%

11040

3269

37307

1264

1274

02

5143

23024 534650 1% 18%

42 0% 193

TABLE F3.2

SUITAE: MEDIUM

POPULATION CARE 2 and ENVIRONMENTAL BUITABILITY LEVELS and STATE AREAS IN BRUNNE RILES AND 2 OF

TABULATION

SUITABILITY

MED

CONSTRAINS

WLATION CASE 2 COMPOSITE

TOTAL

402791 132

F-88

441227 190657

7374 01.

550352 181.

439406 993990 141 201

POPULATION CASE 3 AND ENVIRONMENTAL SUITABILITY LEVELS *** BTATE APLAS IN BOUAPE MILES AND 2 DE STATE LOW SUITABILITY

TAPULATION	LOW	SUITAFIL							
	· 1	MED:	0=-L0- 1201	UM 5.13A	EI.:				
	į	i	I		····	5.174E			
	Í	1		· ·	1	EE ***	:"• PEC"	• : c • i c •	FE:::*
			1		·		1	CET.	PICTEL LANCE
	1	5. 4	1	•	•••	1	•	•	
ALABAMA	56	639A	1073:	10577	108°e	2943	24	2011	51427
مدرج ا مم	01. 2171	12% 4082	21%	361.	215.		420	4". 5978:	114347
	5047	41.	14% 7538	ãe L	. 2%	- 1727 21. 1612	C. 4E	521.	*12**
	9%	145.	14%	ترهة	20:	25.	C'.	121.	
CALIFORNIA	463011	12%	10055.		7044	13473	1:07 11	5029r 211	16.55-6
CD. OPADD	.01295 30%	13992	11213	13192. 131	3465	1966	C*.	20535	104321
COMECTICUT	31-	1023	454 9%	33E 6%		3040		с с.	57 12
DELAHARE	C 01	C 01	0 C1	c	1911- 82%	. 37e	с о:.	2	2225
FLORIDA	G	G	C	1930	37423	6900	52.	12555	50356
CEORGIA	0% 2615	3484	0% 9467	15536	17660	12"	1-104	21% 5703	56×01
104-10	42		16%	10306	30%		01. 4 E -	10% 37471	8254=
ILLINDIS	13%		14% 4374	1251	4374 51 24675	743	01.	451	3632=
INDIANA	67	4% 511	82.	24%	447	121	02		36342
	02	` 1X	52'	5 232 ·	53L. 11677			41.	
- 10ma	10 01	172	92	502	· 212	42	01.	0 01.	3606F
NANSAS	15770	27300	15787	14404 18%	6784 82		0.	193 0%	6et
KENTUCKY	4381	10326	11561	··· 7874·	1496	2162	68 0%	2403	40271
LOUISIANA	01	0	376	4890 14 k	24376		955	13462	40153
MAINE	1235	B444*	11 4003	16511	1747	· • • • •	·e	357	34074
HARYLAND	- 42	25% 318	142		1 8492	31. 367*	- C1. - O	112	1115e
MASSACHURETTS	012 012		87. 376	67 1110		332 4757	٥ <u>٠</u> .	12	8627
NICHIGAN	102	182	42	132	02 29867	55%			6183"
	ox	0 2	07.	252	487	112	01	161	
PINNESOTA	0 02	251 0X 2586	1737		331	3692 26	02	24820 29%	83914
MISEIESIPP1	. oz	2586 5% 13799	4786	20140	14832 31%	1678 41 3011		3902 B%	47993
M1850UR1	12294	13799	14957	11204	10152	3011	0	4516	64433
MONTANA	13471	2733B		23440	6552	502	30	47121	148455
NEBRASKA	92	182	202 16550	14089	41 18152	02 917	. 0.	1534	77722
NEVADA	182 37789	16% 19846	212 27618	182	23%	· 12	10	21 20246 18%	110618
NEW HAPPSHIRE	342 1457	4217	251	5% 540	OX	53) 02 1033	01	18% 1197	7467
NEN JERSEY	: 152	452	112	6% 87	2046	112	02	132	8010
	02	51	. 12	32.	26%	672	01	0%	121744
•	47227 392	15%	18760	42	02	12	02	2 6%	
NEW YORK	3291 7%	4697	10509	202	1334	0231		9853	50219
NORTH CAROLINA	. 2963 : 67.	1293 31	· 3696. 71	11377 272	: 18046- 36%	92	212	· 8405	5076°
NORTH DAKOTA	8328		17534	14321	11512	386 11	0	6572 91	71005
OHID	1448	4806	2885	7739	14157 241	8473	212	2113 51	41833
ORLAHOMA	0135	11860	22031	14301	7604	4440	48		69616
OREGON	122	21027	322 13500	212	5423		19	30330	97925
PENNSYLVANIA	01 2374.	212	10876	366	1322	22 4496	01	312	43270
RHODE ISLAND	52	30X	24X 261	91	31	21% ·	0%	- B1	125~
	02 1973	02	22%	27%	0 X	51% 2451	0%		
SOUTH CAROLINA	. 5%	234	14003 472			82	01.	ø.	
BOUTH DAKOTA	11821	7450	11503 15%	12063	142	454 1%	0:.	22745	7700è
TENNESSEE	5915	13336 32%	43 44	7286	290 11	3300 B%	4B 01,	2540 67	42:22
TEXAS	54069. 20%	43116	28053	· 93103 35%	34084	10924	· 3* 01.	5452	268843
UTAH	18046	13192	12526	10113	4625	926	232	25322 301.	87:51
VERMONT	417Ė	2056	1343	67	··. 0	367	46	975	9851
VIASINIA	4362	2566	2355	12217		3680	193	5472	41105
MASHINGTON	112		6% 11725	9399	25% 4439	3406	C1. 46	13% 24714	69311
WEST VIRCINIA	11%		172	142	6% 183	5%	01	365.	2412:
	162	42%	242	12	15064	61. 334°	01. j 77	115	57022
HISCONSIN	116 Oʻz	3802	112	23276	26%	6.	C*.	91.	•
WYOHING	17737	13625	20719	13375	4661	434 0%	2°	25196	e705:
TOTAL		418199			432510			55210:	
		142	152	201	15%	91	ot.	16.	

*** POPULATION CASE 2 COMPOSITE

RADIUS 0 - 2 WILES/DENSITY 250 PERSONS PER SQUARE WILE RADIUS 2 - 30 HILES/DENSITY 750 PERSONS PER SQUARE HILE POPULATION CABE 1 16 344 IN THE ANDUNT OF LAND IT CONSTRAINS

· _ _ _

.

5.

F-90

RADIUS 0 - 2 MILES/DENSITY 500 PERSONS PER SQUARE MILE RADIUS 2 - 30 MILES/DENSITY 750 PERSONS PER BOUARE MILE Pulation case 1 18 4th in the andumt of land it comstrains

 POPULATION	CASE	4	COMPOSITE	

TAGULATION		SUITARI	-	STATE					
	Ī		IUM-LOW	lum sett	AFTI 17Y				
			1		10m-HIG-	- SUITAE:			
						DEN:	274 455	::-:	E FECTAL:
				1			1	PES	TELTEL LANDE
	·	•	•	•	•	•	•	•	
AL 48444	58 0%	6514 13%		19175 372			10	2063	
ARIZONA	2210	4092	13980	29481	1805	13.0	116	59240 521	314344
ARKANSAS	5105	7546	7604	10065	15739	936	10	6.44	53256
CALIFORNIA	10% 47285	142 19686		192 12506	7363	11831	1062	12) 50431	100364
COLORADO	29% 31498	122	11252	87 13236	4024	7%	1% 58	31% 20603	10432*
CONNECTICUT	30%	132	11%	132	4%	2509	o. °	277	5210
DELANARE	8%	252	10%	· 674 0		48%	0% C	C \ 39	
FLOR IDA	. 01	. 01	01 0	2046	- 86% 39025		425	12680	
GEDRGIA	02	01 3667	0% 9930	3X 15990		· 92.	1X 97	215 5771	
10AHD	5% 10779	6% 7797	17%	27%		4% 444	6% 10	107	
ILLINDIS	13%	2200		122	· 6%		02	45%	
INDIANA	67.	· 41 521	8% 1930	25% 9283		9%	01		•
IDHA		7 9457	52	26%	562	81	OZ OZ	42	
KANSAS	0X 15807	171 27493	15874	51X 14716	:- 21%	- 22	02	02	
	172	232	19%	18%	81	12	01	193 0%	
RENTUCKY	4555	10490 267	291	0145 201	1544	32	29 0%	2441	
LOUISIANA	0 01	: 01	376 12-	7025		ີ່ກ	743 21	13674 283	
MAINE	1245	8453 25%	4941	. 16879 301	1756	· 444. 1X	01	357	34074
MARYLAND	0	338	1004	743	5761	3165	000	145	11150
MASSACHUSETTS	917 113	1640	540 62	1438	0	4092	0	0	8627
HICHIGAN	0	0	0	13951	91237	4970 B2	0	4674 16%	41837
MINNESOTA	0	261		. 28516	28477		· 39	24887	85915
MI551851PP1	0	2615	4873	20429	: 15073	1052	0	. 2941	47993
MISSOUR I	01 12516	13983	10%		10335	5153	01	6% 4516	69933
MONTANA	181 13529	20% 27348	30069	16% 23469	. 15% . 6581	544	02	47160	148455
NEBRASKA	- 14214	181 12284	201	16X 14137-	4X 318316	0X 608	. 01	. 322	77720
NEVADA	181	18846	212	18X 5105	24%	11	02	22	110618
NEW HANDSHIRE	342	17% 4371	251	5X : 714.	- 01	637	OX O	18%	9400
NEW JERBEY	167.0	46X	112	8X.	: 01	72 4883	01	131	8009
NEW MEXICO	01 47324	62 18296	21	21 4777	291	612	01 48	01 :	121744
	: 391	15%	191	: 41	, OX	12	0X	26%	50218
NEW YORK	3416	6967 141		11001	1689 . 37	121	01	20%	
NORTH CAROLINA	3078	: 1449 : 3%	4092		18586	2654	87 0%	6540 17%	90769
NORTH DANOTA	: 121	12301	. 17544	14321 201	: 11541 : 16%		07		71006
OHID	1467.	: 5008	3117	: 9347 : 201	15015	. 6352 : 167	106		41832
OKLAHOMA	. 8145 : 121	11976	22330	212	7720	1486	. 19 01	3445 5%	69613
DREGON	299	21085	13780	25322	5674	1419	. 01 01		97928
PENNSYLVANIA	2548	14904	11850	4536	1515	4774	19	· 3532	43278
RHODE ISLAND	: 0	· •	290	: 405	: 0	511	. õ	0	1206
SOUTH CARDLINA	1650	7344	: 15170	1486	1, 1293	: 1983			: 31189
SOUTH BAKOTA	51 11870	241 7488	: 11532	: 12072	· 11001	: 251	0	. 22793	77007
TENNESSEE	15% 6137	10% 13896	. 9354	: 7691-	357	1891	19	2377	42122
TEXAS	15%	33% 43367	. 28274	. 94445	34856	. 6203	01 29		: 268840
UTAH	18200	16%	112	39% 10113	13% : 4835	37 714	174	2% 25379	85180
VERMONT	21%	15%	15%	122	58 0	12 212	07 10	301 1013	9853
VIRGINIA	43% 4487	301 2697	14%	12	02 10625	2692	01 68	10% 5597	4116-
WASHINGTON	112	· 7%	6% 11870	312 9534	263	71	01 29	14% 24733	67316
	112	10219	17%	142	-355 72 203	41	0x	361	24101
WEST VINGINIA	172	42%	6012 25%	. 17	12	3%	0%. 58	112 4970	57022
WISCONSIN	116	3831	6323 117	23758 42%	15392	2374	C'L	9%.	
WYDH1N0	17775	13655 14X	20738 21%	15623	4690 5%	280	02 19	25206 26%	•?985
TOTAL	410763		450935	414884	465237	114556		554246	
	142	142	352	201	15%	42	02	182	
		OSITE							

POPULATION CASE 4 ANY ENVIRONMENTAL SJITABILITY LEVELE 444 STATE AREAS IN SQUARE MILET AND X OF STATE

TABLE F3.4

ŧ,

POPULATION CASE 5 and ENVIRONMENTAL BUITABLITY LEVELS +++ STATE AREAC IN SOUGHE HILES AND 2 OF STATE

POPULATION CASE 5 COMPOSITE

RADIUS 0 - 2 MILES/DENSITY 300 PERSONS PER SOUARE MILE RADIUS 2 - 30 MILES/DENSITY 1800 PERSONS PER SOUARE MIL ATTEN CARE I IS DON IN THE APELANT OF LAND IT CO.

745 LATION		SUITABI	L11V	STATE					
	1	98ED (IUN-LON	10= SUIT					
			1	MED	lum∹n1Gn NIGi	- 5-11421			
			1		-		DE.		RE114111
			· 1				i	4E 3	TRICTED LANDS
al abana	56 0%	6352 13%	213	372	22%	143E 2%	ç. ,	41	
AD I ZONA	2210	4092	15940	24030 24%		1004	69 01	99306	334747
ARNANSAS	5124	7566	7062	300é: 192		-14	C*.	6244	50275
CALIFORNIA	49572	19850		15852	7652	Beas	969	50713	160363
COLORADO	31756	14050	11420	13278	4072	1061	40	28e12	104322
CONNECTICUT	473	1504	647	801 152	ç	1754	07		5213
DELAMARE	0	07	. 0	07	2065	10%	c	39	2324
FLORIDA	O Oz	0 OX	Ö	2055	40192	4005	01	12989	5935*
GEORG1A	2644	36%	10200	16222	18046	7%	01 42	5819	58e11
ID++O	10798	7807	17).	281 10374	4661	357	10	37510) Ø3551
ILL INDIS	132	71 2268	4815	172	26383	4034	10	1351	5-532
INDIANA	\$X 0	350		25% 438 9	20683	71	ол. О	1322	36342
10mA	01	21 9457	51	20573	12034	917	0%. C		
KANSAS	13907	171 27628	15664	14871	7054	830	02		
RENTUCKY	4355	341 10499	192	187.	47 1660	426°	01 29	2441	
LOUISIANA	111	242 0	291	211	41 25322		01	\$ %	<i>n</i> '
MAINE	1245	01 8453	494)	152	532	2%	12		34074
HARYLAND	41	25%	152	501 1351			01	11	
MASSACHUBETTE	02	: 31	- -	12%	· 56%	17%	01	12	•
	111	201		2104 241	02	2750	0	· 02	
MICHIGAN	01	02	01	16453	52%	3500	07.	162	
MINNESOTA	. 0 01	261 01	. 1824 EX:	331		1448 : 21 -	19 03	24907 2 271	
W1651851PP1	10 01	: 2425 : 31	4912	20506	15208	. 782 . 21.	0 02		
MISSOUR I	12374	14110 202	19237	11551	10364	1573	0	4516	64433
MENTANA	17358	27367	30069	23478	4371	832	0	47160	148435
MEBRASKA	14214	12284	16627 21%	14214	18345	902	01	1534	77720
NEVADA	37896	. 19946 17X	27638	8201	311	200	10	. 20246	. 110618
NEW HAPPHIRE	1476 147) 4371 461	1001	839	· 01.	482	Ö	1197	9466
NEH JERSEY	: 07	390	396	. 357	3361	51 3059	01	. 0	8010
NEW MEXICO	47353	71	57 18733	4796	330	- 30% - 402	0% 24	01 31 307	121744
NEW YORK	392	192- 7199-	162	11560	0X	. 0% : 4804	10	261 4420	90219
NORTH CAROLINA	3078	142 : 1467	4207	15243	: 41 10000	101 1 78 8	01 #8	201 8360	30769
NORTH DANGTA	: 4X 8339	12381	17953	251	371	4%	07. 0	6572.	71005
ONID	192	171 9010	251	: 201 : 9325	14%	01	01. 104	2220	41834
DILANDIA	. 41 8145	: 12% 11976	81 22494	14639	: 381 7740	112	02	52. 2445	49613
DREGON	122	172 21085	. 321. : 13886	211	111	21	07	30347	47928
PENNEYLVANIA	0X 2613	221	141	261	61	11 4912 -	or	311	
RHODE IBLAND	AX O	331.	281. 376		41	111	OL		1204
BOUTH CAROLINA	: 07. 1467	07		392	: 02	301	01		
BOUTH DAKOTA	11878	. 341	. 49%	: 5%	41	47	ñ	92	77003
	181	102	15%	: 142	: 14%	183	ox	301	
TENNESSEL	151	332	9440 237	7770 10%	12	- 42	10 07	4 7	
TEIAS	201	162	11%	36%		21	02	22	268839
UTAN	223	13201	1 5%	10113 12X	\$X	321 11 -	01	30%	85180
VERMONT	4227	301	14%	· 1%	: 0 . 01.	164 :	10	1013 101	4853
VIRGINIA	4487	2702 71	2441 41	12906	275	1998 51	48 07	3010 142	41167
MASH1NDTON	8309 12%		12005	7544	6603	1872	0	361	64317
MEST VINDINIA	4072	10248	4175	145	203	321	C 02	2721	24100
MISCONEIN	114	. 3831		24000	13749	1746	20	4990 92	57622
MADH INC	. 17785	13684	20748	19633	4709	203	19	25206	47987
TOTAL	818401	142		147		6 3339	100	333775	
TOTAL	142	147	455642	211		32	01	335//5 1 8 1	

F-91

SHEARTS

TABULATION	AVA	LABLE LA	AND A				·		
			POP	ASE C	CASE 3				
			i	!		CASE 4 P(1	PCASE T		
	i					1	51-	€* 5.174 *E3	ALLETTER LANCE
· ·	i	1	1	1	1.	i	ł		
AL ABAMA	6 984	1695	193	421	125	421	5 374*3	2075	1190E
ARIZONA	171.	31	07,	15.	OZ D	1	ະ "ສະ	4:	
ARKANSAS	2% 14:95	22 1216	0%	272	يع 125	C: 32	46.	. 921	
	271 4844	22	01	C2 318	240	::	. 5 9'.	125	• .
CALIFORNIA	32	1718	482	01. 01.	01.	73:	ີ 635		
COLORADO	3763	143 143	24 07	0:	. et.	61	. ee:	271	
CONNECTICUT	0 Oz	. 0ì	0 (3	0. 02	0 0	. C1		c. 0	
DELAHARE	1216 522	647 291	48 23	. 4%	27	103	. 01	22	
FLORIDA	24008	7556	859 11	1602 32		, 39 26 77	: 2103 41		
GEORCIA	19739	1679	243	270	116	376	34315		
IDANG	4150	367.	50 01	68 02	19	110	41254	37519	83555
ILLINDIS	19618	4140 72	917 27	811	897		25515	1361	36340
INDIANA	12506	983e 16%	975 3X	955 31.	608	1871	12240	1322	36341
IDMA	10094	1396	193	241 01	116 .		43350		36066
RANSAS	3674 72	936	174	174	97.	299	·. 74720	192	62247
KENTUCKY	917 -	425	154	01.: 45	116	316	. 35821	2470	
LOUISIANA	20226	12 5576	413	0% ¢18	320 320	. 955	7459	14417	48153
MAINE	821 3602	125	12 2	- 29:	0.	27	31961	301.	34074
MARYLAND	91 3435	01 1476.	02 540	01 304		1100	3464	145	11154
MASSACHUSETTS	311	- 132 0	51	31.	. AL. O	102		21 0	8627
TICHIDAN	223333	6369	91. 946	1370	- 01. 945	2847	1002	07. 9679	¢1837
MINNEGOTA	361 26190	102	21 347	21.	27	57.		16%	85913
MISSISSIPPI	301	21 1351	232	07. 241	01. 135	13	367	2041	47893
	267	31	01	12.	01	- , 12	· 391	. B1 6316	47923
MIBSOUR I	132	830 11	87 0%	180 01			78.	. 67	
PONTANA	6011 41	502 502	39 01	.0x 54	10 01	98 01	. 64%		148457
NEBRASKA	: 17196 : 221	668 12	87 QX:	164. QX	24 01	106 02	// 74 2/	22	77720
MEVADA	463 01	24	0. 872	14	0 07	02		20255	110617
NEW HNYPSHIRE	0 97	0 02	0	000	01	02	8270	1147	446 7
NEW JERSEY	627 : 97	1052	367	270	1245	1082	2367	·0 02	8010
NEW MEXICO	822 ···	07 07	10	0	17	0	87870 741	31536 26%	121744
NEW YORK.	753	476	106	154	87	1216	37297	4430	90219
NORTH CAROLINA	14378	3464 71	203	940 ·	222	531 13	85803	8627	30768
MORTH BANDTA	11194	280	01 39	12	48	145	52699	6572	7100e
CHID	14% 7778	01 9481	01. 1177	01 837	485	8364		2324	41832
	171 7016	132	27. 29	27. 114	2% 48	62 114	98267	3464	69616
ORECON	4101	3% · 775	02 347	251	261	753	40871	51 30349	97928
PENNEYLVANIA	41 374	1X 704	241	0X - 193 :	07 145	17. 454	471 37613	317	45277
ANDRE THLAND	11	20.	12.	07. 0	01		871		1206
BOUTH CAROLINA	02.	01 870	61 .	0X 39	0	07. 29		2663	31188
BOUTH DANOTA	31	11.	02	01 77	01 24	01 48	• 87%		
TEMESBEE	141	01 154	02	07. 60	02	0% 77	361	301.	42122
	07.	02	01 . 946	01 772 -	OX	0% 2413		- 67	
TEXAS	112	3696	OZ	07	OX .	12	84 %	21.	
UTAH	4815 42	30. 02		10 07.	ox	n	54793 642	· 29553	65181
VERHONT	0 01	02	0	02	01	01	90%	1023	9853
-JRCINIA	7595	2345	297 :	320	444	1349	2303:	3663 141	41165
MASHINDTON	3908	2086 7 X	145	116 01 ¹	46 07	309 01	39642 571	24762 36%	69 3 16
WEST VIRGINIA	68 02	11+ 02	0	3 • 01	0 01	29 01	21153 88%	2721	2410p
MISCONSIN	12246 211	2451 42	367.	329	357	1033	35213	5026	57023
MY CHING	4447 31	143	19	29 01	19	58 01	47994 491		97984
TOTAL	373547	67677	11262	12729 .	-		197416E		
101 ML	127	21	01	07	07	314/1	432	182	
				-	-	÷.,			

NOTE "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE NDST CONSTRAINING POPULATION CRITERIA THE HUNDERS IN THE POPULATION CASE COLUMNS REMEMBERINT THAT LAND UNIGUELY CONSTRAINED BY THAT CRITERION

Â.,

TABULATION	
------------	--

*

TABULATI	ON	AVA	JLABLE L				• . ·	•			
		1	POP	CASE 1	ASE 2			. '	•		
				i			ASE 4				
			1			1		2 334.34		BILI'IEE	
							i	1	RLS	TEICTEL	ANCE
•		•	•	•	•	•	•	•			
AL ABAMA		15759		232	347	5E 01.	425			51902	
ARIZONA		27502	1399	367	1% 212	41.4	•;	24123	54401	114342	
APRANSAS		24%	846	4E	C%. 174	01. C	125	36803	6723	52255	
CALIFORN	14	17% 10596	1322		232	0. 318	- 01		51492	160367	
COLORADO		7% 12487		0% 4 B	. 0%. 39	C1. 4E	ō.				
COMECTI	CUT	35%			97	01 36 7		. 60.	. en.	5214	
DELAMARE		17.0	-	3%	2%	72	18:	661	01		·
FLORIDA		0% 1689	02		01	- 10	. 77	. 98%			
GEDRCIA		31 12073			0% 454	232	965	74	5867		
10440		22%	42	07.	12	- 0% 19		. 615.	30%		
•		12%	02	01	OX	OZ			45%		
ILL INDIS		11031	1621 32		376 1X	116 Oz	290	722	27		
IND] ANA		4321	2343 71	193	12	106	290	70%	42		
10MA	÷	23756	42	212 01	454	116	347	48%			
KANSAS		13375	984	135 02	222 01	154	261		193		
MENTUCKY		3397 142	1959	318	270 1%	135	290				
LOUISIAN	•	6475 13%	396 1 X	14	135	0 0 X	56	26653	14417		
MAINE		14784	1631	47 02	367	116	200	16444	357	3407e	
MARYLAND		39 01	290 31	290	125	408 52	683	8975	145	11157	
MASSACHU	atts.	347 41	569	193	329	866	1525	4909	. 0	8627	
MICHIGAN		: 11580	3435	. 356	608	502	194	35049	.9679	61837	
MINNESOT/	. .	: 19% 25650	2104	1% 376	17.	12	376	31893	16% 24926	85914	
M1851851/	P1 .	18036	- 3039 52	01 68	290	0x 77	02 261	23276	2*% 3841	47885	
		38% 10171	917	02 116	17	203	434	53432	. 8%. 4516	60034	
HONTANA		23276	. 164	02 0	29	02	12	77721	47160	14845"	
NEPRASKA		10%	01 647	· 0% 77	. 02	02	01 241	521	32). 1534	77720	
NEVADA		172 4719		01 87	. OL 19	01 97	02	792	20255	110619	
-	MIDE	41		01 87	. 02 174	02 145	0x 376	771	ie: 1197	9465	
MEH JERSE		11	41	11	. 27	21	4%	74%	132	8010	
		01 4449			12	3%	42	922	. 02 21536	121745	
NEH YORK		41 9443	02		01 ·	01 579	02 2384	70%	26%	30219	
NORTH CAR	-	111	81		2% 907	11	51	322	20% 8627	50770	
	•	132	81	12	· · 2x	12	2	36%	17%		
	01A	14147 20%	174 01	002	0 02	34			4572 9%	71006	
OTHO		3204	: 71	41	409	1177	1795	672	2326 87	41833	
DILANDHA	•	12709	1457	135	193	145		74%	3464 57	69614	
OREODN	•	24726	318 02	29 01			68 01		30349	₹792 ₿	
PERCEYLVA	NIA	1394 	: 1 98 8	425	369	473	1390 31	35329	3551 Øx		
NHODE 18L	AND	1 40 1 4 1	145	: 314 10%	77 : 62 ·	67 S	209	434	01	1207	
BOUTH CAR	OL INA	943	346	: 10 01	116 02	10	87	26943		31160	
BOUTH DAK	OTA	11947		- 10	10 : 01		29	42113	22793	77006	
TEMEBBEE	,	5568 13%		203	405	87 01	318	31430	2396	42122	
TEXAS		: 83916	7701 31		1341 07	1071 02	2634	165198	3401 2%	248838	
UTAH		10084	29 07	01	0.	0	0	49514	25553.	85180	
VERIONT		12%	1.4	0	0	10	19	8714	1023	4853	
VIRGINIA	•	12	01 2451		337	505 505	405	98:. 22292	101. 3665	#116F	
MARHINCTO	•	6459 537	415	58	135	11	11	34952	14). 24762	6°31c	
MEST VIRO	INIA	137	12	01	02	02 10	0 X 0	50% 21240	361 272:	2410+	
MISCONSIN		02 20091	2463	0% 52)	0% 482	02 241	02 618	98% 27377	11). 502e	57021	
WYOHINC		35% 13469	511. 617 ·	12	48	10	12 77	48". 57051	75. 25225	9798c	
		161	02	01.	01	C1.	07	\$e:.	241.		
TOTAL		531013 171	62975 21	10433	12468 OX	9432 02	22882	1033100	557672 181		
	NOTE "AVAILABLE	-									
	CONSTRAINING POPUL POPULATION CASE CO	ATION CR	I TER LA	THE NUMB	ERS IN T	HE					
	CONSTRAINED BY THE							••		• •	. •
					13	0.2					

TABULATION

VIRGINIA

WISCONSIN WYON INC

TOTAL

VIRGINIA

·, : ·

ENVIRONMENTAL BUITABILITY AND POPULATION CASES 1 - 5 *** <<<<< PEDIUM BUITABILITY ->>>> BTATE AREAS IN BQUARE HILES AND % OF STATE

TABLE F3.8

DTE: "AVAILABLE LAND" IS THAT AVAILABLE UNDER THE MOST DWGTRAINING POPULATION CRITERIA THE NUMBERS IN THE DWGTRAINED BY THAT CRITERION

07

152 4429

13%

F-94

01

11165 2015479 0% 66%

53

2410:

079p-

9%

18%

TABLE F3.9 BINUTROINTENTAL BUITABLITY AND POPULATION CASES 1 - 5 ---CITATE AREAS IN BOMME MILES AND & OF BYATE AVAILABLE LAND POPCASE 1

TABLE AT LON

		POPCA	ASE I				÷ •		
			POPC	ASE I	ASE 3				
		i		1		ASE 4			
							CASE 2	E- 50174	5161° (6
	1	1		1	1		1	REE	TELLAN
					·				
n_abama	5250 10%	1052	97 . 02	116	39	316		4%	
AR I ZONA	3831	251	. 0%	10 CT	02	10			1:4343
ut Ansas	6938	.434	29	125	19	46	39367	. 9553	
CALIFORNIA	16772	2192	. 299	463	164	575	• 00 442	51452	160363
DLORADO	13616	17	07.	- 10	· 0% 46	07 309 32	: 23% 61306	286600	104325
OWECTICUT	106	0% 969	247	0% 2999	212	940	31Je		5209
EL MARE	· 22 C	. 112	72	. 6X 0	42	:102		30	2324
LORIDA	62 0	. 02	02	. OX	0X 0	02	. 98.	z*.	
ECROTA	02	01 801	01. 50	· 0%	0%	. 01	. 781.	22%	
	- 4z	12	01	01	29 0%	56 0%	841,	101	
DAHD	7336 72		· • 02	29	· 10 01	· 68	46%	497.	
LLINDIS	1457	- 12	180 01	- 50 01	60 07	77 0%			36540
NDIANA	: 434		10	10	29	24	-34441	1322	36343
	. 4023	02 396 12	02 0 02	48			44580		
MBAS	: 26354	. 840	. 106	. 193	135	02 174	.94272	173	
ENTUCHY	32x 837∌	1711 .	01. 319	264	02	. 02	27223		
DUISIANA				01	· 02	01		6 1	48153
AINE	8307	0 01 133	ox	OX	07	07	70%	30%	
			01		02	10	25254	12	
ARYLAND	212	106	· 01		02	10	10663	12	
ASSACHUBETTS	. 647 71	811	11	· ·· · · · · · · · · · · · · · · · · ·	58	. 77 11			8426
ICHIGAN	: _	0	0 Dz			0	52150	4674 161	61837
INNESOTA	202	i (1 ¶ 1	·: 0	10	. 0	Ö	60727	24926	85914
1981951PP1	2355	0 57 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10		- 29 01	· 10	02	712	2993 : 39941	
1 890UR J	12400		01 2999	01 :	02	249	31000	4316	69932
CNITAMA	18% 27107	212	0% 19	02 . 10	02	OX	731	- 6 2	148435
ERASKA	181	01	01	01	· 02	02	902 43843	322	
	162	OX	ož	-10 OZ	· 01.	. 01			
EVADA	19946	. 02	· 02	• 01.			71514	182	110617
	3474	714 -	· 01	154	0 07 39		3602		9467
EN JERBEY	1 68	251	87 : 11				7344		
DA MEXICO	17939	241		48 07	10	77	: 71823	21536	: 121744
EN YORK	4989	: 1972 :	116	270 .	. 232 :	- 374	32511	9930	30219
BITH CAROLINA	101	5 569 :	- 24 :	154	19 :	145	40930	· 8627	3076B
ATH BAKOTA	12207	135 :	01 10	07. 279:	02	07		4372	71005
-	171	07. : 	01 :	01	02	. 01	- 'BA412	8324	41834
	91	21 : 472	0x		67 ·	-	8.27	6X 3464	
	: 162		02	116	. 01 :	01	781	52	
ECON	: 201	. 1127 : 11	01	90 - 01 -	0 : 01 :	02	471	312	• •7•27
ENDEVLVINIA	- 9196 - 201	: 3457 : : 971 :	940 : 21		- 569 .	1033			45278
ODE ISLAND	07.		02		0 OZ	. 0	1204	1 N 0	1206
UTH CAROLINA	. 5365	1905	203			376	20728	2663	31187
NTH DALDTA	: 7334	52	17	1X - 39 -	. 0:	. 29	.46676	82793	77007
INTERSEL	102 7363	3484	01. 270	540	184 :	463	25013	. 2544	42123
145	41331	87 1524	12	12	02	11 482	59% - 219383	5491	265939
	157	12	· • 0%	01 :	01 :	02	82%	25553	8518)
•	: 15%	. 01.:	01.	· 0% :	01 .	01		30%	
	2539	309	01 :	12	OZ :	12	. 971	102	
RGINIA	1454	: 387 . 11 .	- 34 : 01 :	106 02	10 07	02	793	. 147	41366
SHENDTON	7480	540 : 13	07 27 07	123 01	39	· 77 01		247a2 36%	69315
ST VIRGINIA	8145 241	1796		212		116	11020	2721	24105
SCONSIN	2428	: 174 :	•		0	. 24	48134	9029	97022
/DHINC	13520	02 \$7	02 : 1*	34	24	19	57058	2522:	47 48 6
	142	01	02	01	02	OZ	601	26%	
TAL	382005	32221	3981	8713	2328		2049232		

. .

NOTE "AVAILABLE LAND" IN THAT AVAILABLE U CONSTRAINING POPULATION CRITERIA THE MAN POPULATION CABE COLUMNS REPRESENT THAT LANG CONSTRAINED BY THAT CRITERION IZOVELA IN AME

TABLE F3.10 ENVIROMMENTAL BUITABILITY AND POPULATION CAMES 1 - 3 ---CCCC LON GUITABILITY 2000 STATE AMEAS IN BOUNTE MILES AND X OF STATE

an An An An

*

100

TABULATION	AVAILABLE LAND † POPCASE 1										
					POPCASE 2 POPCASE 3						
					1		A5E 4	CASE 5			
		Í				1	- T			TATET LAN	
		1	1	Į	1	I	1	;			
		46	10		. 0	. 0	 C	49775	2075	51-0F	
RIZONA		0% 2113	02	02 0	01	- D2 - C	01	96.			
ANSAS		22	02	· 02	01	0%	C2	487	521 6263	· ·	
AL IFORNIA		40520	12	0% 1708	0X	01 2287	01 4417	78.	12		
OLORADD		25%	- 37 1119	32	12 203	11	42	. 371.	32.		
CONNECTICUT		29%	12	0%	48	07	04	421	272		
ELANARE		0×	42	164 3%	12	48 . 11 0	125		02		
LORIDA		01	01	07 0	. 07	· 01	. 07	48 .	13105		
EORGIA	÷ •	01 7220	02 376	0X	01 24	· 07	02	78%	22%		
		10451	12 251	02	07.	02	0%	85.	37519		
DAHO	×	132	0%	10 01	- 01	19	0%	42%	452		
LL 1ND16		31	11	01 01	135	10	316 0%		1361		
NDIANA		01	01	: · 01	. oz	02	02	.961	47		
		10	: 01	: 0 . 07.	01 29	000	01	1002	02 193		
ANSA5		15346	212	19 01	01	00	02	812	02 2470		
ENTUCKY		- 3377 - 6%	1004	02	174	01	. 0X	83:	- 62		
DUISIANA		0 0 2	· · · O : O%		02	. ox	. 0 . 07.	702	14417	48193	
AINE	. • •	: 1197	: 37 : 0%	: 01.	10 01	. OZ	02	952	357	34075	
ARYLAND		: 01	01	02	0	· • • • •	: 0 . 02		~ 145 11		
ASSACH/SETTS		203	: 1899 : 71	94 01	: 87 . 1%	10	. 39	7442 89%	0 07		
ICHIGAN		. or.	: 01	0 01	: 0 . 01	01	· · 0		9679	: 61837	
INNESOTA		0	0	: 0	. 0X	0	0	607998	24926	: 85714	
1851661PP1		0	0	0	0	10	0	44033	3941 87		
ISSOURI		147	782	104 01	922 01		: 135		4516	69933	
DITANA		13268	135	49	98 01	29 01	29 01	87709	47160	148456	
EBRABKA		14157	48	0 01	10 01	0	0	61972 801	1534	77721	
EVADA		37365	347	50 01		37 01	97 01	52380 472		: 110619	
EN HAMPBHIRE		1222	135	0	19	ox.		6794 722	1197	4467	
EW JERBEY		0	. 0 01	on	: 0 : 01	87	261	7662	0	010	
EN MEXICO		44831	347 01	27	97 OX	27	77	42778	31534		
EN YORK		2454	· • • • • •	- 40	125	- 01 - 40	. 48	. 36757	4430 201	50219	
DRTH CARDLINA		2374	11 : 11 :	02 17	116 .	01		38776	8627	9074 ⁴	
DRTH DANDTA		8241	11 11 1 97 1	01	07 10	01	01. 0 572	772	6572 91	71005	
10		121	326	01	01	0X 14	. 10	38011	8326	41832	
NLAHONA		31 - 7423	1X 203	10	01 10	01	01	912	3464		
REGON		251	0X 39	01 10	01 0	01	01 10	67270	30347	47929	
ENERSYL VAN IA		1824	01 1033	0X 116	02 174	01. i	0X 145	692 : 38967	312 3551	43260	
HODE ISLAND	2 7	371	2 21		01. 0		01	: 1206	. 8 %	1204	
WTH CAROLINA		1040	. 454 .	- 29	. 77		01 10	. 26046		: 31168	
UTH DAKOTA		37	106	01	01	01	: 01	42277	47. 22743	77007	
ENNESSEE		151 4275	1476	143	222		01	33042	207.	42120	
TAS		102	. 41.	01 135	. 13	01 19	12	781	- 62	246839	
AH	1	202 16521		212	02	01	482	78% 40752	29353 29353	85179	
		172	. 21	01	07	0 2	: 11	48% 4574	301 1023	9852	
RCINIA		392 3532	. 3% .	10	0% 123	ox o	01	30948	. 102	4116B	
NSH INGTON		91 5162	: 21.	02	- OX	01 482	1206	751	24762	69314	
ST VIRCINIA		71	31	18	01 125	33	22 48	511 17264	361		
		152	27		. 11		OX O	72	112	57022	
ISCONSIN		116 02	01	02			01	911 54937	92	97987	
VORINC		17635 182	110	10	OX.	02		56%	261		
TAL		381 599	21192	3919	6054	3942	10512	2057177 68%	557673 18%		

-2 Million Albert

DISTRIBUTION:

US NRC Distribution Center (CDSI) 7300 Pearl St. Bethesda, MD 20014 1200 copies for NL, RB(6B), RR, XC, AN, CF, CG, CO, C3, C4 25 copies for NTIS 25 copies for R. M. Blond RRBR, DRA

Herschel Specter Power Authority, State of New York 10 Columbus Circle, 19th floor New York, NY 10019

Don Paddleford Westinghouse P. O. Box 355 Pittsburgh, PA 15230

Robert Budnitz Future Resources Associates 734 The Alemeda Berkeley, CA 94707

Anthony R. Buhl Technology for Energy Corp. 10770 Dutch Town Rd. Knoxville, TN 37922

Keith Woodard Pickard, Lowe & Garrick, Inc. 1200 18th St., NW Suite 612 Washington, DC 20036

Norman C. Rasmussen Dept. of Nuclear Engineering Massachusetts Institute of Technology 77 Mass Avenue Cambridge, MA 02139

Jon Young Energy Incorporated 515 West Harrison Suite 220 Kent, WA 98031

Ching Wang 305 Memorial Drive, Room 410A Cambridge, MA 02139

Mr. Toshinori Iijima Division of Reactor Safety Evaluation Reactor Safety Research Center Japan Atomic Energy Research Institute Tokai Research Establishment Tokai-mura Naka-gun Ibaraki-ken 319-11 JAPAN

Mr. Bert Th. Eendebak KEMA Laboratories Utrechtseweg, 310 Postbus 9035 NL-6800 ET Arnhem NETHERLANDS

Mr. John R. D. Stoute Health Physics Division Energieonderzoek Centrum Nederland (ECN) Westerduinweg, 3 Postbus 1 NL-1755 Petten ZG NETHERLANDS

Mr. Ulf Tveten Institute for Energy Technology Postboks 40 N-2007 Kjeller NORWAY

Mr. Juan Bagues Somonte Junta de Energia Nuclear Ciudad Universitaria Avenida Complutense, 22 Madrid-3 SPAIN

Mr. Ove Edlund Studsvik Energiteknik AB Studsvik Fack S-611 82 Nykoping 1 SWEDEN

Mr. Auguste Zurkinden Abteilung fur die Sicherheit der Kernanlagen Bundesamt fur Energiewirtschaft CH-5303 Wurenlingen SWITZERLAND

Dr. Klaus Burkart Institut fur Neutronenphysik und Reaktortechnik (INR) Kernforschungszentrum Karlsruhe G.m.b.H. Postfach 3640 D-7500 Karlsruhe 1 WEST GERMANY

Dr. Frank W. Horsch Projekt Nukleare Sicherheit (PNS) Kernforschungszentrum Karlsruhe G.m.b.H. Postfach 3640 D-7500 Karlsruhe 1 WEST GERMANY

Mr. Siegfried Vogt Hauptabteilung Sicherheit-Umweltmeteorologie Kernforschungszentrum Karlsruhe G.m.b.H. Postfach 3640 D-7500 Karlsruhe 1 WEST GERMANY

Mr. Ioannis G. Bartzis Greek Atomic Energy Commission Nuclear Research Center Demokritos Aghia Paraskevi Attikis GREECE

Mrs. Carla Brofferio Comitato Nazionale per l'Energia Nucleare Viale Regina Margherita, 125 Casella Postale N. 2358 I-00100 Roma A.D. ITALY

Mr. Pietro Cagnetti PAS Comitato Nazionale per l'Energia Nucleare Centro di Studi Nucleari della Casaccia Via Anguillarese km 1+300 I-00060 Roma ITALY

Mr. Sebastiano Serra ENEL-DCO Ente Nazionale per l'Energia Elettrica Via G.B. Martini, 3 Casella Postale N. 386 I-00186 Roma ITALY A second data and the second data

Mr. Jan G. Kretzschmar Studiecentrum voor Kernenergie (SCK/CEN) Boeretang, 200 B-2400 Mol BELGIUM

Mr. Alistair D. Christie Deputy Director, Air Quality and

Inter-Environmental Research Branch Environment Canada Atmospheric Environment Service 4905 Dufferin Street City of North York, Downsview Ontario, M3H 5T4 CANADA

Mr. Søren Thykier-Nielsen Health Physics Department Risø National Laboratory Postbox 49 DK-4000 Roskilde DENMARK

Mr. Daniel Manesse Institut de Protection et de Sureté Nucléaire (IPSN) Commissariat à l'Energie Atomique Centre d'Etudes Nucléaires de Fontenay-aux-Roses Boite Postale 6 F-92260 Fontenay-aux-Roses FRANCE

Mr. G. Neale Kelly (2) National Radiological Protection Board Chilton Didcot Oxon. OX11 ORQ UNITED KINGDOM

Mr. Shan Nair Research Division Central Electricity Generating Board Berkeley Nuclear Laboratories Berkeley Gloucestershire GL13 9PB UNITED KINGDOM

Mr. William Nixon United Kingdom Atomic Energy Authority Safety & Reliability Directorate Wigshaw Lane Culcheth Warrington WA3 4NE UNITED KINGDOM Mr. Michael Haynes United Kingdom Atomic Energy Authority Safety & Reliability Directorate Wigshaw Lane Culcheth Warrington WA3 4NE UNITED KINGDOM

S. Chakraborty Abtielung fur die Sicherheit der Kernanlagen Eidgenossisches Amt fur Energiewirtschaft Wurenlingen SWITZERLAND

Mr. Geoffrey D. Kaiser Consulting Division NUS Corporation 910 Clopper Road Gaithersburg, MD 20878

Mr. Dean C. Kaul Science Applications, Inc. Suite 819 1701 East Woodfield Road Schaumburg, IL 60195

Mr. Ilkka Savolainen Technical Research Centre of Finland Nuclear Engineering Laboratory P.O. Box 169 SF-00181 Helsinki 18 FINLAND

A. Bayer INR-Kernforschungszentrum Karlsruhe D-7500 Karlsruhe 1 Postfach 3640 WEST GERMANY

Douglas Cooper Department of Environmental Health Physics Harvard School of Public Health 665 Huntington Avenue Boston, MA 02115

I. B. Wall (2) Electric Power Research Institute 3412 Hillview Avenue P.O. Box 10412 Palo Alto, CA 94303

John Robinson Dames & Moore Suite 1000 1100 Glendon Avenue Los Angeles, CA 90024

Ken Hansen Dames & Moore Suite 1000 1100 Glendon Avenue Los Angeles, CA 90024 Chris Cluett Battelle Memorial Institute Pacific Northwest Division Human Affairs Research Centers 4000 NE 41st Street Seattle, WA 98105 7223 K. V. Diegert 9000 G. A. Fowler A. W. Snyder 9400 9410 D. J. McCloskey 9411 A. S. Benjamin 9412 J. W. Hickman 9413 N. R. Ortiz 9413 N. C. Finley 9414 G. B. Varnado D. M. Ericson 9414 9415 D. C. Aldrich (50) 9415 D. J. Alpert (2) 9415 Rick Burke 9415 D. E. Bennett 9415 C. D. Leigh R. M. Ostmeyer (2) 9415 L. T. Ritchie (2) 9415 9415 J. L. Sprung (5) 9415 D. R. Strip (2) 9415 J. D. Johnson (2) A. R. Taig 9415 9416 L. D. Chapman 9420 J. V. Walker 9440 D. A. Dahlgren 9551 J. M. Taylor 8214 M. A. Pound L. J. Erickson (5) 3141 3151 W. L. Garner (3) For DOE/TIC (Unlimited Release)

NRC FORM 335	· · · · · · · · · · · · · · · · · · ·		1. REPORT NUMBE	R (Assigned by DDC)			
(11-81) U.S. NUCL	EAR REGULATORY COMMISSION	NUREG/CR-2239					
4. TITLE AND SUBTITLE (Add Volur	SAND81-1549						
	2. (Leave blank)						
Technical Guidanc	3. RECIPIENT'S ACCESSION NO.						
	ch, J. L. Sprung, D. J.	Alpert,	5. DATE REPORT O	COMPLETED			
K. Diegert, et al.			момтн July	1982			
9. PERFORMING ORGANIZATION	NAME AND MAILING ADDRESS (Incl	lude Zip Code)	DATE REPORT I				
Sandia National Labo			December	YEAR			
Albuquerque, New Mex	100 8/185		6. (Leave blank)	1982			
	•						
12 SPONSORING ORCANIZATION	NAME AND MAILING ADDRESS (Inc	lude Zie Cadal	8. (Leave blank)				
12. SPONSORING ONGANIZATION	NAME AND MAILING ADDRESS (Inc	iuae zip Coaei	10. PROJECT/TASK	WORK UNIT NO.			
U. S. Nuclear Regula			11. FIN NO.				
Washington, D. C. 2	0555		A-1123				
······································	·		A-1125				
13. TYPE OF REPORT		PERIOD COVER	ED (Inclusive dates)				
	•	r					
15. SUPPLEMENTARY NOTES			14. (Leave blank)	· · · · · · · · · · · · · · · · · · ·			
16. ABSTRACT (200 words or less)	· · · · · · · · · · · · · · · · · · ·		<u> </u>				
population distribut continental United Si The impact on consequ and emergency respons were analyzed to ider ences. A site availa The data bank contain water availability, a rural industrializat	tical severe nuclear pow ions about current react tates, and (4) socioecor uences of source term ma se have been analyzed. htify statistical charac ability data bank was cons information about pop and land use restriction ion projects, energy boo e their nature, magnitud	tor sites, (3) nomic impacts Population di cteristics, ti onstructed for oulation densi ns. Finally, omtowns, and r	site availab of reactor sit stributions al me trends, and the continent ties, seismic the socioecond uclear power p	ility within the ting. lation distribution bout current sites d regional differ- tal United States. ity, topography, omic impacts of plants were			
17. KEY WORDS AND DOCUMENT		17a. DESCRIPTOR					
The Read Works and Docoments			5				
· ····			·····				
17b. IDENTIFIERS/OPEN-ENDED TE	RMS						
18. AVAILABILITY STATEMENT		19. SECURIT	Y CLASS (This report)	21. NO. OF PAGES			
Unlimited		Uncla	ISSIFIED Y CLASS (This page)	22. PRICE			
		20. SECURIT	T ULASS (Inis Dage)	IZZ. PRICE			

v

NRC FORM 335 (11-81)

4

1

نېپ د

X

•